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Abstract—This paper introduces new techniques for efficient
use of electromagnetic transient simulators combined with
optimization algorithms to optimize power systems with
converter-tied renewable resources. This work is motivated by
several challenges that must be overcome for simulation-based
optimal design, including high computational burden of
simulating large switching systems, repetitive nature of the
design cycle, and large number of variables that need to be
handled. Two screening methods are proposed in this paper to
identify the parameters that do not influence the optimal solution
significantly and hence can be ignored. Moreover, hybridization
of optimization algorithms and parallel processing techniques
are explored to achieve additional computational benefits. Case
studies of systems with different complexity and number of
variables are used to demonstrate the effectiveness of the
proposed techniques.
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I. INTRODUCTION

W ITH rising demand for electricity and radical changes
brought about by converter-tied renewable resources

and energy storage, power systems are becoming increasingly
complex. The complexity of renewable-intensive power
systems is spurred by the presence of switching converters,
sophisticated control systems, and intricate dynamic behaviour.
Converter-based generation schemes have shown rapid growth
resulting in challenges in the design and operation of the
system [1]. Converter-tied resources not only diminish the
system inertia, but also release high-frequency harmonics to
the system [1]. These resources have sophisticated control
systems whose parameters must be selected carefully and
optimally [2]. It is cumbersome, if not entirely infeasible,
to use analytical approaches to model and solve such
parameter tuning and optimization problems [2]. Therefore,
it is necessary to have simulation-based tools to model these
systems accurately so that their dynamic performance can be
successfully assessed, and their parameters be tuned before
actual implementation [3]-[4].
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Electromagnetic transient (EMT) simulation combined with
optimization algorithms is a powerful tool for design and
parameter-tuning of converter-intensive power systems [3].
There exists previous work that has used optimization-enabled
EMT simulation (OE-EMTS) to optimize power system
parameters, where the candidate parameter sets are generated
by the optimization algorithm and the suitability of those
parameter sets is evaluated by the EMT simulator [4]. In
[4], OE-EMTS is used to optimize the parameter values of
a voltage source converter and a dc-dc converter while the
same methodology has been used to design HVDC controllers
in [5]. In both cases, Nelder-Mead’s Simplex algorithm is
used since it performs well for optimization of a relatively
small number of parameters [4]-[5]. Even though the Simplex
algorithm is computationally efficient, it is prone to converging
to a local optimum. Moreover, in the context of optimizing
power systems with renewable resources with a large number
of parameters, the Simplex algorithm may not be a suitable
choice [6].

The authors in [7] have used genetic algorithms (GA)
to obtain optimal designs for photovoltaic grid-connected
systems. There is a high likelihood of GA converging into
the global optimum since it considers several populations
and includes operators such as mutation and crossover that
tend to diversify the solution set [6]. However, GAs take
considerable time to converge, particularly for optimization of
a large number of parameters when it might be prohibitively
long. Therefore, in the context of the large power systems,
complexities such as high computational burden, repetitive
nature of the design cycle, large number of parameters to
be handled, and the inherent limitations of the optimization
algorithms cause difficulties. Accordingly, it is necessary
to develop new and computationally efficient methods to
overcome these problems.

This paper introduces a number of novel methods to (i)
perform screening that identifies and removes non-influential
variables to lower the dimension of the optimization problem,
and (ii) accelerate the design process using hybrid optimization
algorithms and parallel processing methods. To demonstrate
the efficacy of the proposed methods, design parameters
of two different type-4 wind turbine generator controllers
are optimized. The first case involves optimization of 8
parameters while the second case involves 18 parameters.
Both cases prove to be extremely challenging for manual
parameter tuning due to the number of parameters and the
complexity of the dynamic behaviour of the networks. The



results confirm that the proposed approaches are effective
in optimization using EMT simulators of power systems
with converter-tied renewable resources. EMT simulations in
this paper are conducted using PSCAD/EMTDC to which
optimization algorithms are interfaced.

II. OPTIMIZATION-ENABLED ELECTROMAGNETIC
TRANSIENT SIMULATION (OE-EMTS)

OE-EMTS is an advanced tool for the design of complex
power systems using an EMT solver in conjunction with
a (nonlinear) optimization algorithm. The role of the
optimization algorithm is to generate new candidate values
for the parameters in the design. The system’s performance
for a given set of trial parameters is measured by the EMT
simulator, which requires a metric formulated in the form of
an objective function (OF) to measure the closeness between
the actual and desired outcomes [4]. Small OF values typically
indicate that the actual and the expected performance of the
system are closely matching, indicating a high-quality design.
After every simulation run, the evaluated OF is given to the
optimization algorithm, which judiciously generates new trial
parameter sets. This process ends after obtaining a parameter
set that gives a minimum OF with satisfactory performance.

GA and nonlinear Simplex have been widely adopted for
simulation-based design of complex power systems. Despite
their relative success, it is often noted that a GA’s excessive
computational burden and Simplex’s inability to handle
high-dimensional problems and its tendency to converge to a
local optimum are critical bottlenecks in the optimal process.
The following section proposes several methods that address
these bottlenecks.

III. IMPROVED METHODS FOR OPTIMIZATION

Improved EMT-based optimization methods proposed next
aim to (i) reduce the number of optimization variables by
identifying and removing non-influential variables, and (ii)
enhance the computational efficiency of the design cycle by
reducing unnecessary, time-consuming EMT simulations.

A. Screening Methods

Screening methods are developed to reduce the size of
the design problem by identifying the parameters that do not
influence the final design and thus may be excluded.

1) Method 1 - initial screening: In this method, the initial
value of each variable is changed by applying positive and
negative increments; for each increment a simulation run is
conducted to evaluate whether the increment has a significant
impact on the OF. Variables that do not significantly affect
the OF are excluded from the optimization process. While
this method proves successful in many cases, its effectiveness
depends on the initial values of the optimization variables.
For a highly nonlinear system, if the initial multi-dimensional
point is far from the optimum, this method may discard
variables that may indeed be influential. Therefore, this
method for initial screening must be used with limited liberty.
Selection of the initial values for the parameters to be
optimized is also a crucial task. The general expectation

from the initial values is to produce a response that is
stable even though it may feature poor dynamic performance.
Improvement of the response is left to the simulation-based
optimization.

The initial parameter values for the cases in this paper
are selected using a few rounds of trial-and-error while
utilizing basic insight about controller gains, e.g., that higher
proportional gains generally tend to accelerate the response,
but may lead to instability at large enough values, and that
smaller integral time-constant values may settle the response
faster, but may cause oscillations.

2) Method 2 - run-time screening: A second screening
method is introduced for population-based optimization
algorithms such as GA, which run for several generations.
If the value of a parameter does not change noticeably in
the first few generations, it can be argued that the parameter
has already converged into its optimal interval and does not
need further optimization. Parameters that vary considerably
must be optimized further until they converge into a small
interval. Moreover, these results may reveal insight about the
range of the parameters values. If the designer has assigned
larger search interval to the algorithm, they can be reduced
so that smaller population are used, which leads to more
computational benefits.

B. Parallel Processing Modification for GA

The sequential GA (normal GA) starts with the user-defined
values for the parameter boundaries and the number of
chromosomes in the initial, surviving, and mating populations.
The algorithm then generates random number sets for the
initial population considering parameter boundaries. The
produced parameter sets are usually called chromosomes.
Normally, the algorithm releases only one parameter set
(one chromosome) at a time and the EMT simulator runs
sequentially with different parameter values assigned to it
in each run and gives the respective OF value back to the
optimization algorithm. After evaluating the first generation,
the chromosomes that have the lowest OF values will be
selected for the next generation as the surviving population.
The best solution sets from that surviving population are
chosen as the mating pool to generate new chromosomes
called offspring. This is done by using the crossover operator
where the two parent chromosomes exchange their parameter
values with respect to one or more randomly selected crossover
points. The remaining surviving population after selecting
the mating pool is replaced with the offspring. To prevent
premature convergence, another operator called mutation is
adopted [8], which randomly changes randomly selected
parameters. The new generation will then be evaluated using
EMT simulations. This continues for several generations until
the algorithm converges into an optimal solution.

Although GA performs well with large parameter sets,
its slow convergence rate requires considerable time to
find the optimum. Thus many researchers have explored
methods to parallelize GA, owing to the independence
of its iterations from one another. Most of the research
work found in literature (e.g., [9], [10], [11]) has adopted
parallelism in GA by using sub-populations that evolve in



parallel while sharing information among them at prescribed
time intervals. However, in the simulation-based optimization
approach discussed in this paper, calculation of the OF value
causes the highest computational burden and far exceeds
those of basic GA operations of selection, crossover, and
mutation. Therefore, this paper adopts a specific parallel GA
implementation, which focuses on parallelizing the iterations
(i.e., OF calculations) in a single large population instead of
among small sub-populations.

As shown in Fig. 1, parallel processing occurs within
the PSCAD/EMTDC simulation set where it is externally
controlled by the GA, coded in a Python script. All the
simulation cases included in the simulation set are launched
in parallel using all processor cores available [12].
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Fig. 1. Schematic diagram of the parallel genetic algorithm.

In this paper, all the examples of parallel processing are
done using eight simulation cases within one simulation set.
Even though they are copies of the same simulation file, the
parameter values in them are assigned independently by the
GA. In the sequential implementation, only one parameter set
is evaluated at a time, while in the parallel version, eight
parameter sets are evaluated concurrently. After the EMT
solver runs all eight cases in parallel, the OF values for every
case are sent back to the Python GA script.

C. Hybridizing Optimization Algorithms

The main advantage of the GA is its ability to find the global
optimum; this is at the expense of a large computational burden
and slow convergence [13]. To overcome these, which become
particularly pronounced in simulation-based optimization, this
paper proposes a novel method by combining the GA with
the nonlinear Simplex algorithm. In the proposed hybrid
algorithm, the GA solver is used to identify the area wherein
the global optimum exists, after which the search will continue

in that area with the Simplex algorithm that has much better
convergence properties. The exemplar cases shown in the next
sections demonstrate that hybridization leads to significant
reduction in computation time and complexity.

IV. EXAMPLE CASE I

A. System and Controller Configuration

The first test system is a 125 MW (5 MW×25) type-4 wind
generation plant connected to the grid as shown in Fig. 2.
During normal operation, the short-circuit MVA (SCMVA) at
the point of interconnection (POI) is 165 MVA indicating a
weak system. A three-phase-to-ground fault is applied at t =
5 s and is cleared after 0.2 s by disconnecting the faulted
line, which drops the SCMVA to 78 MVA making the system
even weaker and unstable for the initial controller parameter
values shown in the second column of Table I. Therefore, the
objective is to optimize the wind farm controller parameters
to obtain stable operation before and after the fault.

Decoupled controls are used for both converters as shown
in Figs. 3 and 4. When the system becomes weaker after
the line tripping, the active power that can be injected to
the grid from the wind farm is reduced, which causes the
voltage at the POI to collapse. It is determined that satisfactory
performance is obtained if the gains and time-constants of
proportional-integral (PI) controllers are tuned to maintain 5
MW output from the wind farm and to avoid overvoltages that
are greater than selected overvoltage value at POI even after
the fault. Therefore, an objective function is formed by adding
the integral square error (ISE) of the active power and integral
of overvoltage at POI (see (1)); minimization of this objective
function yields optimal parameter values for the controllers.

OF = K(t)

∫ T

t0

(P −Pref)
2 dt +

∫ t2

t1

|Vover − Vref | dt (1)
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Fig. 2. Schematic diagram of the system for Example I.
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TABLE I
INITIAL AND OPTIMIZED VALUES FOR EXAMPLE I

Parameter Initial Sequential GA Hybrid GA-Simplex Parallel GA Parallel GA + Screening
Values Limits GA Simplex New limits Results

Kp_Edc 4 (0,7) 6.39 5.434 5.749 6.505 6.935
Ti_Edc 0.02 (0,2) 1.72 1.975 2.049 1.388 (0,2) 0.874
Kp_Q 1 (0,7) 0.346 2.631 2.734 5.97 (0, 6.5) 1.342
Ti_Q 0.2 (0,2) 1.314 0.849 0.922 0.534 (0,2) 0.559

Kp_Vac 4 (0,7) 1.48 1.527 1.584 1.203 (0,2.5) 2.087
Ti_Vac 0.05 (0,2) 0.977 0.0714 0.0818 1.015 1.906
Kp_P 2 (0,7) 0.772 0.535 0.625 0.237 (0,2.5) 0.531
Ti_P 0.05 (0,2) 0.133 0.906 0.926 0.046 (0,1) 0.081

OF value 211.654 16.407 25.58 22.49 16.87 17.023

TABLE II
COMPARISON OF POPULATION DETAILS AND NUMBER OF SIMULATION RUNS FOR EXAMPLE I

Sequential GA Hybrid GA-Simplex Parallel GA Parallel GA + Screening
GA Simplex GA for screening GA after screening

Initial population 104 104 - 104 104 72
Surviving population 48 48 - 48 48 24

Generations 10 2 - 10 3 5
Simulation runs 537 153 95 544 208 176
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Fig. 4. Block diagram of the grid-side controller (a) capacitor voltage
controller, (b) reactive power controller.

where

K(t) =

{
k1 t0 < t ≤ T1

k2 T1 < t ≤ T
(2)

In (2), [t0, T ], [t0, T1] and [t1, t2] denote the entire OF
evaluation time period, the time period when transients occur,
and the time period when overvoltages occur, respectively.
Note that this OF calculates the error during both transient and
steady state conditions; thus the algorithm returns parameters
that give improved transient and steady state response. In this
paper, k1 = k2 = 1 is used, which places a balanced focus on
both transient and steady state intervals. If k1 > k2, the OF
places a heavier penalty on the deviations during the transient
period; therefore, if the designer wants to place more emphasis
on the transient period of the response, a larger weighting
factor may be assigned to the time period when transients
occur.

In practice the inner loop controllers are expected to
act rapidly, thus leaving the most significant dynamics
to the external loop parameters. Hence in this example,
the parameters of the capacitor voltage controller (Kp_Edc,
Ti_Edc), grid reactive power controller (Kp_Q, Ti_Q), grid-side
rms voltage controller (Kp_Vac, Ti_Vac), and active power
controller (Kp_P, Ti_P) are considered for optimization.

B. Optimization of Parameters

1) Optimization using sequential GA: With the initial and
surviving populations of 104 and 48, respectively, the GA
solver is launched for ten generations, with results shown in 4th

column of Table I. The parameter limits used in this case are
shown in the 3rd column of the same table. The insight gained
during the selection of initial values using trial-and-error also
informs the designer of suitable, albeit approximate, parameter
ranges. Such insight is used in selecting the ranges for the
examples in this paper. In general, assigning larger limits
does not affect the final solution since the GA is a global
optimization algorithm; however, larger limits often require
larger initial and surviving populations as the algorithm has to
search a larger space. Conversely, narrow limits may adversely
impact the solution by excluding the optimal area.

Fig. 5(a) and Fig. 5(b) show the initial and optimal rms
voltage waveforms, respectively. Even though the optimized
controllers produce markedly better results, the time taken
by the algorithm to complete the task is 43.48 h, which is
significant. To reduce this time, the proposed hybrid algorithm
and parallel GA are used as described in the next sections.
It should be noted that the steady state voltage at POI after
the fault is higher than 66 kV due to insufficient reactive
power compensation in the design, which is not included in
optimization.

2) Optimization using hybrid GA-Simplex algorithm: The
GA is run for two generations with the same populations and
parameter boundaries as before. The best values obtained after
the second generation are used as the initial values for the
Simplex. The results obtained using this method are shown in
5th and 6th columns of Table I. The waveforms of rms voltage
at POI for intermediate GA optimized values and final results
of simplex are shown in Fig. 5(c) and Fig. 5(d) respectively.
Although the solution found by this method is slightly less
optimal than the one found after 10 generations of sequential
GA, it is still an acceptable solution, which gives better OF
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Fig. 5. POI voltage for (a) initial values, (b) sequential GA optimized values,
(c) intermediate GA values, (d) final Simplex optimized values, (e) parallel
GA optimized values (f) optimized values after run-time screening.

value than initial values in 21.31 h, which is almost half of
the time consumed by the sequential GA.

3) Optimization using parallel GA: In this solution, eight
instances of the same case are run in parallel, where the
parameter values for the cases are generated by the GA, coded
in a Python script. The solution using the same population
numbers and parameter limits takes only 13.11 h (almost 3.3
times faster than the sequential GA). Optimization results are
shown in 7th column of Table I and Fig. 5(e) illustrates the
waveforms of the rms voltage at POI.

C. Screening of Optimization Variables

Run-time screening method may be applied in this example
to reduce the simulation time further. The parallel GA solver is
run for three generations with the same limits and population
values as before. The best solutions after each generation
(Table III) are examined, which reveals that Ti_Edc, Kp_Q,
Ti_Q, Kp_Vac, Kp_P and Ti_P require further optimization

TABLE III
RUN-TIME SCREENING FOR EXAMPLE I

Parameter Values after each generation
1st 2nd 3rd

Kp_Edc 6.045 5.516 6.935
Ti_Edc 0.888 1.277 1.853
Kp_Q 2.389 6.045 4.006
Ti_Q 1.566 0.379 0.843

Kp_Vac 2.243 1.366 1.788
Ti_Vac 1.906 1.497 1.906
Kp_P 1.826 0.269 1.826
Ti_P 0.483 0.778 0.483

TABLE IV
TIME COMPARISON OF OPTIMIZATION METHODS - EXAMPLE I

Sequential GA 43.48 h Hybrid GA-Simplex 21.31 h
Parallel GA 13.11 h Parallel GA + screening 9.74 h

since they vary considerably, while Kp_Edc, Ti_Vac show
markedly lower variations. Hence, the best values obtained
from GA up to this point are assigned to Kp_Edc and Ti_Vac,
while the remaining parameters are optimized further. With
the knowledge acquired from screening, the search limits
may also be reduced, thus smaller populations can be used.
The remaining six parameters are optimized after running
the parallel GA for five additional generations with initial
and surviving populations of 72 and 24, respectively. The
new limits and optimization results are shown in 8th and 9th

columns of Table I. The rms voltage at POI with optimized
values is shown in Fig. 5(f). The total time taken for this
process is 9.74 h and the results are as satisfactory as
before, which confirms the efficiency of the proposed run-time
screening method. Optimization time comparisons for the
discussed four methods are shown in Table IV. A considerable
amount of time is saved by using the enhanced methods
proposed in this paper while obtaining high-quality optimal
results.

V. EXAMPLE CASE II

A. System and Controller Configuration

This example is a 2 MW type-4 wind turbine generator
connected with the grid as shown in Fig. 6. The generator
arrangement and the control system are the same as in
Example I. Reactive power exchange in the wind power plant
is maintained at zero and active power is changed as in (3).

P =

{
0.25 pu t < 15 s

0.4 pu t > 15 s
(3)

33kV/132kV 

2 MW wind 

farm 
Grid 

3 phase- ground fault 

132 kV 

Fig. 6. Schematic diagram of the system in Example II.



A three-phase-to-ground fault is applied at t = 5.5 s
and cleared after 0.2 s. In this example all the PI control
parameters, including the inner control loops, are optimized.
The controllers and their parameters are shown in Table V.
The initial OF value of the system is 0.721. The objective of
the controller is to control the active and reactive power output
of the wind farm properly. Therefore, the addition of integral
square errors of active and reactive power curves is used as
the OF as in (4).

OF =

∫ T

0

((P − Pref)
2 + (Q−Qref)

2) dt (4)

where [0, T ] is the simulation time period.

B. Screening of the Parameters

There are 18 parameters to optimize in this example.
Therefore, the screening method I (initial screening) is used
with ±3% and ±10% changes applied to the initial parameter
values in separate runs. After observing the obtained OF values
in each run, which are shown in Fig. 7, parameters Kpq_M,
Tiq_M, Tid_M, Kp_AC, Tiq_G are identified as non-influential
due to their small impact on the OF. Parameter numbers in
Fig. 7 correspond to those in Table VI.

C. Optimization of Parameters

Even though initial screening identified the influential
parameters, to demonstrate the efficiency of the other methods
proposed and for comparison purposes, all 18 parameters
are optimized in the first three parts of this section and
optimization of the influential parameters only is shown in
the last part.

1) Optimization using sequential GA: The GA is launched
for six generations using initial and surviving populations of
240 and 160, respectively. The parameter limits used in GA
and their optimized values are shown in 3rd and 5th columns
of Table VI, respectively. Parameter limits in this example are
selected in the same manner as in the previous example. Active
power variations before and after optimization are shown in

Fig. 7. Distribution of OF values with parameter perturbations.

0 5 10 15 20 25
0

0.5

A
ct

iv
e 

P
o

w
er

 (
p

u
)

(a)

Reference Actual

0 5 10 15 20 25
0

0.5

(b)

0 5 10 15 20 25
0

0.5

(c)

0 5 10 15 20 25
0

0.5

(d)

0 5 10 15 20 25
0

0.5

(e)

0 5 10 15 20 25
Time (s)

0

0.5

(f)

Fig. 8. Active power output with (a) initial values, (b) sequential GA
optimized values, (c) intermediate GA values, (d) final Simplex optimized
values, (e) parallel GA optimized values (f) parallel GA optimization of 13
influential parameters.

Fig. 8(a) and Fig. 8(b), respectively. The design takes 25.47 h
to complete, which shows the need for improved methods.

2) Optimization using hybrid GA-Simplex algorithm: The
GA is launched for two generations and then the optimization
is continued using Simplex with the best solution given by
the GA. The optimization results after GA and after Simplex
algorithm are shown in 6th and 7th columns of Table VI . Fig.
8(c) and Fig. 8(d) show the dynamics of the active power in
the system for optimized values obtained from intermediate
GA and simplex algorithm respectively. The time taken by
this approach is 11.08 h, which is considerably lower than
before.

3) Optimization using parallel GA: In this case, eight
parameter sets are evaluated simultaneously. Optimal values
obtained are shown in 8th column of Table VI , and Fig. 8(e)
shows the dynamics of the active power output. The simulation
time is markedly reduced to 9.8 h using this method.

4) Optimization of Influential Parameters: In this part, only
the parameters identified as influential are optimized by the



TABLE V
CONTROLLERS PARAMETERS FOR OPTIMIZATION IN EXAMPLE II

Machine-side converter
Controller Parameter Controller Parameter Controller Parameter Controller Parameter

Active power Kp_P_M Iq current Kpq_M Id current Kpd_M AC voltage Kp_AC

Ti_P_M Tiq_M Tid_M Ti_AC

Grid-side converter
Controller Parameter Controller Parameter Controller Parameter Controller Parameter Controller Parameter

DC voltage Kp_Edc Reactive power KpQ AC voltage Kp_Vac Id current Kpd_G Iq current Kpq_G
Ti_Edc TiQ Ti_Vac Tid_G Tiq_G

TABLE VI
INITIAL AND OPTIMIZED VALUES FOR EXAMPLE II

Parameter number Parameter Initial Sequential GA Hybrid GA-Simplex Parallel GA Parallel GA+ScreeningLimits Values GA Simplex
1 Kp_P_M (0,5) 1 4.99 4.98 5.042 3.73 4.83
2 Ti_P_M (0,1) 0.01 0.073 0.25 0.0097 0.081 0.011
3 Kpq_M (0,5) 1 4.83 4.83 4.92 3.95 1
4 Tiq_M (0,1) 0.01 0.85 0.747 0.914 0.33 0.01
5 Kpd_M (0,5) 1 1.836 1.836 2.01 3.66 2.15
6 Tid_M (0,1) 0.01 0.48 0.48 0.66 0.065 0.01
7 Kp_AC (0,5) 1 0.368 0.368 0.52 0.837 1
8 Ti_AC (0,1) 0.01 0.0206 0.081 0.21 1.14 0.167
9 Kp_Edc (0,5) 0.5 3.075 1.735 2.01 4.03 3.395

10 Ti_Edc (0,1) 0.01 0.342 0.34 0.53 0.86 0.318
11 KpQ (0,5) 0.5 1.089 1.85 2.24 4.29 4.78
12 TiQ (0,1) 0.01 0.151 0.13 0.021 0.041 0.016
13 Kp_Vac (0,5) 0.5 4.5 4.50 4.49 4.75 1.068
14 Ti_Vac (0,1) 0.01 0.796 0.95 1.11 0.935 0.681
15 Kpd_G (0,5) 0.5 2.227 2.23 2.54 2.502 1.285
16 Tid_G (0,1) 0.05 0.067 0.66 0.74 0.152 0.337
17 Kpq_G (0,5) 0.5 0.0805 0.081 0.233 0.677 3.056
18 Tiq_G (0,1) 0.05 0.664 0.97 1.321 0.247 0.05

OF value 0.721 0.011 0.0124 0.0085 0.0091 0.0089

TABLE VII
COMPARISON OF POPULATION DETAILS AND NUMBER OF SIMULATION RUNS FOR EXAMPLE II

Sequential GA Hybrid GA-Simplex Parallel GA Parallel GA + ScreeningGA Simplex
Initial population 240 240 - 240 160

Surviving population 160 160 - 160 120
Generations 6 2 - 6 6

Simulation runs 1041 401 115 1048 768

parallel GA. Since the dimension of the problem is reduced
from 18 to 13, initial and surviving populations are reduced to
160 and 120, respectively, and the parallel GA is launched for
six generations. Optimized results are shown in 9th columns
of Table VI , and the optimal active power output is shown in
Fig. 8 (f). This design takes merely 7.4 h, which is a significant
reduction of time. Time comparisons are shown in Table VIII.
In this case, both the hybrid algorithm and parallel GA give
significant improvements. Time taken by the hybrid algorithm
is further reduced by using the parallel GA. The results show
that the time taken by sequential GA is be reduced by nearly
15 h using the methods proposed in this paper. Furthermore,
this example demonstrates that the initial screening method
is effective in reducing the simulation time without adversely
affecting the quality of the final optimal design.

VI. CONCLUSIONS

The paper addressed practical problems that engineers face
when using EMT simulators for optimal design of power

TABLE VIII
TIME COMPARISONS FOR EXAMPLE II

Sequential GA 25.47 h Hybrid GA-Simplex 11.08 h
Parallel GA 9.8 h Parallel GA + screening 7.4 h

systems, e.g., controller tuning in multi-converter systems
with renewable generation sources. These problems stem
from the large computational burden of both the EMT and
optimization algorithms, and the repetitive nature of the
design cycle wherein a large number of simulations need to
be conducted. The paper proposed two screening methods
and a hybrid GA-Simplex algorithm, and used parallel GA
computations to overcome these challenges. Optimization
results of two systems with several converters and multiple
control loops revealed that the screening methods were able
to correctly identify influential parameters to assist in reducing
the dimension of problem, thereby lowering the burden of the
optimization algorithm. The hybrid GA-Simplex and parallel



GA solvers provided significant time savings in the design
process without adversely affecting the quality of the final
optimal designs.
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