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Abstract--Electrical systems have been facing transformations, 

such as distributed generation insertion, system expansion and 

regulatory standards in order to increase reliability and quality of 

the power supply. Thus, fault location methods must be updated 

to ensure accuracy in estimating the location of electrical faults. 

The delay in restoring the system causes damage to utilities and 

consumers. Considering this, the current work presents an 

approach capable of locating faults accurately in radial 

distribution systems. At first, the distance is estimated using the 

travelling wave theory with data from measurements from two 

terminals. Next, due to the radial characteristic of the system, the 

proposal aims to mitigate the problem of multiple estimation of 

faults. Thus, features are extracted from the voltage and current 

signals, which are used as inputs of decision trees to identify the 

fault region. The proposed approach was validated in a medium 

voltage distribution system, in which the results presented an 

average error of 0.79% (with a standard deviation of 0.4%) in 

estimating the fault distances and an average accuracy above 

88.7% in identifying the region under fault. Thus, it was 

demonstrated that the proposed methodology is efficient to locate 

faults, mitigating the problem of multiple estimation. 

Keywords: Distribution systems, fault location, multiple 

estimation, decision trees, travelling waves. 

I. INTRODUCTION

ISTRIBUTION systems have been constantly modified

according to technological advances. The standards that

regulate the power sector are increasingly rigorous and they 

prioritize the quality of the service of the power supply. The 

electrical system reliability is improved when faults are 

detected and isolated quickly and accurately by protective 

devices. To decrease the interruption time of the power supply 

after a fault, several studies have been carried out to develop 

reliable and accurate fault locators [1], [2], [3]. 

Over the last decade, electrical systems have grown due to 

the increasing number of distributed generations, mainly 

represented by wind and photovoltaic power plants. These 

sources are connected completely or partially in large 

distribution systems via inverters. This fact increased the 

topology complexity of electrical systems and the diversity in 

system parameters. As a consequence, the difficulties and 

challenges for locating faults were increased [4]. 

Looking to the future of protection in electrical systems, 

detection, location and fault isolation leading to the restoration 

of the service are pillars for distribution systems, open space for 

devices that operate in a self-healing mode [5]. In the past, 

many fault location methods have been developed, some of 

them based on the apparent impedance calculation. Although 

their accuracy is affected by problems such as high impedances 

and fault inception angles, these methods are still in use [4]. 

On the other hand, travelling wave-based location 

techniques have proven to be efficient in the current context of 

distributed systems [6], which is represented by constant 

modification of the system load profile and diversification of 

the network topology [7]. Considering the advances in 

technology, modern travelling wave recorders are capable of 

operating with high sampling rates (between 1.25 MHz and 20 

MHz), digital signal processing, synchronization and data 

exchange. Thus, these meters allow fault locators based on the 

travelling wave theory to overcome barriers, aiming to 

consolidate this kind of meter in the market [8]. 

However, it is worth mentioning that distribution systems 

have branches and shunt loads that poses an even greater 

challenge for fault locators due to the problem of multiple 

estimation [9]. Recently, many authors have sought new 

methods to reduce this problem, as proposed in [10] and [11]. 

The methodology proposed in both studies made use of the 

concept of low voltage zones, which is based on voltage 

measurements and fault location estimation using the system 

impedance matrix. The proposed approach used several meters 

in the system and an adaptive threshold, based on the 

calculation of the apparent impedance, associated with the fault 

distance to indicate regions of voltage sag, and thus reduce the 

problem of multiple locations of the fault. 

Other studies proposed to reduce multiple estimation regions 

based on data mining [12], [13], which received the voltage and 

current signals recorded by smart meters. Based on the 

extracted signals, a feature vector was created that helped to 

define the relationship between the missing events and the 

regions. 

As an alternative to the methods presented for multiple 

estimation reduction, the approach proposed by [9] made use of 

only one phase involved in the fault. This approach used 

positive sequence components and an adaptive threshold to 

reduce regions of multiple faults. Furthermore, the authors 

analyzed the behavior of the methodology as a function of the 

reduction in the number of meters. 

As a solution to the difficulties encountered in the related 

literature, this article proposes an application of a fault location 
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technique based on travelling waves together with decision 

trees to determine the distance and region of the system under 

fault, respectively. The location technique adopted made use of 

signals recorded through meters, allocated at the ends of the 

system. On the other hand, multiple estimation mitigation made 

use of data from a virtual meter positioned in the substation and 

connected meters at the ends of the system. These data were 

delivered to a set of specialized classifiers in each type of fault. 

It is also worth mentioning that each classifier is responsible for 

a region of the system. 

In short, the contributions of this work are as follows: 

 applicability of the technique of locating faults based on 

travelling waves for distribution systems; 

 proposal of the necessary structure for fault location in 

distribution systems, from the stage of data acquisition, 

precise calculation of the fault location, as well as the 

mitigation of the multiple estimation problem; 

 mitigation of the multiple estimation problem using 

machine learning algorithms. 

The work is organized as follows. Section II presents the test 

system and details about the simulations performed. Section III 

presents the complete structure and steps for online and offline 

execution of the proposed methodology. The results with 

discussions are presented in Section IV. Finally, the 

conclusions are presented in Section V. 

II.  MODELLED AND SIMULATED RADIAL DISTRIBUTION 

SYSTEM 

Fig.1 presents the first test system based on the CIGRE 

electrical distribution system (topology I), which is inspired by 

a real distribution system located in southern Germany. This 

system consists of a balanced and symmetrical medium voltage 

network, composed by two 20 kV feeders (T1 and T2) and 14 

buses. For the execution of this study, this system was modeled 

in the PSCADTM/EMTPTM software and adapted to operate at a 

frequency of 60 Hz to meet the Brazilian context. Thus, all 

parameters of the system lines, represented for the frequency of 

50 Hz, were recalculated to adjust the frequency of 60 Hz. 

Meters were allocated at the ends of the feeders, called M1 to 

M6, to collect the system operation data. 

In addition, the CIGRE system was segmented into 5 non-

overlapping regions (S1 to S5). These areas are important for 

the multiple estimation mitigation process. 

III.  PROPOSED METHODOLOGY 

In this section, details of the proposed methodology for 

locating the fault and mitigation of the multiple estimation of 

faults are presented, which can be visualized in Fig. 2. It is 

worth mentioning that the stages for fault detection and 

classification were not implemented in this work, as some 

approaches in the literature present high precision for these 

tasks [14], [15]. 

A.  Data acquisition 

In this stage, in accordance with [3], the signals were 

sampled at a frequency of 12 MHz and each meter recorded 

voltages and currents of all phases of the system. Following 

this, the recorded signals were stored in a database accessed for 

the offline step execution. It is important to mention that due to 

the fact that the fault locator required measurements from two 

terminals, it was considered that the meters were synchronized 

by a GPS (Global Positioning System). Furthermore, in this 

measurement strategy, the meters must be allocated at the 

substation and at the end of each branch. 

 

 

Fig. 1.  One-line diagram showing the first test system and division of 

regions (topology I). 

 

Fig. 2.  Flowchart representative of the proposed methodology. 

B.  Fault detection and classification 

The latest methodologies adopted for fault detection and 

classification were based on intelligent algorithms. These steps 

can be performed directly on the relay and implemented 

according to [14] and [15]. Considering that the fault detection 

rate reached in these papers is 99.9%, the models implemented 

in this paper did not use data representing non-fault situations. 

C.  Fault distance estimation 

This subsection details the steps taken to estimate the 

distance from the fault using two terminals. Fig. 3 describes the 



steps performed in this process. 

1) Modal Transformation: in distribution systems, signals 

are best observed by decoupling phases into modal components, 

adopting the modal transformation technique. Modal 

transformation allows the three-phase system to be treated as a 

system with three single-phase circuits using the three 

decoupled modes - ground mode (mode 0) and two aerial 

modes (α and β modes) - each with its own characteristics [6]. 

 

 

Fig. 3.  Flowchart representing the steps performed to estimate the distance 

of the faults. 

The modes were obtained by (1), which were a 

transformation matrix applied to three-phase systems: 
 

[
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where 𝑉0 , 𝑉α  and 𝑉β  are modal vectors of voltage and 𝑉a , 

𝑉b and 𝑉c the voltage phase vectors. 

The propagation speed for each mode was calculated by (2), 

as demonstrated in [1]: 
 

𝑣 =
1

√𝐿𝐶
 ,  (2) 

 

in which 𝐿 and 𝐶 are obtained from the series impedance and 

shunt capacitance of the sequence components used to represent 

the electrical system. 

2) Time instant detection: the Wavelet transform is widely 

accepted for a great variety of signals that are not periodic and 

that may contain sine signals and impulsive signals, a common 

feature in electrical power systems. Thus, the application of 

Wavelet to locate faults in electrical systems is adequate, 

because it can measure the time instants of the reflections of the 

travelling waves generated during a fault [1], [3]. 

In practice, the Wavelet transform entails grouping pairs of 

filters (low pass and high pass) at each scale step. These steps 

can be considered as successive approximations of the same 

function, where each approximation details information from a 

given frequency range. This successive filtering process is 

called Multi-Resolution Analysis. 

To detect the arrival time of a travelling wave, each instant 

of the signal was analyzed with a threshold, established by 

means of the comparison with the maximum value of the detail 

coefficients, for each meter, from a signal in a steady-state 

situation. To detect the correct time, the value established for 

the threshold was increased by 10%. Depending on the network 

noise level, the time obtained was the maximum value of the 

signal in up to 24 samples after considering the threshold. In 

this technique, only the time instant of arrival of the first wave, 

reflected in each of the two terminals, was detected. 

3) Fault distance estimation: after detecting the highest 

value using the threshold established to the terminal meter A, 

the same procedure was repeated with the signal recorded by 

the other meter (B). These instants were denoted as Ta and Tb, 

as presented in Fig. 4 for a fault case. 

 

 

Fig. 4.  Detection of the time instants of the reflected waves. 

After detecting the time instants, the delay was calculated 

using (3): 
 

𝑇𝑑𝑒𝑙𝑎𝑦  =  𝑇𝑏 − 𝑇𝑎 ,  (3) 
 

Thus, the distance by the travelling wave was calculated and 

subtracted from the total length of the line [1], [2], based on the 

formulation of the distance given by (4): 
 

�̂� =
𝑙 − 𝑉𝑝 × 𝑇𝑑𝑒𝑙𝑎𝑦

2
 , 

 

(4) 

in which �̂� is the estimated distance from the fault (in meters); 

𝑉𝑝 is the wave propagation speed in the stretch for α mode 

(in m/s); 𝑙 is the length of the section covered by the meter 

(in meters); 𝑇𝑑𝑒𝑙𝑎𝑦  is the time difference between the 

measuring terminals (in seconds). 

D.  Determining possible fault regions 

From the distance of the fault, estimated by the locator, it 

was possible to determine in advance in which possible regions 

of the system the fault could have occurred. Considering the 

one-line diagram of Fig. 1, if the fault occurred at 7.5 km from 

the M1 meter, the possible regions of the fault would be 

S2 or S3. 

As presented in the next subsection, each system region had 

a specific algorithm for analyzing the occurrence or not of a 

fault. Therefore, based on the distance estimated by the fault 

locator, a pre-selection of possible faulted regions was 

performed. Thus, only the expert algorithms of the sensitized 

regions were activated. Furthermore, if no fault occurred, the 

algorithms were kept on standby. 



E.  Mitigation of multiple estimations 

This subsection presents the methodology used to deal with 

the problem of multiple estimation. As seen before, the 

presence of branches in distribution systems leads to a greater 

difficulty in dealing with the exact fault location. In order to 

address this problem, this article presents an approach based on 

decision trees that complements the fault locator response by 

identifying the faulted region, as illustrated in Fig. 5. 

 

 

Fig. 5.  Flowchart of multiple estimation mitigation routine. 

1) Pre-processing: to perform this subroutine, the voltage 

and current signals presented by a virtual meter were 

considered, which emulates the behavior of a real meter 

positioned at the substation. By applying Kirchhoff’s laws, the 

voltages and currents were obtained at a point of interest of the 

system. In addition to the virtual meter data, voltage and current 

data originating from real meters located at the ends of the 

system, downstream of the substation, were considered. 

Moreover, the application of a down-sampling step in the 

acquired signals was considered to adjust the sampling to 

256 samples/cycle (15,360 Hz), and thus contribute to reducing 

the computational burden of this subroutine. 

From the voltage and current signals obtained by the meters, 

the zero sequence components were obtained, represented by 

𝑉0  and 𝐼0 , respectively. Afterwards, the superimposed 

components were calculated involving the voltages and 

instantaneous currents of each of the phases (Va_sup , Vb_sup , 

Vc_sup , 𝐼a_sup, 𝐼b_sup and 𝐼c_sup) and zero sequence voltages 

and currents (V0_sup, I0_sup), only for the virtual meter. These 

calculations, represented by the difference between the post- 

and pre-fault signals, reduce the impact on the system against 

the loading variations [16]. 

In addition, to reduce the influence of high frequency 

transients on the calculation of superimposed components, the 

second signal cycle prior to the beginning of the fault was 

considered as a pre-fault and the third signal cycle after the fault 

as a post-fault. 

Afterwards, features of the previously presented signals 

were extracted. Thus, the features proposed in [17] were 

extracted, as follows: 

 Based on statistics: Harmonic Mean (Mh), Standard 

Deviation (SD), Mean Deviation (Dm) and Kurtosis (K); 

 Based on the amount of signal information: 

Entropy (S), Shannon Entropy (Es) and Rényi 

Entropy (Er); 

 Based on signal amplitude: Root mean square (VRMS), 

Peak value (Vp), and Difference between maximum and 

minimum window (Dmm). 

Finally, the ratio of the voltage and phasor current of each 

phase was performed to represent the apparent post-fault 

impedance ( Żapp ); and the ratio between the superimposed 

phase voltage and current, to represent the apparent overlapping 

impedance of the system (Żapp_sup). Each of these features was 

separated into real (R) and imaginary (X) to represent the data 

delivered to the intelligent algorithm. 

2) Identifying the fault region: in this study the machine 

learning algorithm known as Extra-Tree-Classifier (or known 

as Extremely Randomized Trees Classifier) was used [17], 

which is capable of dealing with classification problems. This 

algorithm created Decision Trees at random, combining the 

results of each tree to find the final decision. A Decision Tree 

has a structure similar to a flowchart, hierarchically structured 

and comprising a set of interconnected nodes. For each data 

sample presented for the tree, each internal node performs a 

conditional test of the type "if <condition>, then ...; else ...", to 

determine an output response [19]. 

As presented later, the reference distribution system of this 

study was divided into regions. The proposed algorithm had the 

task of identifying the region of the system in which the fault 

possibly occurred, thus mitigating multiple estimations. To do 

this, the problem was modeled as a binary case, in which class 1 

represents the occurrence of the fault in each region and class 0 

to non-occurrence. For each type of fault an ensemble of Extra-

Trees was established, in which each of them was responsible 

for a region of the system. 

The classifiers were implemented in Python language using 

the ExtraTreesClassifier function of the Scikit-Learn library. 

The algorithms were configured to operate with unbalanced 

database and with a number of estimators equal to 100. 

For training and validation of the proposal, 2,484 fault cases 

were simulated in the PSCADTM/EMTDCTM. Based on these 

cases, a 10-fold cross-validation [20] was performed to train 

and validate the models, while 30% of the data were used to test 

them. More details about the simulated cases are presented next. 

F.  Simulation of fault conditions for topology I 

To validate the present work, the study was divided into two 

parts, namely: (i) estimation of the fault distance and 

(ii) mitigation of multiple estimations. To analyze the 

performance of the fault locator, LG, LL, LLG and LLL faults 

were considered, distributed into 10, 25, 40, 50, 75 and 90% of 

the length of each section of the system. The fault resistances 

ranged from 0, 10 and 25 Ω and the fault inception angles were 

0, 45 and 90°. 

On the other hand, in order to analyze the mitigation of 

multiple estimation of faults, the same types of faults were 



considered, which were applied in the regions S1 to S5 in 

distances of 100 in 100 meters for each section, with fault 

resistances randomly varying between 0.001 and 30 Ω and with 

fault inception angles ranging randomly between 0° and 100°. 

These parameters were adapted from [21]. 

G.  Performance evaluation metrics 

In this study, only the estimated distance from the fault was 

adopted as a metric to evaluate the behaviour of the fault 

locator. Therefore, the relative error (5) was calculated by:  
 

𝐸𝑟𝑟𝑜𝑟𝑟𝑒𝑙  [%] =
𝐷 − �̂�

𝑙
× 100 (5) 

 

where 𝐷  is the actual distance from the fault. However, in 

order to obtain an overview, the average percentage error was 

still considered. 

To evaluate the performance results of each classifier used 

to mitigate the multiple estimation, individually for each region, 

the use of confusion matrices was considered [22]. Through a 

confusion matrix, the number of false positives (FP), false 

negatives (FN), true positives (TP), and true negatives (TN) 

resulting from the classification process for the test data were 

reported and compared. Given this information, the accuracy 

(Acc) of the model was calculated, according to (6): 
 

𝐴𝑐𝑐 [%] =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100 (6) 

   

Additionally, the percentage of multiple estimation 

reduction (R%), proposed by [12], was calculated as follows: 
 

𝑅% =
∑ 𝐷𝑟(𝑛)

∑ 𝐷𝑠𝑚𝑒(𝑛)
× 100, (7) 

 

where 𝑛  is the total number of simulated faults; 𝐷𝑟(𝑛) 

represents the distance between the beginning of the region 

under multiple estimation to the fault location, taking into 

account only the cases in which the faults were correctly located 

by the algorithm; and 𝐷𝑠𝑚𝑒(𝑛) is similar to 𝐷𝑟(𝑛), however, 

considering all the faults correctly located or not. 

IV.  RESULTS 

The results obtained from the proposed methodology 

considering topology I are presented in this section. First, the 

results of the fault locator based on travelling waves are 

analyzed, and then the results of multiple estimation mitigation 

are presented. 

A.  Location of faults 

In all the results presented below, the average relative errors 

for all cases of the fault were considered. Only average errors 

were considered to evaluate the performance, as the location 

techniques based on travelling waves are robust and have 

virtually no considerable influences for inception angles and the 

resistances of the fault. 

Fig. 6 shows the performance of the locator in relation to the 

distance from the fault occurrence to the meter. Errors were 

higher for faults very close to the meter due to the high 

frequencies resulting from the fault. Considering the pairs of 

meters corresponding to the feeder derived from the 

T1 transformer, the largest errors did not exceed 1.5%. The 

largest error of 2.7% was obtained for the pair of feeder meters 

derived from the T2 transformer. The major errors occurred due 

to the difficulty of detecting the instant time of the first 

wavefront reflected at the location of the fault. Faults applied 

exactly at half the length of the line between the pair of meters 

obtained the smallest errors ranging between 0.04% and 0.36%, 

almost representing an exact location of the fault. 

 

 

 

Fig. 6.  Locator accuracy for different distances from the electrical system 

(topology I). 

 

Another performance analysis of the proposed algorithm 

was carried out for 10 different types of faults, which were 

applied in all pre-established distances, prioritizing the 

relationship of the probability of occurrence and severity 

provided by the fault of the electrical network. The result of the 

algorithm's performance in relation to the type of fault is 

observed in Fig. 7. 

The greatest influences occurred for LG and LLG faults. The 

biggest errors were 1.09% and 1.03%, for LG and LLG faults, 

located by the M5-M6 meter pair. The smallest errors were 

0.52% and 0.53% in LL and LLL faults. Although the largest 

error obtained was 2.7%, the results validate the fault locator 

when used in distribution systems with radial topology, that is, 

for a scenario that presents greater complexity when detecting 

time instants of the travelling waves. 

 

 

Fig. 7. Locator accuracy in relation to the type of fault (toplogy I). 

B.  Mitigation of multiple estimations 

Unlike the estimation of the fault distance, the sub-routine 

for mitigating multiple fault estimation is a stochastic process 

that needs to go through a learning stage. This subroutine was 

performed to identify in which region of the system the fault 

occurred. Figures 8 to 11 show the individual performance of 

each classifier for a given region and type of fault. "F" indicates 

the presence of a fault in the region, while "NF" indicates the 

absence of a fault. The first element of the matrix (TP) denotes 



that there was a fault in the region and the estimator correctly 

identified it as such. The second element (FP) denotes that there 

was no fault in the region, but the estimator incorrectly 

identified it as faulty. The third element (FN) denotes that there 

was a fault in the region, but the estimator failed to identify it. 

The fourth element (TN) denotes the absence of a fault in the 

region and the estimator correctly identified it as such. 

 

 

Fig. 8.  Results for fault Line-Ground. 

Observing the results for single-phase faults, represented in 

Fig. 8, it can be observed that the classifiers individually 

achieved an average accuracy of 95.1% to indicate whether a 

fault occurred (class 1) in a given region of the system. For 

regions S2, S3 and S4, for example, the accuracies found for TP 

were 92.7%, 87.3% and 90.7%, respectively. Moreover, in 

relation to TN (no occurrence of fault in the region), the 

classifiers individually reached accuracies between 99.3% and 

100% for single-phase faults, highlighting the results attributed 

to regions S1 and S5, with performances equal to 100%. 

Concerning biphasic faults (Figures 9 e 10), the 

performance was quite similar to the scenario of single-phase 

faults. In general, the accuracies varied within the range of 

99.3% and 100% for the identification of TN and 80.6% and 

100% for TP regarding non-grounded biphasic faults; and 

accuracies between 99.2% and 100% for TN and between 

87.8% and 100% for TP regarding grounded biphasic faults. 

Therefore, it can be concluded that the absence of ground in 

biphasic faults implied in a subtle reduction in the performance 

when identifying the faulty region, especially concerning 

regions S3 and S4. 

 

 

Fig. 9.  Results for fault Line-Line 

The individual results of the classifiers for three-phase faults 

are presented in Fig. 11. For TN identification, accuracies 

between 99.4% and 100% were achieved; while for TP 

accuracies, they were between 91.3% and 100%. 

Although the aforementioned results indicate a high 

accuracy, they only show the individual performance of each 

classifier for a given faulty region. Above all, the main scope of 

this work is to indicate in which of the regions of the system the 

fault occurred. The performance obtained specifically for each 

type of fault is shown in Fig. 12. 

 

 

Fig. 10.  Results for fault Line-Line-Ground. 

 

Fig. 11.  Results for fault Line-Line-Line. 

Based on the mitigation results (Fig. 12), an average 

accuracy of 88.7% was obtained in the correct identification of 

the fault region. Among the four types of faults tested, there was 

a higher identification accuracy for LLL faults (92.6%) and a 

lower accuracy for LG faults (85.6%). 

 

  

Fig. 12. Multiple estimation mitigation results for topology I. 

It is important to note that the unmitigated faults, indicated 

in Fig. 12 represent the cases in which the algorithm either 

indicated more than one region as a fault location or did not 

indicate any region even if there was a fault in any of them. For 

LG type faults, for example, 11.4% of these were not identified 

in the regions subject to multiple estimation and 1.0% returned 

with more than one indicated region. In the case of LLG faults, 

13.9% were not identified and 0.5% with more than one region 



indicated. For LL faults, 9.8% were not identified and 1.2% 

obtained more than one indicated region. And for LLL faults, 

6.5% of faults were not identified and 0.9% showed more than 

one identified region as output (Table I). 

Furthermore, Table II presents the evaluation of the results 

using the R% metric. LLL faults continue to represent the cases 

in which there was the greatest reduction in the multiple 

estimation (93.5%), while the LLG had the lowest reduction 

(85.9%). 
TABLE I 

RESULTS IN TERMS OF NON-IDENTIFICATION OF REGION UNDER FAULT OR 

UNMITIGATED MULTIPLE ESTIMATION FOR TOPOLOGY I. 

                    Fault 

Type of problem 
LG LLG LL LLL 

No region identified 11.4% 13.9% 9.8% 6.5% 

Multiple regions identified 1.0% 0.5% 1.2% 0.9% 

 
TABLE II 

MITIGATION RESULT IN TERMS OF R% FOR TOPOLOGY I. 

Fault type LG LLG LL LLL 

R% 89.7 85.9 90.0 93.5 

 

Finally, it is important to comment that, despite different 

approaches and test distribution systems, the results are in line 

with those obtained in [9], [12] and [11]. While the present 

study reached an average percentage reduction value (R%) of 

89.8%, the work by [9] obtained an average reduction value of 

91.9%. Regarding [12], the average percentage of reduction 

achieved was 94.2%. However, no cross-validation technique 

was applied to verify the robustness of the proposed approach. 

In [11], in turn, the R% calculated by [9] showed that the 

average percentage of reduction was less than 80%, which was 

much lower than the performance attained in this study. 

V.  TESTS FOR A DIFFERENT TOPOLOGY 

In order to validate the reliability of the proposed 

framework, the methodology was implemented in a second 

topology for the distribution network shown in Fig. 13 

(topology II).  

 

Fig. 13.  The second test system and division of regions (topology II). 

This system differs from the one in Fig. 1 due to the presence 

of an extended branch belonging to zone S4 and the meters were 

relocated at the ends of each branch. 

Tests were carried out considering faults to the new 

topology, varying fault resistances and angles. The location 

methodology using two terminals achieved better performance 

in fault location for topology II. This can be observed in Fig. 

14, where faults applied in a branch with 20.1 km between 

meters M1-M4 in the system of Fig. 2 (topology II) presented 

more accurate calculations of the fault distance if compared to 

the pair of M1-M4 in topology I (Fig.1).  

 

Fig. 14.  Fault location errors for topologies I and II considering meters M1-

M4. 

The performance in topology II reached a fault location 11% 

better than in topology I, and for faults located near the middle 

of the line, the error was almost zero. It should be noted that for 

the methodology adopted, the greatest difficulty lies in locating 

faults near the meters due to the difference in propagation time 

between the meters. Furthermore, other combinations of meter 

pairs (different from M1-M4 mentioned) did not show 

significant variations from the values depicted in Fig. 6 for 

different fault locations. 

Regarding the problem of multiple estimation, it is worth 

noting that changing the system topology did not have any 

adverse effect on the algorithm's performance, as shown in Fig. 

15. The results of the conducted tests indicate that an accuracy 

rate of over 92.3% was achieved in correctly detecting the fault 

zone, which is higher than the value obtained for topology I. 

Furthermore, it can be observed that the best and worst 

detection performances were still found for LLL and LLG 

faults, respectively. Detailed results of the mitigation are shown 

in Table III.  

 

 

Fig. 15. Multiple estimation mitigation results for topology II. 

 



The results based on the R% metric are presented in Table 

II. It is worth noting that the values obtained are similar to those 

found for topology I. Only a slight increase of approximately 

3% was noted for LG, LL, and LLL faults, and a 1.1% increase 

was observed for LG faults. 

 
TABLE III 

RESULTS IN TERMS OF NON-IDENTIFICATION OF REGION UNDER FAULT OR 

UNMITIGATED MULTIPLE ESTIMATION FOR TOPOLOGY II. 

                    Fault 

Type of problem 
LG LLG LL LLL 

No region identified 8.0% 11.4% 6.8% 2.6% 

Multiple regions identified 0.2% 1.2% 0.3% 0.2% 

 
TABLE IV 

MITIGATION RESULT IN TERMS OF R% FOR TOPOLOGY II. 

Fault type LG LLG LL LLL 

R% 92.2 87.0 92.9 96.9 

VI.  CONCLUSIONS 

This article proposed an application of a fault location 

technique based on travelling waves for radial distribution 

systems together with decision trees to determine the faulty 

region of the system, respectively. To do this, a methodology 

was proposed that integrates the accuracy of a fault locator 

based on travelling waves with an ensemble of decision trees 

responsible for identifying the faulty region with high precision 

and, consequently, mitigate the problem of multiple estimation. 

Unlike the approaches found in the literature, a virtual meter 

was considered and allocated in the substation to obtain the 

voltage and current signals used as inputs (followed by a feature 

extraction stage) of the multiple estimation mitigation 

technique. Considering the results, it was observed that the 

proposed approach was able to locate the faults precisely, 

mitigating the problem of multiple estimations. It is important 

to mention that the method presented in this work can be 

adapted to different topologies. For each analyzed system, it is 

essential to divide the previous segmentation into non-

overlapping regions. Then, for the multiple estimation method, 

the decision tree model for each region should be retrained, 

considering the information collected by the meters installed at 

the ends of each branch. 
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