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Abstract-- This paper proposes a one-stage and oscillation free 
numerical integration method using the compact scheme for 
electromagnetic transient simulations. Since the compact scheme 
becomes L-stable at a moment when a circuit suddenly changes to 
a stiff system, the method is capable of suppressing the spurious 
numerical oscillations. Moreover, the compact scheme, which is a 
one-stage method, does not produce spurious spikes due to 
nonlinear elements. The compact scheme is compared with the 
trapezoidal method, the two-stage diagonally implicit Runge-
Kutta (2S-DIRK) and the trapezoidal method with the second 
order backward difference formula (TR-BDF2). It follows from 
the comparison that the compact scheme does not produce the 
spurious numerical oscillations and spikes. 
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I. INTRODUCTION

lectromagnetic transients (EMT) simulations have been 
used for the studies of abnormal voltage/current, power 

quality, and so on. Recently, EMT simulations have become in-
creasingly important in the dynamic analysis of power systems 
including many fast-speed-switching power electronics devices 
[1], [2]. 

In the EMT simulation, a numerical integration method is 
required to obtain the time solution of a circuit system including 
inductors and capacitors. The trapezoidal method has been used 
for many EMT simulation programs such as electromagnetic 
transients analysis program (EMTP) [1]-[3] and PSCAD [4], 
since the method has a second order accuracy and is A-stable in 
spite of its simple calculation principle. However, the trapezoi-
dal method produces spurious numerical oscillations due to 
sudden changes of inductor currents or capacitor voltages.  

To solve this problem or to eliminate spurious oscillations, 
the critical damping adjustment (CDA) method has been intro-
duced [5], [6]. In the CDA, the backward Euler method is em-
ployed at a moment of sudden changes of inductor currents or 
capacitor voltages. Since the backward Euler method is L-stable, 
numerical oscillation is not sustained. PSCAD uses the interpo-
lation method [4] to suppress the numerical oscillations. In the 
method, the linear interpolation is used for determining the time 
when the current or voltage is suddenly changed. Conventional 
and latest methods for suppressing numerical oscillations are 
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reviewed and discussed in [2]. However, since the detection of 
a sudden change of currents or voltages not always feasible, it 
is not guaranteed that the numerical oscillation is suppressed 
with CDA or the interpolation method [7], [8]. 

To cope with the problem of these techniques, the applica-
tion of the two-stage diagonally implicit Runge-Kutta (2S-
DIRK) or the trapezoidal method with the second order back-
ward difference formula (TR-BDF2) to EMT simulations have 
been proposed [7], [9]. The 2S-DIRK and TR-BDF2 have a sec-
ond-order accuracy and are L-stable. Unlike the trapezoidal 
method, it is mathematically guaranteed that the 2S-DIRK and 
TR-BDF2 never produce spurious numerical oscillations. Thus, 
no detection of the events which can lead to numerical oscilla-
tions is required. However, since the 2S-DIRK and TR-BDF2 
are two-stage methods, which calculate a solution at the present 
time step from the values obtained in the previous and interme-
diate steps, spurious spikes can be generated because of nonlin-
ear elements contained in a circuit system [7]. Thus, a one-stage 
integration method, which can suppress the numerical oscilla-
tions, is desired. 

This paper proposes a one-stage and oscillation free numer-
ical integration method using the compact scheme [10] for EMT 
simulations. At first, the fundamental of the compact scheme is 
described, and the formulas of the compact scheme of inductors 
and capacitors for both linear and nonlinear cases are derived. 
Then, it is shown that the compact scheme can suppress numer-
ical oscillations due to switching events, sudden changes of 
voltage and current source values and changes of the operating 
points of nonlinear components. Finally, some simulation cases 
computed using the compact scheme are compared with those 
computed using the trapezoidal method, 2S-DIRK and TR-
BDF2. 

II. COMPACT SCHEME

A. Integration of a differential equation by compact
scheme

The compact scheme proposed by Lele [10] is a finite differ-
ence method. The scheme is characterized by handling not only 
discretized function values but also their derivatives. The com-
pact scheme has been frequently used in numerical calculations 
for solving Navier-Stokes equations [11], [12]. 
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Consider the differential equation  

,
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where f is a function of time t and variable y. Application of the 
compact scheme to dy/dt of (1) yields the following expression:  
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where yn and yn-1 are the values at time steps t = tn and t = tn-1, 
respectively. y  and y  represent the first and second de-
rivative values of y with respect to time t, respectively. h is the 
time step size, and  is a constant which gives the fourth-order 
accuracy if  = 0.5, and the third-order accuracy if  > 0.5. 
Substituting (1) into (2), we obtain 
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where f  represents the first derivative value of f with respect 
to time t. When = 0.5, (3) is written as 
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Equation (3) and (4) are classified as a one-stage method like 
the trapezoidal method. In this paper, we formulate passive el-
ements such as linear inductors and capacitors on the basis of 
the fourth-order formulation expressed by (4). 

B.  Linear inductors 

The relation between the current i and the voltage v of a 
linear inductor is given by 

1di
v

dt L
 (5) 

Using the compact scheme from the previous time step t = tn-1 
to the present time step t = tn, the approximation formula of (5) 
is given by 
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where v  represents the first derivative value of v with respect 
to time t. Equation (6) yields the equivalent circuit shown in Fig. 
1. In Fig. 1, GLT is the coefficient which relates the derivative 
value of the voltage to the current. GL, GLT and JL are given by 
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C.  Linear capacitors 

The relation between the current i and the voltage v of a lin-
ear capacitor is given by 

dv i

dt C
 (8) 

Using the compact scheme from the previous time step t = tn-1 
to the present time step t = tn, the approximation formula of (8) 

is given by 
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where i  represents the first derivative value of i with respect to 
time t. Equation (9) yields the equivalent circuit shown in Fig. 
2. In Fig. 2, RCT is the coefficient which relates the current to its 
derivative value. GC, RCT and JC are given by 
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D.  Nonlinear inductors 

The characteristics of a nonlinear inductor are expressed by 
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dt
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where v and i are the voltage and the current of the nonlinear 
inductor, respectively.  is the magnetic flux, which is nonline-
arly dependent on current. If the nonlinear current-flux curve is 
linearized as shown in Fig. 3, we obtain 

0li  (12) 

where l and 0 are the slope and the intercept at an operating 
point, respectively. Using the compact scheme from the previ-
ous time step t = tn-1 to the present time step t = tn, the approxi-
mation formula of (11) is given by 
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where  

1 1 1 0, 1n n n nl i  (14) 

Equation (13) is also expressed by the equivalent circuit shown 
in Fig. 1. GL, GLT and JL are given by 

Fig. 1.  Equivalent circuit of a linear or a nonlinear inductor based on the 
approximation of the compact scheme. 
 

Fig. 2.  Equivalent circuit of a linear or a nonlinear capacitor based on 
the approximation of the compact scheme. 
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E.  Non-linear capacitors 

The characteristics of a nonlinear capacitor are expressed by 

,
dq

i q q v
dt

 (16) 

where v and i are the voltage and the current of the nonlinear 
capacitor, respectively. q is the charge stored in the nonlinear 
capacitor. If the voltage-charge curve is linearized as shown in 
Fig. 4, we obtain 

0q cv q  (17) 

where c and q0 are the slope and the intercept at an operating 
point, respectively. Using the compact scheme from the previ-
ous time step t = tn-1 to the present time step t = tn, the approxi-
mation formula of (16) is given by 
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where  

1 1 1 0, 1n n n nq c v q  (19) 

Equation (18) is also expressed by the equivalent circuit shown 
in Fig. 2. GC, RCT and JC are given by 
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F.  Non-linear resistors 

The characteristic of a nonlinear resistor is given by 

i f v  (21) 

where v and i are the voltage and the current of the nonlinear 
resistor, respectively. f is a nonlinear function of voltage. If the 
voltage-current curve is linearized as shown in Fig. 5, we obtain 

0f v gv i  (22) 

where g and i0 are the slope and the intercept at an operating 
point, respectively. Substituting (22) into (21), we obtain 

0i gv i  (23) 

Since the values of g and i0 are changed depending on the oper-
ating point, g and i0 can be expressed by functions of time. Thus, 
the time derivative of (23) is given by 

0i gv g v i  (24) 

The finite difference expression of (24) can be given by 

0, 0, 11
1

n nn n
n n n n

i ig g
i g v v

h h
 (25) 

III.  FORMULATION OF THE CIRCUIT EQUATIONS 

In this section, we consider a circuit which has Nn nodes and 
Nb branches. In this paper, the circuit equations based on the 
compact scheme are formulated by Sparse Tableau Approach 
[13]. The formulation is expressed by  
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where u is the vector of node voltages of size Nn. i and v are the 
vectors of branch currents and voltages of size Nb, respectively. 
u , i  and v  are the time derivatives of u, i and v, respec-
tively. s is the vector of size Nb whose elements are expressed 
by values of current and voltage sources. s  is the vector of 
size Nb whose elements are expressed by the time derivative 
values of voltage and current sources except for those shown in 
Fig. 1 and Fig. 2. A is the branch versus node incidence matrix 
of size Nb by Nn, which  voltage and 
current laws. The relationship is given by 

0Au Iv  (27) 
where I is the unit matrix of size Nb by Nb. Differentiating (27) 
yields the following relationship between u  and v : 

0Au Iv  (28) 
B1, B2, B3, B4, B5, B6, B7 and B8 in (26) are matrices of size Nb 

 
Fig. 3.  Linearization of nonlinear inductance. 
 

 
 
Fig. 4.  Linearization of nonlinear capacitance. 
 

 
 
Fig. 5.  Linearization of nonlinear resistance. 
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by Nb, which are determined by the relationship between the 
branch voltage and current. They are given as follows: 
 
 If the kth (k Nb) branch is a linear inductor, we ob-
tain the followings from (5) and (7). 
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 If the kth branch is a linear capacitor, we obtain the followings 
from (8) and (10). 
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 If the kth branch is a linear resistor, we obtain the followings 
from the relations 0, 0k k k ki Gv i Gv . 
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where G is conductance of the resistor. 
 

 If the kth branch is a voltage source E, we obtain the following 
relations: 

2 81, , 1,kk k kk kB s E B s E  (34) 

where E  is the time derivative value of E. 
 
 If the kth branch is a current source J, we obtain the following 
relations: 

1 71, , 1,kk k kk kB s J B s J  (35) 

 where J  is the time derivative value of J. 
A similar expression can be used when the branch is a non-

linear element. 

IV.  STABILITY AND STIFF DECAY 

The stability of a numerical integration method can be ex-
amined using the eigenvalue  of the test equation [14] as fol-
lows: 

, Re 0
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If the solution of (36) obtained using an integration method sat-
isfies the following condition: 
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for the entire left half plane z = h , the method is said to be A-
stable. If an A-stable method satisfies 1n nx x  with Re 
(    , the method is said to be L-stable. The trapezoidal 
method is A-stable, and methods 2S-DIRK and TR-BDF2 are 
L-stable. Since the trapezoidal method satisfies 1n nx x  

1 with Re (   , it produces the sustained numerical os-
cillation if one of the circuits to be solved is a stiff system whose 
time constant approaches zero. On the other hand, 2S-DIRK 
and TR-BDF2, which are L-stable, produce no numerical oscil-
lations even if one of the time constants is zero. 

Applying the compact scheme to (36), we obtain 
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Substituting the relation x x  into (38) yields the solutions 
of (36) as follows: 
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It appears from (39) and (40) that the compact scheme is A-
stable. When   
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Therefore, the compact scheme is not L-stable, and the numer-
ical error is sustained if one of the time constants approaches 
zero. However, the compact scheme becomes L-stable at a mo-
ment when a circuit suddenly changes to a stiff system. If  
changes from  to  ( 1 << 2 ) at the time step t = tn shown 
in Fig. 6, the time derivative of x at the time step t = tn can be 
expressed by 
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Using (42) and (43), the solutions of (36) are given by 
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x and x  approach zero at the time step t = tn and t = tn+1, re-
spectively. Thus, the compact scheme becomes L-stable at a 
moment when a circuit suddenly changes to a stiff system ow-
ing to switching events, sudden changes of voltage and current 



source values and changes of the operating points of nonlinear 
components. 

V.  VERIFICATION 

A.  Series R-L circuit  

Fig. 7 shows a series R-L circuit connected with a step volt-
age source and a switch. The switch is opened at t = 2 ms. The 
on-resistance and off-resistance are set to 1 m  and 1 M , re-
spectively. The time step size is set to 0.1 ms. Since the time 
constant becomes smaller than the time step size after the switch 
is opened, stiff decay properties of the compact scheme can be 
verified. Fig. 8 shows waveforms of voltage VRL computed us-
ing the compact scheme, CDA and the trapezoidal method. The 
CDA solutions are obtained using EMTP [15]. The trapezoidal 
method produces the sustained numerical oscillation due to the 
sudden change of the inductor current. On the other hand, the 
spike voltages computed using the compact scheme and CDA 
decay to zero, since these methods become L-stable at the mo-
ment when the switch is opened. 

B.  Half-wave rectifier circuit. 

Fig. 9 shows a half-wave rectifier circuit. The diode D is rep-
resented with a nonlinear resistor with on-resistance of 1 m  
and off-resistance of 1 M . Note that the off-resistance is se-
lected in order not to cause any ill conditions. In this paper, the 
Newton-Raphson iteration algorithm is used for convergence at 
each time step in the simulations for the test cases including 
non-linear elements. The time step size is set to 0.1 ms. Fig. 10 
shows waveforms of voltage VRL computed using the compact 
scheme and the trapezoidal method. The trapezoidal method 
produces the sustained numerical oscillation when the inverse 
voltage is applied to the diode. On the other hand, the compact 
scheme and CDA produce no spurious sustained oscillations. 

C.  Circuit with a nonlinear inductor [7] 

Fig. 11 shows an equivalent circuit for calculating inrush 
currents. The linear resistor R and inductor L represent a trans-
mission line, and the nonlinear inductor represents a trans-
former. Fig. 12 shows the piecewise linear approximated non-
linear current-flux characteristic LNL. The time step size is set to 
0.05 ms. Fig. 13 and Fig. 14 show waveforms of current and 
voltage computed using the compact scheme, CDA, 2S-DIRK 
and TR-BDF2, respectively. Waveforms of current computed 
using these four methods are almost identical. Since 2S-DIRK 
and TR-BDF2 are two-stage methods, however, spurious spike 
voltages are superposed in the voltage waveforms computed us-
ing these methods. In the CDA simulation, the numerical oscil-
lation is suppressed, but the spurious spikes are superposed. 
Note that the spurious spikes are not observed in the waveforms 
computed using the backward Euler method with a time step 
size of 1 ns as shown in Fig. 13 and Fig. 14 (a). The backward 
Euler solutions are obtained using EMTP. On the other hand, 
the compact scheme yields no such spike voltage. 

D.  Series R-L-C circuit 

Fig. 15 shows a series R-L-C circuit connected with a step 
voltage source. The time step size is set to 0.2 ms, which is not 

sufficiently small compared to the resonance period of the cir-
cuit. The exact solution of the current i flowing in the circuit 
shown in Fig. 15 is given by 
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where 

 
Fig. 6.  Time variation of . 

 
Fig. 7.  Series R-L circuit connected with a step voltage source and a switch. 
 

 
(a)  Compact scheme and CDA. 
 

 
(b)  Trapezoidal method 
 
Fig. 8.  Voltage waveforms computed using the compact scheme and the 
trapezoidal method for the series R-L circuit. 
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Fig. 16 shows waveforms of current computed using the 
compact scheme, CDA, the trapezoidal method, 2S-DIRK and 
TR-BDF2. The waveforms computed using CDA, the trapezoi-
dal method, 2S-DIRK and TR-BDF2 differ from the waveform 
obtained using the exact solution. On the other hand, the wave-
form computed using the compact scheme agrees well with the 
waveform obtained using the exact solution. 

Since the number of non-zero elements of the matrix of a cir-
cuit equation of the compact scheme is approximately twice the 
number of those of the trapezoidal method, 2S-DIRK and TR-
BDF2, the compact scheme is twice as computationally expen-
sive as those methods. Since 2S-DIRK and TR-BDF2 are two-
stage methods, however, the circuit equations must be solved 
twice to obtain the solution at the present time step. As a result, 
the computation time of the compact scheme is almost the same 

as or similar to that of 2S-DIRK or TR-BDF2. 
 

E.  DC-DC converter 

Fig. 17 shows a pulse width modulation (PWM)-controlled 
DC-DC converter circuit. The simulation circuit includes insu-
lated gate bipolar transistor (IGBT)s. The diode is represented 
with a nonlinear resistor. The on-resistance and off-resistance 
of the diode are set to 1 m  and 1 M . Note that the off-re-
sistance is selected in order not to cause any ill conditions. The 
switching frequency is set to 10 kHz. The time step size t is 
set to 20 s for the compact scheme simulation and is set to 5 

s or 10 s for the CDA simulation. In this section, the simula-
tion using the backward Euler method with a time step of 1 ns 
is defined as the accurate reference solution. The backward Eu-
ler solutions are obtained using EMTP. Fig. 18 shows wave-
forms of voltage computed using the compact scheme and CDA. 
The absolute error is the deviation between each result and the 
reference solution. The error of the compact scheme with t = 

 
 
Fig. 9.  Half-wave rectifier circuit 

 

 
 

(a)  Compact scheme and CDA. 
 

 
 

(b)  Trapezoidal method 
 

Fig. 10.  Voltage waveforms computed using the compact scheme and the 
trapezoidal method for the half-wave rectifier circuit. 
 

 
 
Fig. 11.  Equivalent circuit for calculating inrush currents in a 77 kV 
system. 
 

 
 
Fig. 12. Piecewise linear approximated nonlinear current-flux characteristic. 
 

 
 
Fig. 13.  Current waveforms computed using the compact scheme, CDA, 
2S-DIRK, TR-BDF2 and backward Euler method for the equivalent circuit 
for analyzing inrush currents. 
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20 s is smaller than that of CDA with t = 10 s and almost 
equal to that of CDA with t = 5 s. Although the compact 
scheme is approximately twice as computationally expensive as 
CDA to obtain the value of the present time step, a time step 

size larger than that of CDA can be used in the simulations us-
ing the compact scheme. In the latter case, the total computa-
tional time using the compact scheme is smaller than that of 
CDA. 

VI.  CONCLUSION 

This paper has proposed a one-stage and oscillation free nu-
merical integration method using the compact scheme for EMT 
simulations. Since the compact scheme becomes L-stable at a 
moment when a circuit suddenly changes to a stiff system, the 
method is capable of suppressing spurious numerical oscilla-
tions. Moreover, the compact scheme does not produce spuri-
ous spikes due to nonlinear elements. The compact scheme has 
been compared with CDA, the trapezoidal method, 2S-DIRK 
and TR-BDF2. It follows from the comparison that the compact 

 
 
(a)   Voltage waveforms VTR computed using the compact scheme and 
backward Euler method. 

 
(b)   Voltage waveform VTR computed using CDA. 
 

 
 
(c)  Voltage waveform VTR computed using 2S-DIRK. 

 
 
(d)  Voltage waveform VTR computed using TR-BDF2. 
 
Fig. 14.  Voltage waveforms computed using the compact scheme, CDA, 
2S-DIRK, TR-BDF2 and backward Euler method for the equivalent circuit 
for analyzing inrush currents. 

 
 
Fig. 15.  Series R-L-C circuit connected with a step voltage source. 
 

 
 
(a)  Waveforms in a time range from 0 to 50 ms. 
 

 
 
(b)  Waveforms in a time range from 30 to 50 ms. 
 
Fig. 16.  Current waveforms computed using the compact scheme, CDA, 
the trapezoidal method, 2S-DIRK and TR-BDF2 for the series R-L-C 
circuit. 
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scheme does not produce the numerical oscillations and spikes 
and the accuracy of the method is better than CDA, the trape-
zoidal method, 2S-DIRK and TR-BDF2. The computation time 
or speed of the compact scheme has not been discussed in this 
paper, which will need to be examined against large complex 
test cases in comparison with representative existing methods. 
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Fig. 17.  PWM- controlled DC-DC converter circuit. 
 

 
 
(a)  Waveforms computed using the compact scheme and CDA. 
 

 
 
(b)   Deviation between each computed waveform and the reference 
solution. 
 
Fig. 18.  Voltage waveforms computed using the compact scheme and 
CDA for the DC-DC converter circuit. 
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