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Abstract—The simulation of electromagnetic transients may
suffer from inaccuracies due to a phenomenon known as
frequency warping (FW). This paper presents an analysis of
the effects of FW on the accuracy of digital simulations,
demonstrating that the use of the trapezoidal integration rule
(TR), commonly employed in many electromagnetic transients
simulators, is the root cause of such inaccuracies. Although FW
is considered a major problem in digital signal processing, it
is often overlooked when simulating electrical transients. The
analysis is carried out in a fourth-order RLC circuit, from
which the analytic solution is derived. The circuit is solved using
the combined state-space nodal method, considering the TR or
recursive convolutions as solution methods for the state-space
representation. It was observed that the FW caused a change
in the natural oscillation frequency of the system, causing a
pulsating behavior of absolute error. The accumulation of errors
over time can result in deteriorated solutions when either the
time steps are not sufficiently small or the simulation runs for a
long enough duration. This paper emphasizes the significance of
accounting for the FW phenomenon in digital simulations that
rely on integration methods, such as the TR.

Keywords—Transient simulation, Frequency warping,
Combined state-space nodal method, trapezoidal integration
rule, recursive convolutions.

I. INTRODUCTION

THE development of the Electromagnetic Transients
(EMT) type of programs started around 50 years ago

initially as the EMTP [1] and later as a “family” of programs
such as PSCAD, MicroTran, ATP and others. These simulators
obtain the solution in the discrete-time domain by transforming
differential equations representing the dynamics of the network
into algebraic equations using a numerical integration method.
However, the basic modeling proposals from [1] are still used

A. A. Kida is with the Federal Institute of Bahia and Federal University of
Bahia, Jacobina, BA, Brazil and Salvador, BA, Brazil (e-mail of corresponding
author:alexandre.kida@ifba.edu.br). A. C. S. Lima is with the Federal
University of Rio de Janeiro, Rio de Janeiro, Brazil (e-mail: acsl@dee.ufrj.br).
F. A. Moreira is with the Federal University of Bahia, Salvador, BA,
Brazil (e-mail: moreiraf@ufba.br). J. R. Martí and J. Tarazona are with
the Department of Electrical and Computer Engineering of the University
of British Columbia, Vancouver, BC, Canada (e-mail: jrms@ece.ubc.ca and
jotarazona@gmail.com)

This research was supported in part by Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior (CAPES) under Grant 001, Conselho
Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under
grants 404068/2020-0, 400851/2021-0, grant UNIVERSAL/CNPQ and from
fellowship PQ, Fundação de Amparo à Pesquisa do Estado de Minas Gerais
(FAPEMIG) of A. C. S. Lima under grant APQ-03609-17 and Instituto
Nacional de Energia Elétrica (INERGE).

Paper submitted to the International Conference on Power Systems
Transients (IPST2023) in Thessaloniki, Greece, June 12-15, 2023.

in several EMT-type programs, like the trapezoidal integration
rule (TR) and the method of characteristics, for the propagation
of traveling waves in transmission lines.

The TR is a linear multistep method with A-stability
property [2], without risk of numerical instability, although
it can lead to numerical bounded oscillations around the
expected solution [3]. Numerical integration methods like the
TR can introduce a non-linear mapping of the frequency axis,
resulting in a type of numerical error known as frequency
warping (FW) that can alter the frequency response of the
system [4]. This frequency distortion causes a deviation in the
observed values of inductances (L) and capacitances (C) [5].
The FW is often taken into account in speech recognition [6],
[7], digital filter design [4], [8], phase-locked loops analysis
[9], [10] and oscillator circuit analysis [11], [12].

The dynamics of a system can also be modeled using
state-space equations (SSE). This is the common approach in
programs such as Simulink and Modelica [13]. This approach
can also include Frequency Dependent Network Equivalent
(FDNE) for wideband modeling of overhead lines [14],
[15], [16] and underground cables [14], [15], [17] in phase
coordinates. The SSE can be implemented with a pole-residue
model [15], which leads to efficient recursive expressions
implemented using TR or the so-called recursive convolutions
(RC) [18]. More recently, reference [19] presented a
methodology for combining SSE and nodal or modified nodal
analysis.

The analysis of the inaccuracies resulting from FW is
relevant due to its potential impact on the system response.
FW can occur in resonant phenomena, such as ferroresonance,
where changes in the discretized L and C values can alter
the natural frequency of oscillation. Another relevant situation
is the scenario whenever power electronic converters are
considered, such as in wind and photovoltaic generation for
example, as the overall system inertia decreases, leading
to low and high-frequency oscillations with poor damping
[20]. This issue can affect simulation accuracy since the
FW is frequency-dependent and the global truncation error
(GTE) accumulates over time. Even small errors that occur
early in a process can compound over time, leading to
significant deviations from the correct solution. The local
truncation error (LTE) estimator often overlooks this issue
[11]. Furthermore, another impact of the FW is on network
equivalents, potentially leading to inaccuracies in the system
behavior at certain frequencies.

The investigation of the consequences of the FW in the



simulation of electrical transients has been scarce in the
specialized literature. Therefore, this paper aims to fill this gap
by presenting an analysis of the FW in a fourth-order RLC
circuit, modeled with the combined nodal and SSE method
[19], and its potential impact on the accuracy of the solution.
This work will demonstrate that, even with a theoretically
adequate time step size, the simulation can produce erroneous
results due to FW. However, the key findings presented in this
paper are not limited to the proposed circuit. The selection
of such a circuit was motivated by its potential for scalability
to larger circuits, as FW is rooted in the discretization of L
and C. The complexity of larger-scale applications may hinder
the isolation of this particular phenomenon. Furthermore,
obtaining the analytical response of an RLC circuit for use
as a benchmark is feasible. Achieving such a response for
larger and more intricate circuits can be impractical.

This paper is organized as follows. Section II provides a
further discussion on FW. Section III outlines the electrical
circuit under consideration and its analytical response.
Section IV describes the circuit modeling approach adopted
in this study. Section V analyzes the impact of the FW on
the proposed electric circuit using different solution methods
and time step sizes. This section also presents the key
findings of the study. Finally, Section VI summarizes the main
conclusions of this work.

II. FREQUENCY WARPING

The bilinear transformation (BLT) maps the continuous-time
domain to the discrete-time domain, using TR as the
integration method. The relationship between the analog
frequency (ωa) and its corresponding digital frequency (ω) is
non-linear and can be described [4] as

ωa =
2

h
tan
(ωh

2

)
, (1)

where h is the integration or time step.
An immediate consequence of the BLT frequency mapping

is that the inductance (L) and capacitance (C) in the
discrete-time domain become frequency-dependent, LDT (ω)
and CDT (ω), respectively, [5] such that

LDT (ω) = Ψ(ω)L, (2)

CDT (ω) = Ψ(ω)C (3)

and
Ψ(ω) = tan

(ωh
2

)
/
(ωh

2

)
, (4)

where Ψ(ω) is the FW effect. The mathematical derivation of
(2)-(4) is presented in Appendix A.

The Nyquist frequency [4] can be defined as

fNY =
1

2h
∴ ωNY =

π

h
, (5)

where fNY and ωNY are the Nyquist frequency, expressed in
Hz and rad/s, respectively.

In Fig. 1, the deviation of LDT /L and CDT /C is plotted
against ω. The plot shows that as ω approaches the Nyquist
frequency, the deviation increases non-linearly and becomes

infinitely large. This result is consistent with the limit of Ψ(ω),
as given in (4), as ω approaches ωNY , such that

lim
ω→ωNY

tan
(ωh
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/
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)
= ∞. (6)

Likewise, no distortion in LDT and CDT is observed when
ω approaches zero, such that

lim
ω→0

tan
(ωh

2

)
/
(ωh

2

)
= 1. (7)
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Fig. 1. Frequency response of an inductor and a capacitor using TR.

The representation of an analytic pole p in the z-domain, z,
is

z = eph ≈
1 + ph

2

1− ph
2

. (8)

The BLT is a first-order approximation of eph. When
mapping back to the time domain, the original eigenvalue p
is not obtained, but a new (perturbed) pole P , such that

P =
ln(z)

h
. (9)

The difference between p and P increases with h. The
numerical error resulting from FW can be perceived as a
disturbance of the original eigenvalues.

The simulated constant of attenuation will deviate from its
analytical counterpart if the Re{p} is altered. Modifying the
Im{p} will cause the natural oscillation frequency of the
simulation to change. Furthermore, if the analytic solution has
complex conjugate eigenvalues, the discrete-time solution will
also exhibit complex conjugate eigenvalues.

III. ELECTRICAL CIRCUIT UNDER CONSIDERATION

The FW-induced numerical error is evaluated by utilizing
the electrical circuit known as Test-case, depicted in Fig. 2.
The circuit parameters are u(t) = cos(120πt) V , R1 = 0, 1 Ω,
L1 = L2 = 1 µH , C1 = 100 µF and C2 = 1 µF . The switch
S1 has been open for a long time and closes at t = 0 s. This
study focuses on the voltage at capacitor C1, VC1

(t).
The analytical solution of VC1(t) is

VC1
(t) = K1(t) +K2(t) +K3(t), (10)



C1 C2

S1 R1 L2

+

_

Nodal State-space

L1

<latexit sha1_base64="/8IcWyVJ1flP4uMniVUBq37NMTs=">AAAB/nicbVDLSsNAFJ3UV62vqLhyE2yFClIS8bUsdOOygn1AG8JkOmmHziRh5kYsIeCvuHGhiFu/w51/47TNQqsHLhzOuZd77/FjzhTY9pdRWFpeWV0rrpc2Nre2d8zdvbaKEkloi0Q8kl0fK8pZSFvAgNNuLCkWPqcdf9yY+p17KhWLwjuYxNQVeBiygBEMWvLMgz7QB5AirbS9tOE5WRVOKplnlu2aPYP1lzg5KaMcTc/87A8ikggaAuFYqZ5jx+CmWAIjnGalfqJojMkYD2lP0xALqtx0dn5mHWtlYAWR1BWCNVN/TqRYKDURvu4UGEZq0ZuK/3m9BIJrN2VhnAANyXxRkHALImuahTVgkhLgE00wkUzfapERlpiATqykQ3AWX/5L2mc157J2cXterp/mcRTRITpCVeSgK1RHN6iJWoigFD2hF/RqPBrPxpvxPm8tGPnMPvoF4+MbQFGU9g==</latexit>

VC1
(t)

<latexit sha1_base64="aL/RllLjhjrOEiTVFrBntWKMzkc=">AAAB+HicbVDLSsNAFJ3UV62PRl26CbZCBSmJ+FoW3LisYB/QhjKZTtqhk0mYuSPW0C9x40IRt36KO//GaZuFth64cDjnXu69J0g4U+C631ZuZXVtfSO/Wdja3tkt2nv7TRVrSWiDxDyW7QArypmgDWDAaTuRFEcBp61gdDP1Ww9UKhaLexgn1I/wQLCQEQxG6tnFLtBHkFFa1hU4KU96dsmtujM4y8TLSAllqPfsr24/JjqiAgjHSnU8NwE/xRIY4XRS6GpFE0xGeEA7hgocUeWns8MnzrFR+k4YS1MCnJn6eyLFkVLjKDCdEYahWvSm4n9eR0N47adMJBqoIPNFoeYOxM40BafPJCXAx4ZgIpm51SFDLDEBk1XBhOAtvrxMmmdV77J6cXdeqp1mceTRITpCFeShK1RDt6iOGoggjZ7RK3qznqwX6936mLfmrGzmAP2B9fkDIR2Srw==</latexit>

u(t)

Fig. 2. Lumped electrical circuit under consideration, Test-case.

where

K1(t) = 1.001 · 10−2e−4.9995·104t·
cos(1.003793 · 106t− 2.907o) V, (11)

K2(t) = 1.001 · 10−2e−4.998t·
cos(0.099499 · 106t+ 179.43o) V (12)

and

K3(t) = cos(376.99t) V. (13)

Equations (11) and (12) have damped oscillation frequencies
of 159.758 kHz and 15.836 kHz, respectively. The last term
(13) corresponds to the steady-state solution.

IV. PROBLEM FORMULATION

A. Nodal Representation

The branch formed by L1 and C1 in Fig. 2 has a nodal
representation, modeled by the well-known companion circuits
[1], as shown in the left portion of Fig. 3. TR is assumed to
be the solution method for solving the differential equation
b′(t) = f(b, t), thus [4],

b(t) = b(t− h) +
h

2
[b′(t− h) + b′(t)], (14)

where b′(t) is the first-order derivative with respect to time.

Nodal State-space
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Fig. 3. Companion circuits, suitable for nodal analysis.

B. State-Space Equations Representation

The branch formed by R1, L2 and C2 in Fig. 2 is represented
by state-space equations (SSE), which will be solved using two
solution methods: TR and recursive convolutions (RC).

Consider the following input-output relationship in the
s-domain,

I(s) = Y (s)V (s), (15)

where I(s) and V (s) are the terminal current and voltage,
respectively. Y (s) is the admittance matrix and can be
approximated over the frequency band of interest using a
pole-residue model [15] as follows

Y (s) ≈
N∑
i=1

Ri

s− ai
+D + sE, (16)

where ai and Ri are the ith poles (real or complex conjugate)
and residue matrix of the SSE; N is the number of poles in the
model; D and E are real and correspond to the conductance
and capacitance matrices.

By using the convolution property in (15), it results in

i(t) = Y (t) ∗ v(t) =
∫ ∞

0

Y (τ)v(t− τ)dτ. (17)

If the step response of a system can be approximated by
exponential functions, then it is possible to use a recursive
solution for the convolution integral [18], which is

i(t) = eahi(t− h) + r

∫ h

0

epτv(t− τ)dτ. (18)

In the discrete-time domain, a generic pole-residue model
can be rewritten [15] with SSE:

x(n) = αx(n− 1) + (αλ+ µ)u(n− 1) (19)

and
y(n) = x(n) + (D + λ)u(n), (20)

where α, λ and µ are constants and depend on the solution
method, see Appendix B for more details.

Given the terminal current, y(n), and voltage, u(n), the
right-hand side of (20), denoted as x(n), can be seen as a
parallel association of a history current source, IhSS

(n), and a
conductance, GSS , similar to the companion circuit modeling
approach. Thus,

IhSS
(n) =

N∑
i=1

(
αix(n− 1) + (αiλi + µi)u(n− 1)

)
(21)

and

GSS = D +

N∑
i=1

λi. (22)

Therefore, the branch represented by SSE in Fig. 2 can be
incorporated in the nodal analysis, as illustrated in the right
portion of Fig. 3.

V. NUMERICAL RESULTS AND DISCUSSION

This section will present initial considerations and the most
relevant results obtained in this work.



A. Initial Considerations

This paper aims to analyze the behavior of the transient
with an oscillating frequency of 15.836 kHz, as described by
(12), while the transient with a higher oscillating frequency of
159.758 kHz, as given by (11), decays rapidly and is not of
primary interest for this study. An integration time step should
be small enough to capture the system dynamics, at a cost of
increasing the computational burden. In order to keep the LTE
less than 3%, it was considered the following condition [3],

h ≤ 1

10fmax
≤ 1

10 · 15.836 kHz
≤ 6.31 µs, (23)

where fmax is the highest frequency of interest, corresponding
to 15.836 kHz.

The largest time step, hmax, utilized in this study is 4
µs. This value is considered theoretically appropriate as it is
smaller than the restriction (23).

This study will model the problem with the combined
method [19]. Specifically, the TR method will be employed to
solve the branch comprising L1 and C1, which is modeled with
nodal representation. On the other hand, the branch consisting
of R1, L2, and C2 will be represented with SSE and solved
using either TR or RC. Table I presents a summary of the time
steps, solution methods, and corresponding nomenclatures
used in this work.

TABLE I
NOMENCLATURES REGARDING THE SOLUTION METHODS AND

INTEGRATION TIME STEPS (h)

Solution method
Nomenclature Nodal SSE h (µs)

TR1 TR TR 1
TR2 TR TR 2
TR4 TR TR 4
RC1 TR RC 1
RC2 TR RC 2
RC4 TR RC 4

B. TR as Solution Method for SSE

To solve the SSE in the combined formulation, TR is first
applied. The waveforms of TR1, TR2, and TR4 are shown in
solid blue in Figs. 4a, 5a, and 6a, respectively, along with the
analytical response shown in solid red. The absolute errors
of TR1, TR2, and TR4 relative to the analytical response are
shown in Figs. 4b, 5b, and 6b, respectively.

The simulation in Fig. 4a exhibits an initial inaccuracy due
to the presence of a high-frequency transient component in
the analytic response (11). This transient component vanishes
after approximately 0.1 s, resulting in an initial spike in the
absolute error shown in Fig. 4b. The absolute error trend over
time in Fig. 4b is a more clear indicator of the FW effect in
TR1 compared to its waveform in Fig. 4a. The slope near the
maximum and minimum points of a sinusoidal wave becomes
less steep, causing the absolute values to become closer. This
reduces the difference between the simulated and analytical
response, resulting in valleys on the absolute error as depicted
Fig. 4b.

When h is increased to 2 µs, the waveform of TR2 in Fig.
5a has a small, but noticeable, phase shift, with respect to the
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Fig. 4. Voltage at capacitor C1 (a) and its absolute error (b) for TR1.

analytic response, at the end of the simulation (t = 2ms). This
phase shift is a result of the FW altering the natural oscillation
frequency of the simulated circuit. The absolute errors depicted
in Fig. 5b share similar characteristics with those observed for
TR1 in Fig. 4b, but with larger amplitudes.
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Fig. 5. Voltage at capacitor C1 (a) and its absolute error (b) for TR2.

Setting h = 4 µs results in a significant phase shift visible
in the waveform of TR4 in Fig. 6a. Toward the end of the
simulation, TR4 becomes almost completely out of phase. The
absolute error in Fig. 6b has a much larger amplitude compared
to that of TR1 (Fig. 4b) and TR2 (Fig. 5b). Furthermore, the
absolute error at the end of the simulation is greater than its



initial value.
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Fig. 6. Voltage at capacitor C1 (a) and its absolute error (b) for TR4.

An increase in the value of h resulted in a more pronounced
FW effect. This observation is quantitatively supported by
evaluating the mean square error (MSE) metric presented in
Table II.

TABLE II
MSE FOR TR1 , TR2 AND TR4 UNTIL t = 2 ms

Nomenclature TR1 TR2 TR4

h (µs) 1 2 4
MSE (µV 2) 0.67 7.50 78.63

Fig. 7 shows a pulsating absolute error behavior of TR4

when the simulation duration is increased from 2 ms to 20 ms.
Its peaks and valleys represent phase shifts of 180o and 0o,
respectively, due to a frequency deviation caused by FW. TR4

takes about 2.4 ms to become completely out of phase. If the
analysis was held for TR1 and TR2, it would take about 34.2
ms and 9.5 ms to become 180o out of phase compared to
the analytical solution. It should be noted that the FW effect
on the waveform of TR1 was difficult to observe in Fig. 4a
because the simulation was limited to only 2 ms. However,
even for such a small time step, the GTE accumulation could
lead to erroneous results if the simulation is sufficiently long,
as depicted in Fig. 8. The frequency deviation of TR4 and its
analytical response (∆fTR4

) can be estimated by the inverse of
twice the period between two minima or two maxima. In this
case, ∆fTR4

is approximately 104.2 Hz, which corresponds
to 0.66% of fmax.

C. RC as Solution Method for SSE

This section presents the results of using the RC as a
solution method for the SSE. The waveforms and analytical
responses for RC1, RC2, and RC4 are shown in Figs. 9a, 10a,
and 11a, respectively, where the solid blue line represents the
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Fig. 7. Absolute error of TR4 until t = 20 ms.

33 33.5 34 34.5 35
Time [ms]

800

850

900

950

1000

1050

V
ol

ta
ge

 a
t C

1 [
m

V
]

(a)

State-space nodal, TR1

Analytic response

0 5 10 15 20 25 30 35
Time [ms]

0

5

10

15

20
A

bs
ol

ut
e 

er
ro

r 
[m

V
]

(b)

Fig. 8. Voltage at capacitor C1 for TR1, from 33 ms to 35 ms.

waveform of the combined method, while the solid red line
corresponds to the analytical response. The absolute error of
each method with respect to the analytical response is depicted
in Figs. 9b, 10b, and 11b, respectively.

In contrast to TR1, as seen in Fig. 4b, the absolute error
of RC1 shows a less pronounced peak at the beginning of the
simulation, as depicted in Fig. 9b.

When h = 2 µs, the RC2 waveform exhibits a slight
decrease in amplitude and a phase shift due to a frequency
deviation, as shown in Fig. 10a. These numerical errors are
reflected in the absolute error behavior in Fig. 10b, which
starts with a larger amplitude than those observed for TR2 in
Fig. 5b.

Increasing h to 4 µs leads to an initial phase inversion in
the waveform of RC4, as shown in Fig. 11a, where it starts
out of phase by 180o and starts getting in phase due to the
frequency deviation. The mathematical analysis regarding this
initial phase inversion in RC4 is held in Appendix C. The
absolute error in Fig. 11b initially starts at its maximum value
due to the 180o phase shift, but it decreases as the signal starts
to approach the correct phase.

The MSE values for the SSE using RC as the solution
method are reported in Table III. As expected, the MSE
increases with h.

TABLE III
MSE FOR RC1 , RC2 AND RC4 , UNTIL t = 2 ms

Nomenclature RC1 RC2 RC4

h (µs) 1 2 4
MSE (µV 2) 0.77 10.85 106.47

The simulation time of RC4 was extended from t = 2 ms
to t = 20 ms, as shown in Fig. 12. The pulsating trend of
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Fig. 9. Voltage at capacitor C1 (a) and its absolute error (b) for RC1.
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Fig. 10. Voltage at capacitor C1 (a) and its absolute error (b) for RC2.

the absolute error starts with the maximum phase shift of
180o. Applying the same methodology as used in the previous
section for TR4, the frequency deviation of RC4, ∆fRC4

, is
approximately 102.5 Hz, corresponding to 0.65% of fmax.

VI. CONCLUSIONS

This paper explored the impact of a subtle effect known as
frequency warping (FW) on the accuracy of digital simulations
of electromagnetic transients. The FW can be attributed
to the behavior of L and C in the discrete-time domain
obtained through an integration method such as the trapezoidal
integration rule (TR), which is commonly used in EMT-type
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Fig. 11. Voltage at capacitor C1 (a) and its absolute error (b) for RC4.
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Fig. 12. Absolute error of RC4 until t = 20 ms.

simulators. The FW caused a frequency deviation on the
waveform, resulting from a change in the natural oscillation
frequency of the system. If the simulation runs for a long
enough time, the FW can cause the solutions to be completely
out of phase due to error accumulation. Furthermore, the
distortion was observed even when only a portion of the
circuit was solved using TR, such as in the combined method
where the nodal part was solved with TR and the state-space
equations were solved using recursive convolutions. The
distortion was clearly observed even for time step sizes less
than 1/(10fmax) and the simulation was executed up to 2
ms. Finally, the error increased non-linearly with the time
step size, affecting the accuracy of the overall simulation. For
future work, the authors plan to present possible methods for
dynamically compensating the FW effect.

VII. APPENDIX

A. Frequency warping effect on L and C

The relationship of the voltage (vL) and current (iL) in an
inductor, with a true inductance L, is

iL(t)− iL(t− h) =
h

2L
vL(t) +

h

2L
vL(t− h) (24)



Taking (vL) and (iL) as the input and output, respectively,

vL(t) = ejωt (25)

and
iL(t) = YL(ω)e

jωt, (26)

where YL is the admittance of the discretized inductor.
By replacing (25) and (26) in (24),

YL(ω)e
jωt−YL(ω)e

jω(t−h) =
h

2L
ejωt+

h

2L
ejω(t−h). (27)

By isolating YL(ω),

YL(ω) =
h

2L

ejωh + 1

ejωh − 1
. (28)

The impedance of the discretized inductor (ZL) is

ZL(ω) =
1

YL(ω)
=

2L

h

ejωh − 1

ejωh + 1
= j

2L

h
tan
(ωh

2

)
. (29)

By defining an apparent inductance in discrete-time (LDT )
where

ZL(ω) = jωLDT (ω). (30)

The inspection of (29) and (30) leads to

LDT (ω) = L · tan
(ωh

2

)
/
(ωh

2

)
, (31)

Equation (31) can be expressed as (2) and rewritten here
for sake of clarity,

LDT (ω) = Ψ(ω)L, (2)

where the frequency warping effect, Ψ(ω), is (4), and rewritten
here as

Ψ(ω) = tan
(ωh

2

)
/
(ωh

2

)
. (4)

The relationship of voltage, vC(t), and current, iC(t), of a
capacitor with true capacitance C, is

vC(t)− vC(t− h) =
h

2C
iC(t) +

h

2C
iC(t− h). (32)

The analysis for the capacitor case is straightforward and
follows the same procedure shown in (25)-(31), considering
vC(t) as input, iC(t) as output and

ZC(ω) =
1

jωCDT (ω)
, (33)

where ZC(ω) is the impedance of the discretized capacitor
(CDT ). So,

CDT (ω) = C · tan
(ωh

2

)
/
(ωh

2

)
(34)

Eq. (34) can be expressed as (3) and it is shown here for
sake of clarity,

CDT (ω) = Ψ(ω)C. (3)

The derivation of the FW for other integration methods,
such as the Backward Euler, follows a similar procedure as
presented for TR in this work.

B. Constants for the State-Space Equations
The constants α, λ and µ for the TR [15] are

α =
2 + ah

2− ah
(35)

and
λ = µ =

rh

2− ah
. (36)

For RC, the constants α, λ and µ [18] are

α = eah, (37)

λ = − r

a

(
1 +

1− α

ah

)
(38)

and

µ =
r

a

(
α+

1− α

ah

)
. (39)

Note that when ah → 0, the constants λ (38) and µ (39)
approach infinity, leading to inaccurate results.

C. Analysis of the Initial Phase Inversion in RC4

In the beginning of the simulation, n = 0 and the initial
voltage at capacitor C1 is 1 V (VC1(0) = 1 V ). In the next time
step (n = 1), a phase inversion is observed as the voltage at
RC4 increases and the analytic response decreases, as seen in
Fig. 11. Per-unit values will be used in this section to simplify
the notation. VC1

(n) can be computed with

VC1
(n) = G−1

A

(
IA(n)−GL1 cos(120πnh

)
, (40)

where
GA = GC1 +GSS +GL1 and (41)

IA(n) = IhC1
(n)− IhSS

(n)− IhL1
(n). (42)

The phase inversion at n = 1 implies that the voltage at the
capacitor increases, so

VC1
(1) > 1. (43)

The condition in (43) is satisfied if

G−1
A

(
IA(1)−GL1

cos(120π · 4 · 10−6
)
> 1. (44)

By replacing (41) and (42) in (44),

IhC1
(1)− IhSS

(1)− IhL1
(1)−

GL1
· cos(120π · 4 · 10−6

)
> (GC1

+GSS +GL1
). (45)

Isolating GSS ,
GSS < Φ(1), (46)

where

Φ(1) = IhC1
(1)− IhSS

(1)− IhL1
(1)

−GL1
· cos(120π · 4 · 10−6

)
− (GC1

+GL1
). (47)

For RC4, IhC1
(1) = 50 A, IhSS

(1) = 50 A, IhL1
(1) = 0 A,

GL1
= 2 S, GC1

= 50 S and GSS = 0.39228 S, which leads
to

Φ(1) = 1.01. (48)

Thus, (46) is satisfied.
Table IV demonstrates that the initial phase inversion occurs

when the condition given in (46) is satisfied, which was the
case only for RC4.



TABLE IV
PER-UNIT VALUES OF GSS AND Φ(1)

Nomenclature GSS Φ(1) GSS < Φ(1)? Initial phase
inversion?

TR1 0.38462 -0.38 No No
TR2 0.47619 -0.48 No No
TR4 0.38462 -0.38 No No
RC1 0.44501 -0.35 No No
RC2 0.66662 -0.16 No No
RC4 0.39228 1.01 Yes Yes
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