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Inertia Estimation of Multi-Area Power Systems

Using Tie-Line Measurements and Modal

Sensitivity Analysis

Achilleas I. Sfetkos , Eleftherios O. Kontis , Theofilos A. Papadopoulos , and Grigoris K. Papagiannis

Abstract—The replacement of conventional synchronous gener-
ators with converter-interfaced renewable energy sources (RESs)
reduces the overall inertia levels of modern power systems,
leading to frequency stability issues. Moreover, the intermittent
nature of RESs constitutes system inertia variable during the day,
further complicating the frequency control procedure. Therefore,
power system operators shall estimate close to real-time the
overall inertia levels of their grids in order to ensure their
secure and reliable operation. In this context, in this paper, a
new methodology for the inertia estimation of multi-area power
systems is formulated. The proposed method uses the modal
sensitivity matrix to obtain a linear approximation of the relation
between modal parameters and inertia constants. During the
real-time operation, modal parameters are identified via system
responses using the Matrix Pencil method. The identified modes
and the derived sensitivity matrix are used to estimate the overall
inertia of the examined power system. The effectiveness of the
proposed method is validated by means of simulations performed
in one-area, two-area, and three-area power system models.

Index Terms—Frequency stability, inertia estimation, modal
sensitivity, mode estimation, power system dynamics.

I. INTRODUCTION

Modern power systems face new challenges and stability

issues arising from the growing integration of converter inter-

faced distributed energy resources (DERs) [1]. According to

the European Network of Transmission System Operators for

Electricity (ENTSO-E), the most important stability problems

are caused due to the reduction of rotational inertia [2]. Indeed,

due to environmental concerns, conventional synchronous gen-

erators (SGs), driven by fossil-fuels, are gradually decommis-

sioned from power systems and replaced by renewable energy

resources (RESs) [3], that are connected to the utility grid via

power electronics [4] and do not possess inherent inertia [1].

Inertia reduction affects negatively grid frequency response,

resulting in high rate of change of frequency values that may

lead to frequency instability and cascaded outages [5]. Addi-

tionally, the variability of RESs production constitutes system

inertia levels variable during the day, thus rendering frequency

control of modern power system extremely challenging [1].

Therefore, it is very important for power system operators to

estimate in real-time, or close-to-real-time, the overall inertia
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levels of their grids [6], [7]. In case low inertia levels are

identified, system operators can activate appropriate preventive

remedial actions, such as the deployment of synchronous con-

densers, re-dispatching of generation units, and the reduction

of power imports from neighboring bidding zones, in order to

ensure the reliable and secure operation of the system [8].

In this context, during the last years transmission system

operators (TSOs) and researchers have developed several in-

ertia estimation applications exploiting wide area monitoring

systems (WAMSs). For instance, in [9] an inertia calculation

application, taking advantage of wide area measurements,

is proposed. In this approach, frequency and active power

measurements, recorded at the terminals of each SG, are used

to estimate the individual inertia constants, i.e., inertia constant

of each SG, via the swing equation. The overall system inertia

is calculated as the weighted sum of all individual constants.

Nordic TSOs have implemented inertia estimation schemes

based on the monitoring of the circuit breakers (CB) of the

installed SGs [8]. When the CB of a specific SG is closed, it is

assumed that this SG contributes to the total kinetic energy of

the system and thus to the overall system inertia. Based on this

information, the total inertia levels are estimated. Nevertheless,

the above-mentioned approaches require extended monitoring

infrastructure to provide reliable results.

In [10], the mode shape analysis is used to determine

system buses representing the center of inertia (COI) [11].

Subsequently, active power and frequency responses, recorded

during transient events at COI, are used to estimate the

effective system inertia via a simplified form of the swing

equation. Nevertheless, transient responses are prone to noise

also containing oscillatory components [4]. Thus, to eliminate

the impact of these factors on inertia estimates, frequency

responses are approximated using the polynomial approach of

[12]. However, the order of the polynomial approximation has

a crucial impact on the accuracy of the estimates [13].

In [14] the mathematical relation between inertia constants

and modal parameters, i.e., frequency and damping ratio

of electromechanical oscillations, is derived. Initially, modal

parameters of inter-area oscillations are estimated from system

responses by using system identification techniques. Subse-

quently, the modal parameters are used to estimate inertia

constants. However, the application of this method requires

the exact knowledge of the rotor angles of all the installed

SGs during the steady-state operation. This requirement com-

plicates the implementation of the method, since synchronized

measurements of rotor angles cannot be easily obtained.
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To overcome these issues, in this paper a new method for

the inertia estimation of multi-area power systems is devel-

oped. In particular, the modal sensitivity matrix is used as a

means to derive a linear approximation between system modal

parameters and inertia constants. This enables the estimation

of the system inertia under new operating conditions given

the corresponding modal content. In the proposed method, the

modal sensitivity matrix is computed offline by the system

operator. To account for different operating conditions, the

modal sensitivity matrix is computed over a range of known

states, i.e., a set of states with known inertia constants. During

the real-time operation, dynamic responses are used to identify

via the Matrix Pencil (MP) method [15] the actual modal

parameters of the examined power system. Eventually, by

using the modal sensitivity matrix and the identified modal

parameters the corresponding system inertia level is predicted.

The rest of the paper is organized as follows: Section II

provides the theoretical background, focusing on the concept

of modal sensitivity analysis. In Section III the impact of

inertia constants on modal parameters is investigated. The

proposed method is presented in Section IV. In Section V,

a thorough evaluation of the proposed method is performed

using a two-area power system model. The application of the

method in one-area and three-area power systems is discussed

in Section VI. Finally, Section VII summarizes the main

findings and concludes the paper.

II. THEORETICAL BACKGROUND

A. Fundamental Concepts

The inertia constant H of a SG is defined as [16]:

H =
Jω2

r

2Sr

(1)

where J [kgm2] is the moment of inertia of the SG,

ωr [rad/s] is the rated mechanical angular velocity of the

rotor, and Sr [VA] is the rated apparent power of the SG.

The overall inertia constant (Hsys) of multi-machine power

systems can be defined using (2), [16],

Hsys =

∑M
i Sr,iHi
∑M

i Sr,i

. (2)

Here Sr,i and Hi denote the rated apparent power and the

rated inertia constant of the i-th SG, respectively. M is the

total number of the installed SGs.

B. Power System Modeling

During small perturbations, power systems can be modeled

as linear time-invariant systems using the state-space represen-

tation of (3). Equations in (3) are evaluated at the operating

point, around which the perturbation is considered [16].

{

ẋ(t) = Ax(t) +Bu(t) + Fw(t)

y = Cx(t) +Du(t).
(3)

Here x(t) ∈ R
n is the state vector, u(t) ∈ R

r is the input

vector, and y(t) ∈ R
m is the output vector. A ∈ R

n×n,

B ∈ R
n×r, C ∈ R

m×n, and D ∈ R
m×r are the system

matrices. Vector w(t) ∈ R
r and matrix F ∈ R

n×r simulate

the effect of disturbances in the state space model.

The eigenvalues of A are given by the values of the scalar

parameter λ for which there exist non-trivial solutions, i.e.,

other than φ = 0, to the following equation [16]:

Aφ = λφ (4)

For any eigenvalue λi, the column vector φi ∈ R
n×1 that

satisfies (4) is named the right eigenvector of A associated

with eigenvalue λi. Similarly, the row vector ψi ∈ R
1×n

which satisfies [16]:

ψiA = λiψi, i = 1, 2, . . . n (5)

is the left eigenvector of A, associated with eigenvalue λi.

C. Modal Sensitivity Analysis

Let Θ =
[

θ1, . . . , θi, . . . , θN
]T

∈ R
N×1 be the set of

parameters of the examined system. By differentiating (4) with

respect to the i-th parameter θi and substituting for the j-th

eigenvalue, the following equation results:

∂A

∂θi
φj +A

∂φj

∂θi
=

∂λj

∂θi
φj + λj

∂φj

∂θi
(6)

The sensitivity of the j-th mode with respect to parameter

θi can be derived by performing left multiplication on (6) with

the corresponding left eigenvector, ψj , using the definition of

(5) and the normalized eigenvector property ψj ·φj = 1 [18]:

∂λj

∂θi
= ψj

∂A

∂θi
φj (7)

Eq. (7) can then be used to calculate the full sensitivity matrix

for a subset of the system modes {λ1, . . . , λk}, [18]:

S =



















∂λ1

∂θ1
. . . ∂λ1

∂θi
. . . ∂λ1

∂θN
...

. . .
...

. . .
...

∂λj

∂θ1
. . .

∂λj

∂θi
. . .

∂λj

∂θN
...

. . .
...

. . .
...

∂λk

∂θ1
. . . ∂λk

∂θi
. . . ∂λk

∂θN



















(8)

The variation of system modes due to a change on model

parameters can be estimated via the linear approximation

∆Λ ≈ S ·∆Θ. (9)

Here ∆Λ = Λ
′ − Λ denotes the variation of system modes

from the known state Λ (corresponding to the set of parameters

Θ) to the new state Λ
′ associated with the modified system

parameters Θ
′.

If system modes Λ′ are known, e.g., by applying identifica-

tion techniques to system measurements, then (9) can be used

to estimate ∆Θ. In the general case, (9) expresses an over-

determined problem. Thus, it can be solved in a least square

sense [19] as follows:

∆Θ = (STS)−1ST∆Λ. (10)

Therefore, it is clear that any updates/modifications of

model parameters can be quantified by computing Θ
′ via (11).
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Θ
′ ≈ Θ+∆Θ (11)

The modal sensitivity concept, described above, is used to

predict inertia constants by means of the modal parameters

contained in measured responses. In particular, system modes

Λ and the sensitivity matrix S are computed offline assuming

a set of known states, i.e., states of the examined power

system with known inertia constants. Λ′ is identified during

real-time operation by applying the MP method to system

measurements. Eventually, (11) is used to determine Θ
′, i.e.,

values of inertia constants corresponding to Λ
′.

D. Mode Estimation Using the MP Technique

The MP method is based on the singular value decompo-

sition (SVD) of Hankel matrices, constructed using system

responses y(t). The implementation of the MP can be sum-

marized by the following steps [15]:

Step-1: Construct Hankel matrices H0 and H1 using as entries

the samples of y(t).
Step-2: Perform SVD of H0.

H0 = USV T (12)

Here S is a diagonal matrix containing the square root of U

and V eigenvalues. U and V are singular vector matrices.

Step-3: Matrices V1 and V2 are constructed by deleting the

last and the first row of matrix V . Subsequently, matrices Y1

and Y2 are computed.

Y1 = V1
TV1 (13)

Y2 = V2
TV1 (14)

Step-4: Modes contained at y(t) are the generalized eigenval-

ues of the matrix pair {Y1,Y2}, resulting from

Y1
−1Y2 − λI. (15)

The required approximation order, i.e., the order of the MP

model, is defined in this paper using the iterative procedure

presented in [20]. The tolerance τ for the convergence of the

iterative procedure is set to 10−6.

III. IMPACT OF INERTIA ON POWER SYSTEM DYNAMICS

Here, the impact of inertia levels on power system dynamics

is investigated using a generic two-area power system model.

A. System Under Study

The simulations are performed using the system frequency

response (SFR) model of Fig. 1. The examined system is an

inter-connected two-area power system. Both Areas have the

same rated power. As shown in Fig. 1, each Area is simulated

using an aggregated generator unit. Nonlinearities are consid-

ered by integrating generation rate constraints (GRC) in both

aggregated units. The saturation limits are ±5% [17]. In the

examined system, RESs are controlled by power converters

according to the maximum power point tracking algorithm

[21]; thus, as they cannot contribute to frequency support,

RESs are not explicitly modeled and their impact on frequency

dynamics is only reflected to the reduced system inertia.

In Fig. 1 ∆Fn is the frequency deviation of the n-th Area

during a disturbance. ∆PDn is the change of load demand

at the n-th Area and ∆Ptie is the incremental change of the

power flowing through the system tie-line. T1,2 is the synchro-

nising coefficient. Rn and Bn is the speed regulation droop

and the frequency bias constant of the n-th Area, respectively.

Tg,n and Tt,n are the time constants of the governor and

the turbine of the n-th Area, respectively. Pn and In are the

proportional and the internal gain of the automatic generation

control of the n-th Area. Dn is the damping coefficient of the

n-th Area and f0 is the nominal frequency. Effective inertia

Hn,e of each Area is defined as discussed in [22] using (16).

Hn,e = (1− dn)Hn. (16)

Here Hn corresponds to the overall inertia constant of the n-

th Area when no RESs are considered. Parameter dn denotes

the percentage of the kinetic energy displaced from Area n
due to the replacement of xn number of conventional SGs by

inertia-less converter interfaced RESs [22]. xn is known to

the system operator from the results of the day-ahead market.

Since, xn is known, dn can be computed as discussed in [22].

A
re

a
 #

1
A

re
a
 #

2

Turbine #2

Turbine #1

Fig. 1. SFR model of a two-area power system [17]. Values used for the simulations: R1 = 2.16Hz/MW, R2 = 2.64Hz/MW, B1 = 0.4675MW/Hz,
B2 = 0.3825MW/Hz, P1 = 0.18, P2 = 0.22, I1 = 0.55Hz, I2 = 0.45Hz, Tg,1 = 0.072 s, Tg,2 = 0.088 s, Tt,1 = 0.33 s, Tt,2 = 0.27 s,
T1,2 = 0.545 s, D1 = 0.0076 pu/Hz, D2 = 0.0093 pu/Hz, H1,e = 4.5 s, H2,e = 6.5 s, f0 = 50Hz.
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Fig. 2. Impact of low inertia levels on power system oscillations.

B. Time Domain Simulations

To quantify the impact of RES penetration on inertia

levels and consequently on system dynamics, three distinct

cases, namely Case#1, Case#2, and Case#3, are considered.

In Case#1 the RES penetration level is equal to zero for both

areas, i.e., d1 = d2 = 0 and Hsys = 5.5 s. In Case#2 the

20% of the load demand of Area#1 is covered by inertia-

less converted interfaced units, i.e., d1 = 0.2, and of Area#2

by 40%, thus d2 = 0.4 and Hsys = 3.75 s. For Case#3,

d1 = d2 = 0.5; thus Hsys = 2.75 s.

To investigate the system dynamics, the time domain re-

sponse of the active power flowing through the system tie-

line is used. For all examined cases a step disturbance of

load demand in Area#1, ∆pD1=1% at t=0, is simulated.

The disturbance is sufficiently small, thus the impact of

GRC is not triggered. The event is simulated for 10 s, i.e.,

0 ≤ t ≤ 10 s. Simulations are performed assuming a time step

of Ts = 0.001 s. To replicate realistic phasor measurement

unit recordings, all responses are decimated to 100 samples

per second (sps).

The impact of the reduction of inertia levels on active power

oscillations is presented in Fig. 2. As shown, there is a strong

relation between power oscillations and the overall inertia

levels. Indeed, it is clear that as inertia levels drop, the power

oscillations exhibit higher frequency and lower damping.

C. Modal Analysis

The impact of inertia levels on system dynamics is also

verified by means of modal analysis. For this purpose, the

detailed 9th-order state-space model of Fig. 1 is used and

the corresponding eigenvalues are computed and presented

in Table I. As shown, as the total inertia level is reduced,

complex modes shift towards larger imaginary parts and lower

real parts. Thus, resulting oscillations exhibit higher frequency

and lower damping. This remark is in-line with the results

presented in Fig. 2 .

Instead of using eigenvalue analysis, measurement-based

modal analysis can also be performed. In this case, dynamic

responses of ∆Ptie shown in Fig. 2 are forwarded as inputs to

the MP to determine modal parameters. To achieve comparable

results with those presented in Table I, a 9th-order model is

used for the MP. The percentage error between the actual

modal parameters (computed via eigen-analysis) and those

estimated using the MP method is reported in Table II. As

TABLE I
MODAL PARAMETERS COMPUTED VIA EIGEN-ANALYSIS

Mode Case#1 Case#2 Case#3

1,2 −0.30± j3.26 −0.23± j3.91 −0.13± j4.82
3,4 −1.02± j2.09 −0.98± j2.87 −0.84± j3.38
5 −0.44 −0.42 −0.41
6 −0.55 −0.55 −0.54
7 −1.77 −1.52 −1.44
8 −12.06 −12.44 −12.61
9 −14.61 −14.76 −15.19

TABLE II
PERCENTAGE ERROR OF MP MODAL ESTIMATES

Mode Case#1 Case#2 Case#3

1,2 3.79 · 10−7 1.62 · 10−7 5.59 · 10−8

3,4 1.80 · 10−6 1.89 · 10−7 1.26 · 10−7

5 1.86 · 10−5 3.11 · 10−6 7.48 · 10−6

6 2.74 · 10−5 9.70 · 10−6 6.05 · 10−6

7 1.48 · 10−5 4.63 · 10−6 4.72 · 10−7

8 2.06 · 10−4 1.58 · 10−4 2.57 · 10−5

9 1.34 · 10−5 9.40 · 10−6 2.08 · 10−7

shown, all modal parameters can be estimated very accurately

by applying the MP method to system responses.

To demonstrate the accuracy of the MP method under dif-

ferent disturbance levels, the following analysis is performed:

Inertia levels of Case#1 are considered and three disturbance

levels, namely ∆pD1=1%, ∆pD1=3%, and ∆pD1=5%, are

examined. The resulting ∆Ptie responses are used by the MP

method for mode identification. To achieve comparable results

with those reported in Table I, the impact of GRC is neglected.

The percentage errors against the actual modes are provided

in Table III, verifying the robustness of MP.

TABLE III
PERCENTAGE ERROR OF MP MODAL ESTIMATES FOR CASE #1 UNDER

DIFFERENT DISTURBANCE LEVELS

Mode ∆pD1 = 1% ∆pD1 = 3% ∆pD1 = 5%

1,2 3.79 · 10−7 2.54 · 10−7 2.43 · 10−7

3,4 1.80 · 10−6 2.96 · 10−6 1.30 · 10−6

5 1.86 · 10−5 6.61 · 10−5 1.05 · 10−5

6 2.74 · 10−5 7.79 · 10−5 1.39 · 10−5

7 1.48 · 10−5 2.34 · 10−5 3.68 · 10−6

8 2.06 · 10−4 1.01 · 10−4 1.58 · 10−5

9 1.34 · 10−5 3.12 · 10−7 5.63 · 10−7

D. Root Locus Analysis

In this subsection, the impact of inertia levels on system

modal parameters is investigated more thoroughly by means

of root locus analysis. For the analysis, two discrete scenarios

are considered. In the first scenario, H2 is assumed constant

and equal to 5.5 s, while H1 varies in the interval [3 s, 8 s]. In

the second scenario, H1 is set to 5.5 s and H2 ∈ [3 s, 8 s].
Root locus analysis results for both scenarios are summa-

rized in Fig. 3. As shown, for both scenarios as the inertia

level increases, the frequency of complex modes λ1,2 and

λ3,4 decreases monotonically. The damping of these modes
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present a more complicated behavior and can either increase

or decrease depending on the inertia level. Moreover, as inertia

level increases, damping of mode λ7 decreases, while damping

of modes λ8 and λ9 increase. These results are in agreement

with those presented in Table I. Finally, modes λ5 and λ6

exhibit different behavior depending on the examined scenario.

1

2

3

4

5

6

7

8

9

Fig. 3. Root loci for first scenario: (a) full mode set (b) complex mode set.
Root loci for second scenario: (c) full mode set (d) complex mode set.

E. Discussion

The presented analysis verifies that inertia levels influence

considerably the eigenvalues of the examined system and thus

the frequency and the damping of the oscillations. Neverthe-

less, as verified by the root locus analysis, there is not a

straightforward relation between inertia constants and modal

parameters. Therefore, to provide a further insight, the concept

of the sensitivity matrix is adopted. Additionally, the analysis

reveals that measurement-based modal analysis via the MP

method can provide very accurate modal estimates.

The above-mentioned remarks are used to formulate a

measurement-based approach for the estimation of the overall

inertia levels of inter-connected power systems. The proposed

approach is analyzed in detail in Section IV.

IV. PROPOSED METHODOLOGY

The proposed methodology is presented by means of a

flowchart in Fig. 4. An analysis of all steps is provided below:

Step 1: Dynamic responses y(t) of the examined system,

resulted from small perturbations, are recorded during the real-

time operation and forwarded as inputs to the method. In case

of power systems with no external interconnections, i.e., one-

area systems, y(t) is the time domain response of the grid

frequency. In case of multi-area power systems, y(t) is the

time domain response of active power flowing through the

Record y(t)
Forward Sk

(computed offline)

Apply MP on y(t)

k = 1

Pair eigenvalues

and calculate

∆Λ(k)

Calculate

RMSD(k)

k ≥ K

Compute H ′

n,e via

sensitivity analysis

k = k + 1

Output: Inertia

estimation

Yes

No

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Fig. 4. Proposed method to estimate the overall power system inertia.

system tie-lines. Using only the above-mentioned responses,

the number of signals, required for the implementation of the

method, is minimized. Additionally, the method receives as

input a total number of K modal sensitivity matrices, denoted

as Sk with k = 1, ...,K. Here, K is the total number of known

system states. The sensitivity matrices are calculated with

respect to the effective inertia Hn,e of each area. The required

calculations are performed offline by the system operator. Each

sensitivity matrix corresponds to a discrete known state, i.e.,

to a different operating point with known parameters.

Step 2: The MP method is applied to y(t) to identify

modal parameters. The minimum required order for the MP

method is defined using the methodology presented in [20].

Step 3: The algorithm loops through the known states,

starting with the first (k = 1).

Step 4: The modes identified in Step 2 are paired with

the modes of the k-th known state; the ∆Λ(k) difference is

also computed. For the pairing process and for the rest of the

analysis only the complex (oscillatory) modes are considered.

The reason is twofold: Identification of real modes under

real field conditions may be problematic, due to their fast

damping and thus their negligible impact on system oscil-

lations. Additionally, as indicated by the root locus analysis

of Fig. 3, complex eigenvalues are easily distinguishable.

Thus, the pairing process can be simply performed by sorting

complex modes by their imaginary and real parts.

Step 5: The modal parameters identified at Step 2 are

compared with the corresponding modal parameters of the k-th

known state. The latter are derived through the pairing process

of Step 4. The comparison is performed by means of the Root
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Mean Square Deviation (RMSD):

RMSD(Λ(k),Λ′) =

√

√

√

√

1

M

M
∑

j=1

∥

∥

∥
λ
(k)
j − λ′j

∥

∥

∥

2

(17)

Here, λ
(k)
j and λ′j denote the j-th mode of the k-th known

state and the j-th mode contained in y(t), respectively.

Step 6: If more known states are available, i.e., k < K,

then the procedure moves to Step 4. Otherwise, the procedure

moves to Step 7.

Step 7: Scope of this step is to determine the unknown

inertia constants H ′

n,e by using (9) - (11). Nevertheless, in

order to apply (9) - (11) the modal sensitivity matrix that better

describes the examined system during the real-time operation

shall be identified. For this purpose, the sensitivity matrix

corresponding to the k-th known state that results in the lowest

RMSD is selected.

Step 8: The overall system inertia is calculated using (2).

V. EVALUATION OF THE PROPOSED METHODOLOGY

In this Section the impact of several factors on the perfor-

mance of the proposed methodology is assessed.

A. Impact of Linearization

Eq. (9) is a linear approximation of the actual relation

between system eigenvalues and model parameters, e.g., in-

ertia constants. Therefore, the error introduced due to the

linearization shall be quantified. For this purpose, the fol-

lowing analysis is performed: It is assumed that only one

state of the examined system is known, i.e., K=1, with

[H1,e, H2,e]=[4.5 s, 6.5 s]. All other model parameters are

those summarized in Fig. 1. A total number of 40 unknown

cases is created by varying either H1,e or H2,e. In particular,

twenty unknown cases are generated by varying only H1,e by

±1%,±2%, · · · ± 10%. Twenty additional unknown cases are

generated by varying only H2,e by ±1%,±2%, · · ·±10%. For

all cases, the method of Fig. 4 is applied to identify H ′

sys.

Three scenarios concerning identification of eigenvalues

∆Λ
′ are considered, namely S1, S2, and S3. In S1, ∆Λ

′ is

defined via eigen-analysis and all modes are used to estimate

H ′

sys. In S2, ∆Λ
′ is defined via eigen-analysis, but only

complex (oscillatory) modes are used to estimate the unknown

inertia constants. In S3, ∆Λ
′ is estimated via the MP method

using ∆Ptie dynamic responses. In all cases, the algorithm of

[20] defines that a sixth order model shall be used by the MP

method to accurately capture system dynamics.

Fig. 5 summarizes for all cases the absolute percentage error

(PE) of the overall system inertia H ′

sys, defined as:

|PE(%)| =

∣

∣

∣

∣

Hactual −Hest

Hactual

∣

∣

∣

∣

· 100% (18)

where Hactual is the actual inertia constant and Hest is the

estimation provided by the proposed method. The presented

results reveal that for small variations of individual inertia

constants, e.g., ±5%, the proposed method provides accurate

estimates for H ′

sys, i.e., estimates resulting in PE ≤ 5%. For

higher variations of individual inertia constants, non-negligible

Fig. 5. Impact of linearization on the estimation of the overall inertia. PE
for H′sys when: (a) only H1 change and (b) when only H2 change.

PE are reported. It should be noted that PE tends to behave

differently for ∆H1,e and ∆H2,e variations. Nevertheless, this

is expected. Indeed, the root locus analysis of Fig. 3 verifies

that modal sensitivity follows different patterns with respect

to the individual inertia constants of each area.

Moreover, results indicate that the use of the full set of

system modes (S1) provides the most accurate estimates. The

use of only the complex system modes (S2) tends to increase

PE, albeit not significantly. The latter remark is especially

true for inertia constant variations lower than 5%. However,

Scenarios S1 and S2 are rather unrealistic, since individual

inertia constants of each area are generally unknown and thus

eigen-analysis cannot be performed. Therefore, in this paper

complex modes are determined via the MP method using

system responses. As shown in Fig. 5 the use of the MP

generally increases the resulting PE. However, for all cases,

the resulting PE is comparable with the error of S1 and S2.

B. Impact of Approximation Order

In this subsection, the impact of the MP order on PE
is analyzed. For this purpose, a grid search approach is

employed, where the MP order is sequentially increased from

n = 5 to n = 9. The former value denotes the lowest order

that can be used to identify oscillatory modes of the system,

while the latter is the full system order. [H1,e, H2,e]=[4.5 s,

6.5 s] is used as the only known state. An unknown state is

derived by altering H1,e by 5%. Fig. 6 presents the PE as a

function of the approximation order, i.e., the MP model order.

As shown, as the MP model order increases, PE decreases.

This is because complex modes are identified with higher

precision when higher order models are used.

C. Impact of Known States

The analysis of Section V-A demonstrates that the error

introduced from the linearization is non-negligible. Therefore,
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Fig. 6. Impact of MP model order on inertia estimates.

to ensure accurate inertia estimates, several known states shall

be available to reduce the linearization error.

Therefore, in this Section the impact of the total number K
of known states on the accuracy of the proposed method is

investigated be means of a parametric analysis. In particular,

five discrete cases are examined, namely C1, C2, C3, C4 and

C5. In C1 only a single state is considered as available/known.

In C2, C3, C4 and C5 the number of known states is two,

five, ten, and twenty respectively. For these known states, H1,e

and H2,e are assumed equal and uniformly distributed in the

range between 3.5 s and 7.5 s. For each case, a set of 10.000

Monte Carlo (MC) simulations is performed to emulate cases

with unknown inertia constants. In each MC simulation, H ′

1,e

and H ′

2,e are randomly set between 3.5 s and 7.5 s and the

corresponding ∆Ptie responses are forwarded as inputs to the

MP method to identify system oscillatory modes. The RMSD
index is used to determine for each MC the closest known state

and thus the corresponding sensitivity matrix.

PE results for the estimated H ′

sys across the examined

cases are summarized in Fig. 7 by means of cumulative dis-

tribution functions (CDFs). As shown, for all examined cases

a limited number of outliers is observed. To provide further

insights concerning the accuracy of the methods, outliers are

removed using the interquartile range rule (IQR). The resulting

minimum, maximum, median values as well as the 25th (Q1)

and 75th (Q3) percentiles of PE are presented in Table IV.

As shown, as the number of known states increases, the

Fig. 7. PE for H′sys by means of CDFs.

TABLE IV
STATISTICAL ANALYSIS OF PE VALUES ACROSS THE EXAMINED CASES

Measure C1 C2 C3 C4 C5

Minimum 0.0015 0.0006 0.0006 0.0002 0.0001
Q1 4.0282 1.9173 1.3957 1.0572 0.9578

Median 7.8127 3.8046 3.1806 2.1851 1.8382
Q3 11.9648 6.1367 6.1934 3.6937 3.3462

Maximum 23.8698 12.4660 13.3899 7.6486 6.9287

Fig. 8. Comparison of Area#1 limiter output and ∆Ptie responses for the
linear and the nonlinear case.

performance of the proposed method is generally enhanced.

Nevertheless, it is worth noting that a saturation effect is

observed. Indeed, statistical indexes of Table IV reveal that

the use of more than ten known states do not significantly

increase the accuracy of the proposed method.

D. Impact of GRC

Here, the impact of nonlinearities, introduced by the GRC,

on the accuracy of the proposed method is investigated. For

this purpose, the following analysis is performed: A known

system state with [H1,e, H2,e]=[4.5 s, 6.5 s] is considered and

the modal sensitivity matrix is computed using the linear state

space representation of the examined system. An unknown

state is obtained by increasing H1,e by 5%. For this unknown

state, a sufficiently large disturbance (∆PD1
= 5%) is intro-

duced to trigger GRC nonlinearities.

In Fig. 8 Area#1 limiter output and ∆Ptie responses are

compared for the linear case (dashed lines), where GRC is

neglected, as well as for the nonlinear case (solid lines), where

GRC is considered. For demonstration purposes, only the first

10 s of the responses are presented. As shown, the activation of

the limiter has a significant impact on the resulting oscillations.

This is especially true for the first seconds of the responses,

during which the limiter is active. Nevertheless, after few

seconds, the responses of the linear and the nonlinear systems

practically coincide. Indeed, after few seconds nonlinearities

are eliminated and only electromechanical oscillations, which

are strongly related with the inertia constants, remain in

the responses. Therefore, since the method is based on the

modal sensitivity matrix, responses reflecting the linear part

of the system shall be used for the identification of modal

parameters. This can be easily achieved by forwarding to the

MP method data captured a few cycles after the disturbance.

In this example, MP can be applied using data obtained after

t = 4s, t = 6s, and t = 8s, leading to PE for the overall

system inertia equal to 2.16%, 1.13% and 1.50%, respectively.

VI. EVALUATION ON DIFFERENT POWER SYSTEM

TOPOLOGIES

Here, the performance of the proposed method is tested on

a single area power system with no external interconnections

as well as on a fully interconnected three-area power system.

The examined one-area system is generated by considering

only Area#1 of Fig. 1. The resulting system is described by a

4th-order state-space model and contains one oscillatory mode.
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The three-area power system is created by adding a third area

(Area#3) in the model of Fig. 1. Area#3 is interconnected with

both Area#1 and Area#2. Parameters of Area#3 are: R3 =
2.4 Hz/MW , D3 = 0.0083 pu/Hz, Tt3 = 0.3 s, Tg3 =
0.08 s, B3 = 0.425 MW/Hz, T1,3 = 0.6 s, T2,3 = 0.491 s
[17]. Additionally, controllers are re-tuned to enhance system

stability: P1 = P2 = P3 = 0.2, I1 = I2 = I3 = 0.5 Hz.

The system is described by a 15th-order state space model

and contains three complex conjugate modes.

A. One-Area Power System Model

To statistically evaluate the performance of the proposed

method, 10.000 MC simulations are performed. For each

MC only a single state is considered known, i.e., K=1. As

discussed in Section V.C, the use of only one known state

corresponds to the worst case scenario. The known state is

generated by randomly setting H1,e in the range [3.5 s, 7.5 s].

Subsequently, an unknown state is derived by altering H1,e by

±5% and a random disturbance is introduced. y(t) = ∆f1 is

recorded and used for modal identification. A 3rd order MP

model is used. PE across all MCs is statistically analyzed and

outliers are removed by means of IQR. The resulting average

PE is 5.84%, thus verifying the accuracy of the method for

the analysis of one-area power systems.

B. Three-Area Power System Model

Once again 10.000 MC simulations are conducted. Similar

to Section VI-A, only one state is considered known for each

MC. Known states are created by randomly setting H1,e, H2,e,

and H3,e in range [3.5 s, 7.5 s]. Unknown states are derived by

varying H1,e, H2,e, and H3,e by ±5%. For each MC random

disturbances are introduced and ∆Ptie responses are recorded

and forwarded to MP. A 9th-order MP model is used for mode

identification. Statistical analysis is performed for the resulting

PE and outliers are removed using IQR. The mean PE is

3.42%, confirming the accuracy of the proposed method.

VII. CONCLUSIONS

In this paper, a new methodology for the inertia estimation

of multi-area power systems is formulated. The proposed

method uses system responses, obtained during real-time op-

eration, to identify system modes by applying the MP method.

Using the identified modes and the modal sensitivity matrix

of the grid, the overall inertia level of the examined power

system is estimated. The accuracy of the method is evaluated

by performing simulations in one-, two-, and three-area power

systems. The impact of several factors on the performance of

the proposed method is quantified by means of parametric

analyses and MC simulations.

Results reveal that the order of the MP model and the total

number of the available known states, have a significant impact

on the accuracy of the proposed method. Nevertheless, the

use of more than ten known states and the approximation of

the system responses using the iterative procedure of [20] can

ensure accurate inertia estimates.

Further research will be conducted to test the accuracy of

the proposed method under noisy conditions as well as to

investigate the performance of the method in cases where

RESs are operated under virtual SGs control schemes, thus

contributing to frequency support of the power system.
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