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Abstract--This paper analyzes the use of fitting techniques based 

on partial fraction expansions in the fitting of modal transmission 

line functions and the assumption of constant and real 

transformation matrix (constant T) in the transformation of modal 

functions into phase domain. The focus is on the fitting of the 

propagation function due to its complexity compared to the 

characteristic admittance function. It is demonstrated for the first 

time that using a constant T can intrinsically violate the passivity 

of the transmission line system depending on the choice of 

frequency point for assigning the constant T. Consequently, the 

final rational model violates passivity at certain frequency 

intervals. Second contribution is the evaluation of the fitting 

performance with a new solution strategy based on the recently 

introduced rational Krylov fitting (RKF). The case studies suggest 

that RKF results in accurate and less order models compared to 

the vector fitting (VF) algorithm which is the de facto method in 

electromagnetic transient-type models. Finally, the fitting 

accuracy of the legacy constant T model based on Bode fitting is 

presented in the phase frame giving a clear picture of its poor 

fitting performance compared to modern methods and explaining 

its inaccuracies in the time domain.  

Keywords: Electromagnetic transients, line constants, cable 

constants, rational Krylov approximation, Universal Line Model 

(ULM), Wideband Model (WB). 

I. INTRODUCTION

he wideband (WB) line model in this paper refers to the

implementation of the Universal Line Model (ULM) [1]

and Frequency Dependent Cable Model (FDCM) [2]. These 

models identify frequency dependent transmission line 

functions, i.e., propagation H and characteristic admittance 

cY functions, in the phase domain using a common format of 

rational functions in the complex domain. Although the final 

model is in the phase domain, the internal steps in the 

parametric identification of the models include some 

computations in the modal domain which basically refers to the 

eigenvalues of H and cY . For the implementation of the WB 

model in the time domain, the rational approximations of line 

functions are converted into discrete state space forms using the 

exact solution assuming that the input is piecewise linear [3]. 

Two step interpolation [4] to minimize the magnification of 

integration errors [5] is applied and the option of DC correction 

is available to help improving the accuracy and numerical 

stability of the model in some cases [6]. The original 

implementation of the ULM model used trapezoidal method for 

the discretization of state space forms [1]. This is still the case 
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for legendary line models [8]. 

This paper integrates the option of using a constant 

transformation matrix (constant T) in the fitting of line 

functions, particularly H , into the WB model. Once the 

eigenvalues of line functions are computed and fitted to rational 

functions, they are simply transformed into the phase domain 

using a real and constant transformation matrix. This approach 

is like the approach used in the legendary frequency dependent 

(FD) line model [7], [8] but differs in three ways from the 

perspective of implementation: 1) The fitting techniques 

employed perform fitting in the complex domain using partial 

fraction expansions (PFEs). 2) The time domain 

implementation uses the numerically robust time domain solver 

of the WB model. 3) It is possible to fit cY directly in the phase

domain and investigate whether this has an impact on the 

accuracy of transient waveforms.  

The main advantage of the constant T wideband model 

(CTWB) is that it can handle transmission lines with large 

number of conductors since the propagation modes are 

decoupled. It is important to note that the time domain code of 

the WB model can also be adjusted to perform discrete 

computations in the modal domain and apply the real 

transformation matrix afterwards to find the phase domain 

voltages and currents very efficiently, i.e., with a smaller 

number of recursive convolutions. This is numerically 

equivalent to apply constant T in the frequency domain and 

perform time domain convolutions in the phase domain. On the 

other hand, this paper is an investigative paper in the use of 

different fitting techniques and integration methods when the 

constant T option is adopted. The presented implementation is 

a quick method for these purposes allowing also understanding 

the impact of using constant T in the fitting of cY . 

An important finding disclosed in this paper is the 

observation that applying a constant T can change H  in the 

phase domain in such a way that the intrinsic passivity of the 

system can be lost at certain frequency intervals. That is, the 

nodal admittance matrix of a line generated using H and cY

can have negative eigenvalues at certain frequency samples. 

This, on the other hand, depends on the frequency sample used 

to assign the constant T. In other words, not all the constant T 

choices will result in passivity violations. 

This paper investigates the precision of the classical FD 

model which employs Bode fitting to fit the eigenvalues of H

and characteristic impedance cZ . Bode fitting results in large 
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number of zeros and poles compared to recent fitting techniques 

such as Vector Fitting (VF) [9], the de facto fitting algorithm 

used in recent line, transformer, and network equivalent models 

developed for electromagnetic transient (EMT) studies.  

The use of VF in FD model is proposed in [10], but the focus 

is on numerical implementation and it is overlooked that VF can 

create a model with passivity violations since the reconstructed

H and cY with a constant transformation matrix may no longer 

correspond to a passive system. In VF, residues and poles are 

fitted simultaneously in the phase domain without any 

constraint on the location of zeros of the eventual partial 

fraction expansion (PFE).  

Another contribution of the paper is the use of recently 

proposed Rational Krylov Fitting (RKF) [11]-[15] in constant 

T models for the first time. VF is a robust and computationally 

straightforward to apply technique. The implementation of 

RKF is more complex but results in remarkably less poles 

according to the test cases presented in this work. The 

improvement is more noticeable compared to the ULM [16] and 

FDCM [17] applications of RKF. We also demonstrate a case 

where the classic FD presents inaccuracies whereas the CTWB 

doesn’t. The fitting performance of the classic FD is also shown 

in the phase domain to make rigorous and fair comparisons with 

the WB model and to clearly demonstrate the main source of 

the possible inaccuracies of FD.  

II.  PRESENTATION OF THE CTWB 

In this section, the adjustment of the WB model’s frequency 

domain fitting procedure to enable the option of constant T in 

the fitting of H is shown through basic line equations. The 

focus is on H because of the fitting complexity due to the 

existence of several modes with different time delay constants 

in a multiconductor system.  

For cY the fitting is performed in the phase domain with a 

common set of poles for all entries. Constant-T option is only 

applied to see its impact on the precision of transient 

waveforms. The final form of cY as a function of the complex 

angular frequency s is given as follows    
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where 0R  is a constant matrix corresponding to cY  when

s  , M is the fitting order, iq represents the 
thi pole and 

iR  is the corresponding matrix of residues.   

A.  CTWB model 

  
Fig. 1 Multi-conductor line segment of length L 

Fig. 1 illustrates a transmission line of length L with N parallel 

conductors. 0 0 0r i I I I  and  L Lr Li I I I  are the 

vectors of injected currents, 0V and LV  are node voltages at 

line ends 0x  and Lx  . Subscripts i and r stand for 

incident and reflected, respectively. The fundamental equations 

of current and voltage phasors at each end of the transmission 

line can be related as follows: 

  0 0 L L   c cI Y V H I Y V  (2) 

  0 0L L   c cI Y V H I Y V  (3) 

The characteristic admittance matrix cY is given by: 

  (4) 

with Γ YZ and Y , Z are N N  coupled matrices per 

unit length representing frequency dependent shunt admittance 

and series impedance matrices respectively. 

The propagation matrix H is given by: 

  (5) 

Note that (2) and (3) are in the frequency domain, and the time 

domain version results in computationally intensive 

convolutions. On the other hand, if they are represented with 

rational forms, efficient discrete state space forms can be 

obtained in the time domain. 

The first step in the identification of H is to apply modal 

decomposition:   

  1
mH TH T  (6) 

where T is a frequency dependent matrix of eigenvectors of the

YZ product and mH is the modal propagation function 

consisting of eigenvalues of H . It is a diagonal matrix 

expressed in the following form 
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where i are the eigenvalues of L YZ and i
iH e


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the eigenvalues of H also called modal propagation functions or 

modes. Then each mode is fitted with RKF or VF and expressed 

in the following form: 
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where iM  is the number of poles of the rational function for 

the i–th mode, i is the time delay tweaked to reduce error [2] 

and ,i kp is k–th pole of the i–th mode with kr being its residue.  

The next step is to determine a constant T ( ) in order 

to map the fitted modal propagation matrix back in the phase 

domain using the following expression  

 1
fit const modefit const

H T H T  (9) 

where 

 1 2
ˆ ˆ ˆ, ,...,modefit Ndiag H H H 

 
H  (10) 

The real constant transformation matrix constT is chosen to 

be the real part of the matrix iT  among all the frequency 

dependent transformation matrices , 1,...,i i NT  with 

1cY ΓZ

Le Γ
H

constT



 1,2,...i N and N being the number of frequency samples 

used in the modal decomposition of H . The index i can be 

manually set or chosen to give the smallest error of the 

expression 

 
2const modefit conste  H T H T  (11) 

Considering the application of the line model in switching 

transients, EMT users typically pick constT  at around 1000 Hz. 

This is the default value in this paper unless otherwise stated. 

Note that iT is rotated to minimize the imaginary part.  

B.  FD model review 

As mentioned, the classical FD line model employs Bode 

fitting to fit H and cZ  in the modal domain. The magnitude of 

the eigenvalues is fitted using real zeros and poles on the left 

hand side of the complex plane. The phase of the final fit is 

expected to match the fitted function assuming that it is a 

minimum phase shift function (MPS), and the phase-magnitude 

characteristics depends on the magnitude characteristics and 

vice versa. In other words, one can reconstruct the phase of an 

MPS function by just knowing its magnitude characteristics and 

vice versa.  

In the case of an H mode, an exponential time delay term 

 s
e


 should also be considered in the model to account for 

the excessive phase shift/lag of the mode. When the exponential 

delay term is used to compensate the phase shift of the mode, 

the remaining part is considered to be an MPS function. Note 

that, the exponential delay term does not change the magnitude 

characteristics. Therefore, in the FD model, the time delay is 

attributed after the Bode fitting is completed in such a manner 

that the phase mismatch between the mode being fitted and the 

final fit is minimized.  

The default frequency used to assign the constant T for the 

FD model is 1000 Hz. Given that the resulting rational forms 

are MPS functions, the line model will be passive independent 

of the choice of the constant transformation matrix, i.e., even if 

the input system approximated with a constant T is not passive. 

FD model has been limited to lines due to reported inaccuracies 

in modeling cables. This has been attributed to constant T 

approximation. The paper therefore focuses on lines.  

III.  FITTING ACCURACY AND TIME DOMAIN SIMULATION 

This section presents four different cases to investigate the 

fitting performance of CTWB. The reference solution is the full 

phase frame WB model. The RMS errors in the fitting of H are 

also presented.  

A.  Case 1: 450 km long 3-phase overhead line 

This case corresponds to a 230 kV 60 Hz overhead line. The 

geometrical configuration and corresponding data are presented 

in Fig. 2 and TABLE I . The line is not transposed. Each phase 

consists of a three-conductor bundle. 

This case is a preliminary case used to demonstrate the 

fitting precisions and order of CTWB obtained with VF and 

RKF. A time domain switching study is also demonstrated to 

show the precision in generating voltage waveforms.   

 
Fig. 2 Case-1: 230kV three-phase transmission line system 

TABLE I  CASE-1, CONDUCTOR DATA 
Ground wire radius 4.75 mm 

Ground wire DC resistance 3.75 Ohm/km 

Bundle radius 230.09 mm 

Angle (deg) 0° 

Conductor radius 15.29 mm 

Conductor DC resistance 0.0701 Ohm/km 

 

In TABLE II, the model order of H is the sum of the order 

of the fit for each mode for CTWB obtained with VF or RKF. 

The results show that, RKFIT provides a model with a smaller 

number of poles. The WB results are provided for reference. 

Note that, in the WB model, all the poles contribute to each 

entry in the phase domain, therefore a high precision fit is 

obtained while the total number of poles used is less. However, 

due to the phase domain computations, the number of residues 

in the time domain will be many times higher. Assume that we 

perform computations in the time domain using modal 

quantities for the CTWB. In that case, the total number of 

residues or states in the time domain will be equal to the number 

of poles, i.e., the sum of the number of poles used for each 

mode. In case of CTWB with VF, this will be 29 residues. In 

the wideband model, there will be 12 residues for each entry of 

H , and a total of 108 given that H is a 3 by 3 matrix. For 

CTWB, a maximum absolute error of 0.01 is used as criterion 

to stop in the fitting of each mode. For WB, the criterion is 

applied in the phase domain. Therefore, the max error in the 

fitting for WB as given in TABLE II is less than 0.01. 

The transient simulation scenario consists of applying a 

three-phase balanced source at 2 ms for phase-a, 6 ms for phase-

b and 12 ms for phase-c. The simulation time is set to 200 ms. 

Since this is a very long line, the propagation delay is large (1.5 

ms) and we can take a large time step such as 150 µs. However, 

a 50 µs time step is selected to increase the resolution of 

waveforms shown for phase-a in Fig. 3. All three models 

provide similar waveforms. Time domain simulations are 

performed in EMTP [18].  

TABLE II  CASE-1, FITTINGS RESULTS 

 CTWB VF CTWB RKF WB 

H model 

order 
21 (modal sum) 25 (modal sum) 20 (per entry) 

Number of 

residues 
21 16 20x3x3=120 

H  rms error 4.91x10-4 5.93 x10-4 2.49 x10-4 

H  max error 0.0131 0.0134 0.0045 



 
Fig. 3 Case-1, line end voltage of phase-a 

B.  Case 2: 39.1 km long 3-phase overhead line 

The second case is a shorter line taken from the IEEE-118 

case [19]. Therefore, we can expect faster transient dynamics. 

This line is part of the 138 kV voltage level and is located 

between BUS 1 and BUS 2 in the IEEE-118 case. Its geometry 

and corresponding data are presented in Fig. 4 and TABLE III 

As in study case 1, this line has a horizontal configuration; 

however, it only has one wire per phase.  

The fitting is performed considering a frequency band from 

0.01 Hz to 100 MHz, using 10 points per decade, and a 

tolerance of 1%. The results are shown in TABLE IV . CTWB 

with RKF results in less order again. The classical FD model 

with Bode fitting [7] results in significantly large number of 

poles with a poor error performance. 

Fig. 5 (a) present the diagonal elements of H reconstructed 

in the phase domain using fitted modes and constant 

transformation matrices employed in the constant T models. In 

this case, H  is a 3×3 matrix. Note that two diagonal elements 

overlap which explains why we only observe two different 

curves.   CTWB with VF and RKF show good precision while 

we can observe deviations in the FD model particularly in the 

interval from 105 to 107 Hz. Fig. 5 (b) present the fitting 

performance for non-diagonal elements.    

 
Fig. 4 Case-2, 138kV three-phase transmission line system 

TABLE III  CASE-2, CONDUCTOR DATA 

Ground wire radius 14 mm 

Ground wire DC resistance 0.71 Ohm/km 

Conductor radius 23.92 mm 

Conductor DC resistance 0.0574 Ohm/km 

TABLE IV  CASE-2, FITTINGS RESULTS 

 CTWB VF CTWB RKF FD Bode 

H model order 19 13 82 

H  rms error 9.07x10-4 0.001 0.14 

In order to assess the passivity, H is reconstructed from its 

modes using a constant T. The passivity is assessed by looking 

at the eigenvalues of the Hermitian of the nodal admittance 

0.5( )n n n  H

H
Y Y Y with nY  being the nodal admittance 

matrix and n

H
Y its conjugate transpose. nY is calculated using 

the reconstructed H and cY . The eigenvalues of its Hermitian 

should be all positive at any arbitrary frequency sample in order 

for the line model to be passive.  

Fig. 6 shows passivity violations for the eigenvalue in blue 

color. This is a minor passivity violation reaching down to 

minus 5.89×10-7 but shows that the constant T induces a non-

passive system. When, nY is calculated using the reconstructed

H from the fitted modes obtained with CTWB with VF and 

RKF, similar passivity violations are observed. FD model does 

not have passivity violations, Note that, the constant T is 

evaluated using the minimum distance equation in (11).  

 
Fig. 5 Case-2, Comparison between the actual and fitted H  

 

 
Fig. 6 Eigenvalues of the nodal admittance matrix 

(b) 

(a) 

(a) 

Passivity 

Violations 

(b) 

Violations zoomed 



A similar transient scenario to case 1 is used in this case as 

well. The line is excited with a balanced source of 138 kV at 60 

Hz. Fig. 7 presents the time domain simulation waveforms. The 

smallest time delay of the line is 130 µs. The simulation time 

step is 5 µs.  

All three transient waveforms in Fig. 7(a) show a similar 

trend, however as seen in Fig. 7(b), the deviation of CTWB with 

VF from WB is more distinguishable. 

The fact that the models violate passivity at certain 

frequency intervals does not result in unstable models in the 

time domain. This is the case for all study cases in this paper. 

C.  Case-3: Double circuit line 

This case is a double line case. Every phase is a 4-wire 

bundle except for the grounding wires. This line is 150 km long. 

The system is presented in Fig. 8 and TABLE V . 

This case is interesting since the classical FD line model 

presents inaccurate waveforms in the time domain while the 

CTWB implementation does not. The fitting band is from 0.01 

Hz to 10 MHz with 10 points per decade. The constant T is 

calculated at 1 kHz for all models. The fitting results are 

presented in TABLE VI. RKFIT provides a significant 

reduction in the order of fitting.  

In addition, 3 methods in assigning the constant T are 

compared. The first one is by minimizing the distance between 

the actual H and its reconstructed version with a constant T. The 

second one puts an additional constraint of passivity to the first 

one, i.e., constant T minimizing the distance from actual H

while preserving the intrinsic passivity of the system. The third 

one is by picking the constant T around 1 kHz depending on the 

availability of the discrete sample. 

  

 
Fig. 7 Case-2, line end voltage of phase-a 

 
Fig. 8 Case-3, Double circuit  

TABLE V  CASE-3, CONDUCTOR DATA 

Ground wire radius 6.4 mm 

Ground wire DC resistance 0.864 Ohm/km 

Bundle radius 248.56mm 

Bundle angle 0° 

Conductor radius 14.65 mm 

Conductor DC resistance 0.0646 Ohm/km 

 

Fig. 9 shows the reconstructed first diagonal element of H

using various choices of constant T and fitting methods.  

CTWB with RKF and VF with a constant T providing minimum 

distance are the most accurate. FD with a constant T at 1 kHz is 

less accurate than CTWB with VF at 1 kHz particularly for 

frequencies beyond 1 kHz.  Choosing a constant T that ensures 

that the approximated system is passive results in a less accurate 

model.  

Fig. 10 shows the eigenvalues of n H
Y which is calculated 

using the reconstructed H  from its modes using the constant 

T that ensures minimum distance from the actual H satisfying 

the norm 2 relation of (11). The passivity violations for this 

case are more noticeable.   

TABLE VI  CASE-3, FITTINGS RESULTS 

 CTWB VF CTWB RKF FD Bode 

H model order 39 29 159 

H rms error 0.0048 0.0048 0.16 

 

 
Fig. 9 H first diagonal element 
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Fig. 10 Eigenvalues of the nodal admittance matrix 

 

Fig. 11 shows the study circuit for Case 3. SW1 is closed at 

20 ms. The waveforms show phase a of probe m1. Fig. 12 

shows the waveform obtained with CTWB using VF and WB. 

For CTWB, two different cY models are considered. In one 

model, cY fitted in the phase domain as in the WB model is 

used. In the other case, cY is approximated with a constant T. 

Using a constant T for cY has a minor impact on the accuracy of 

waveforms. The passivity violations of the CTWB model does 

not result in numerical stability problems in the time domain.   

Fig. 13 (a) is the general shape of the waveform over the 

whole simulation, (b) is a zoom over the rectangle shown in the 

(a). The zoomed figure shows that the FD curve (blue curve) 

has oscillations that don’t follow the WB curve (black curve). 

In this case, FD model isn’t as accurate as CTWB with RKF 

and VF. The inaccuracy of the FD model can be explained by 

its poor fitting performance as shown in Fig. 9 despite its 

excessive number of poles rather than the constant T 

approximation which has been considered as the main source of 

inaccuracy in FD model.  

 

 
Fig. 11 Case-3, Study circuit 

  

 

 
Fig. 12 Impact of CT

c
Y within CTVF 

 
Fig. 13 Voltage of the top left end phase in Fig. 8 

D.  Case-4: 12 phase system 

This case consists of a 12-phase system composed of 4 

overhead lines of 1 km long as shown in Fig. 14. The wideband 

fitting for this case is performed in a larger frequency band from 

0.01 Hz to 100 MHz to capture the decaying part of modal 

propagation functions given the short length of the line. The 

fitting results are presented in TABLE VII. This case suggests 

again that RKF is more efficient than VF in terms of fitting 

order.  

The second transmission line, from left to right, is excited 

with a 69 kV sinusoidal source at 60 Hz. The lowest time delay 

of this system is 3.3 µs, therefore we chose a time step of 300 

ns. The waveform presented in Fig. 15 corresponds to the 

endline voltage of phase a of the first line on the left. We 

observe that CTWB models have a slightly less damping in the 

time domain than the WB model probably due to the high 

degree of asymmetry in the transmission system resulting in 

larger errors due to constant T assumption at 1 kHz.  
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Fig. 14 Case-4, 12-phase transmission lines 

 

TABLE VII  CASE-4, FITTINGS RESULTS 

 CTWB VF CTWB RKF WB 

H model order 52 46 15 

Residues 52 46 12x12x15=2160 

H rms error 0.0023 0.0023 3.21x10-4 

 

  
Fig. 15 Case-3, end line voltage of phase-a 

IV.  CONCLUSION 

This paper has investigated the approximation of constant T 

in transmission line modeling together with new fitting options 

including the RKF which has not been considered for this 

application before. The use of RKF reduces the number of poles 

in the model significantly, whereas the Bode fitting employed 

in the classical FD model produces very large number of poles 

compared to VF and RKF in addition to displaying poor fitting 

performance. It is shown for the first time that the precision 

problems of the FD model in time domain simulations and poor 

reproduction of H in the phase domain are rather attributable to 

the Bode fitting than the constant T approximation. It is also 

shown that, the approximation of cY with a constant T has a 

minor impact on the precision of time domain simulations.   

An important discovery of the paper is the fact that using a 

constant T may result in an approximated line system that is not 

passive anymore. Accordingly, the models generated using VF 

and RKF fitting techniques cannot maintain passivity. The case 

studies presented in the paper did not show any unstable 

behavior in the time domain due to the lack of passivity of the 

line model. On the other hand, this finding can be used to 

explain any unstable behavior encountered in the future. Since 

the fitting is only performed in the modal domain, it is possible 

to introduce simpler passivity enforcement schemes if needed 

as future work.  
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