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Abstract—This paper presents a new modeling approach based
on idempotent decomposition of the nodal admittance matrix for
representation of cables and overhead lines (OHL). By subjecting
the idempotent matrices rather than the nodal admittance
matrix to rational fitting, the poor observability of the smallest
eigenvalues in the lower frequency range is overcome. Unlike
the well-known method of characteristics (MoC), this alternative
representation yields a so general fully-coupled admittance
matrix suitable to tackle scenarios encompassing short and
long lengths. Besides retaining the frequency dependence of
parameters, the proposed phase-domain model showed to be
accurate and suitable to circumvent the requirement of small
time-steps.
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I. INTRODUCTION

THE field of cable modeling is an important research
topic regarding simulation of electromagnetic transients

(EMT). As a key enabler for integration of renewable energy
resources, cables and overhead lines, hereinafter referred as
lines, play an important role which requires accurate and
efficient numerical models.

Time-domain solvers employ MoC-based models to
evaluate traveling wave phenomena and several contributions
have been proposed to overcome issues in modal-domain
[1]–[11] and phase-coordinates [12]–[16]. Numerical stability
is reported as a concern since large residue-pole ratios
cause magnifications of interpolation errors leading to
unstable time-domain simulations [17]–[20]. The influence
of earth-return effects has receiving significant contributions
since most parameter routines embedded in EMT-like software
are based on conservative simplifying assumptions.

Simulations involving short line lengts require very
small time-steps which increase the computation burden
substantially. Some efforts addressed this problem [21], [22]
but it has been traditionally coped by cascading π-sections
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which precludes frequency dependent effects. To circumvent
inherent issues related to MoC-based modeling, an alternative
formulation exploits the nodal admittance matrix Yn [23], [24]
which relates the terminal voltage and current in the frequency
domain. It imposes no constraint due to the cable length, phase
conductor arrangment or circuits running in parallel. However,
the direct fitting of Yn results in inaccurate characterization
of the smallest eigenvalues in the lower frequency range. The
so-called folded line equivalent model [25] addressed this issue
through a similarity transformation in Yn by decomposing
it into open-circuit and short-circuit contributions in the
phase-domain. Another distinct approach called Bergeron-cells
[26] has been proposed for frequency-dependent modeling of
transmission lines employing a cascade of cells in a similar
fashion as in the cascaded π modeling. This methodology
avoids the modal decomposition either in the identification
and time-domain realization stages.

Commonly used in linear algebra, also known as spectral
decomposition, the idempotent decomposition is a technique
to decompose a given matrix into a sum of elementary
matrices that, when multiplied by itself, produces itself again
[27]. To the best of the author’s knowledge, the first use of
idempotents in power systems is reported to Prof. Wedepohl’s
lecture notes [28]. Then, the idempotent decomposition
was firstly proposed in the rational approximation of H
in phase-coordinates for overhead lines [29]. Contrary to
the modal domain transformation, it represents a linear
transformation on idempotents instead of eigenvectors [30],
[31]. Later, the feasibility of applying idempotents for a
full-frequency dependent line model using the MoC was
investigated in the analysis of underground cables and
overhead lines [32]. However, it was found that the accuracy
is dependent on the number of circuits running in parallel due
to coupling effects. In a similar way, this paper investigates
the concept of idempotents as a similarity transformation
for decomposition of Yn into the sum of products of
idempotent matrices to overcome numerical issues related
to low observability of eigenvalues for phase-coordinates
modeling. Due to the fully-coupled structure of the admittance
matrix, it is foreseem the aplicability of this approach to
represent cables and overhead lines in real-time or multi-scale
simulations [33] to tackle short and long lengths.

This paper is organised as follows: Section 2 presents
the available formulations to derive a wideband model for
EMT computations. Section 3 presents the idempontent
decomposition and how it can be implemented to allow the
interface with time-domain solvers. In Section 4, the proposed



formulation is validated through comparison with standard
time-domain simulations. Finally, Section 5 presents the main
conclusions.

II. TIME-DOMAIN MODELING

A. Method of Characteristics (MoC)

Time-domain solvers resort to MoC models to represent
cables in transient studies. Also known as traveling-wave
method, it is based on propagation parameters given by the
characteristic admittance Yc and the propagation function
H. It consists the full representation of the distributed
nature of transmission line impedances together with the skin
effect and earth-return path influence. The formulation in the
frequency-domain is given as follows [34]

Ik = YcVk −H [YcVm + Im] (1a)
Im = YcVm −H [YcVk + Ik] (1b)

where Yc is the characteristic admittance and H is the
propagation function given by

Yc = Z−1
√
ZY

H = exp
(
−ℓ

√
YZ

) (2)

in which Z and Y are the series impedance and shunt
admittance matrices per unit length and ℓ is the line length. The
time-domain counterparts obtained by means of convolutions
are given by

ik = yc ∗ vk − h ∗ [yc ∗ vm + im] (3a)
im = yc ∗ vm − h ∗ [yc ∗ vk + ik] (3b)

as yc and h are the unit impulse responses of Yc and H, vk,
vm, ik and im are the terminal voltages and injected currents
and the symbol ∗ indicates convolution. The implementation
of MoC-based models requires Yc and H matrices to be
subjected to a rational approximation. Even though the
resulting approximation correspond to a passive rational model
within a user-defined band, numerical issues still might occur
[17], [18], [35].

B. Nodal Admittance Matrix

The modeling through the nodal admittance matrix Yn in
the frequency domain provides a more compact form without
the requirement to handle Yc and H matrices in an explicitly
way. After subjected to a rational approximation, Yn presents
the following form

Yn(s) ≈
M∑

m=1

Rm

s− pm
+D (4)

where pm is a set of common poles, either real or complex
conjugate, Rm is the residue matrix and D is the real part of
of Yn at infinite frequency.

Let a cable consisting of n phases or metallic conductors,
Yn is given by

Yn(s) =

[
Ys Ym

Ym Ys

]
(5)

where Ys and Ym are n× n block matrices defined by

Ys = Yc

(
I+H2

) (
I−H2

)−1
(6a)

Ym = −2 Yc H
(
I−H2

)−1
(6b)

and I is an n×n identity matrix. The direct fitting of Yn often
results in inaccurate characterization of small eigenvalues
at low frequencies as a consequence of a large eigenvalue
ratio. This common issue can be overcome resorting to
the the Modal Vector Fitting (MVF) [36], even though the
computation time can be substantial, or to the Mode-Revealing
Transformation (MRT) [37] or Folded Line Equivalent [25]
schemes.

III. IDEMPOTENT DECOMPOSITION

As aforementioned, the idempotent decomposition
represents a linear transformation. In [32], the identification
of H matrix was carried out by means of a sum of products of
idempotent matrices as an alternative to the modal grouping
in the original proposition of the so-called Universal Line
Model (ULM) [12]. Here, an eigendecomposition of Yn

is performed instead, resulting in the so-called idempotent
matrices. These matrices are accomplished by the product of
a frequency dependent transformation matrix T, a diagonal
matrix of modes Ym and the inverse matrix of T given by

Yn(s) = T ·Ym ·T−1 (7)

Writing the transformation matrices T and T−1 in terms of
their respective rows ri and columns ci

Yn(s) =
[
c1 . . . cn

] y1 . . .
yn


r1...
rn


Yn(s) = [c1r1] y1 + · · ·+ [cnrn] yn

Yn(s) =

n∑
i=1

Mi yi

(8)

where n is the number of modes and Mi are the idempotent
matrices to be subjected to rational approximation with the
Vector Fitting routine [38]–[41].

Aiming at lowering the order of the rational functions, the
proposition to group idempotent matrices will be employed in
a similar fashion like the grouping routine used in the ULM
approach. Then, the grouping scheme sums up the idempotent
matrices that have eigenvalues exhibiting similar behavior, as
sketched in (9).

Yn(s) = M1 +M2 =

n1∑
i=1

Mi yi +

n∑
i=n1+1

Mi yi (9)

where n1 is the number of modes considered for deriving M1

and the remaining ones are considered for deriving M2. It is
worth mentioning that the time delay extraction is disregarded
since Yn inherits the propagation delays through its block
matrices derived from H. Thus, it is implicitly considered in
the Mi matrices.

For time-domain implementation of the proposed
idempotent model, the procedure is slightly different



from the implementation based on the direct fitting of the
nodal admittance matrix Yn. Since Yn was decomposed
into a sum of independent matrices, the equivalent history
current source should be represented as a set of parallel
current sources associated with each idempotent matrix Mi,
as depicted in Fig. 1. Assuming the grouping scheme yields
two idempotent matrices, one has to update two current
sources separately. Thus, the equivalent source is obtained by
summing both contributions.

g1 his1 ... gn hisn

i(t)

i1(t) in(t)

v

Fig. 1. Time-domain realization of a idempotent line model

A brief discription on the expressions to calculate the history
current source for each idempotent group is provided in
Appendix A.

IV. TEST CASES

The accuracy of the proposed idempotent model is
demonstrated with three test cases, namely:

1) case #1: single-core HVDC submarine cable, 2.5 km
2) case #2: 132-kV overhead line, 10 km

A frequency-domain algorithm based on the Numerical
Laplace Transform (NLT) [42]–[44] is employed for the
sake of validation. Once the whole network is solved in the
complex frequency domain, it can be considered as an accurate
response. The abovementioned user-defined codes and the one
to obtain the nodal admittance matrix were developed with

A. Case #1: HVDC Cable

Let a single core (SC) armoured submarine cable employed
in a VSC–HVDC link [45]. In such applications, the cables
are buried just below the seabed, with depths varying from
1 to 2 m. Here, the burial depth is 1.5 m below the seabed
and the cable is 2.5 km long. The cross-section is depicted in
Fig. 2 and the reader is referred to Appendix B to assess the
main data.

Firstly, the cable parameters were computed in the
frequency range between 0.01 Hz – 1 MHz to extract
the nodal admittance matrix Yn as stated in (5). It was
considered a combination of linearly and logarithmically
spaced frequency samples. Linear sampling provides a good
resolution at low frequencies, while logarithmic sampling
provides better resolution at high frequencies and when the
frequency response of a given system exhibits significant
changes in amplitude. When Yn is subjected to a direct fitting,
a poor observation of the eigenvalues at low frequencies is

R1
R2

R3

R4
R5

R6

ε1

ε2 ε3

Fig. 2. Case #1: 75 kV HVDC submarine cable configuration

observed even with a passived rational approximation of the
original matrix Yn, as shown in Fig. 3 and Fig. 4.

The proposed methodology consists in decomposing Yn

into idempotent matrices and then applying the grouping
scheme of modes with close eigenvalues. Naturally, each Miyi

could be fitted independently, as described in (8), although this
would lead to a considerably larger model. It can be observed
in Fig. 4 two mode groups with distinct behaviour at the
lower frequency range. Thus, we can group their respective
idempotent counterparts to lower the amount of matrices to
be subjected to rational approximation with the VF routine.

In this example, the eigendecomposition of Yn yields six
eigenvalues or modes and it was possible to reduce the
six idempotent matrices into two equivalent groups, namely,
M1 and M2. Fig. 5 shows the elements of each matrix
and the resulting pole-residue model with 70 and 90 poles,
respectively, is presented in Fig. 6.
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Fig. 3. Case #1: Rational fitting of Yn
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Fig. 4. Case #1: Eigenvalues of Yn
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Fig. 5. Case #1: Idempotent matrices

To evaluate the accuracy of the proposed idempotent model
in the time-domain with the NLT algorithm, a voltage source
is ramped up linearly to 1 V in 50 µs at the core conductor
as depicted in Fig. 7. To obtain a more oscilatory waveform,
the sheath and armour conductors are bolted together and left
ungrounded at both terminals. A time-step of ∆t = 5 µs
is assumed. The simulated core and sheath voltages at the
receiving end are shown in Fig. 8 and the validation is done
with the results obtained with the NLT algorithm. In a similar
fashion, the current in the core conductor is shown in Fig. 9
and again a very accurate match is attained.
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(a) Fitting of M1
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(b) Fitting of M2

Fig. 6. Case #1: Fitting results (HVDC submarine cable)
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Fig. 7. Case #1: Circuit for time-domain simulation

B. Case #2: Overhead Line

The versatility of the idempotent model is to be verified
by assessing the modeling of an overhead line (OHL). The
simulation comprises a 10 km untransposed line while the
ground wires are assumed continuously grounded [46], as
shown in Fig. 10.

For this configuration, which presents a natural resonance
frequency around 7.5 kHz, a combination of linearly and
logarithmically spaced samples in the frequency range between
0.01 Hz – 150 kHz was considered to extract the nodal
admittance matrix Yn. The idempotent decomposition was
then performed and the grouping scheme resulted in two
idempotent matrices M1 and M2. The resulting rational
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Fig. 10. Case #2: 132-kV transmission line geometry

models were achieved with 60 and 50 poles for M1 and M2,
respectively, as shown in Fig. 11.

Fig. 12 shows the case representing a single-phase
energization where the OHL receiving end is open-cirtuited.
It is assumed a short-circuit reactance behind the voltage
source. The simulated voltage at terminal #4 is presented in
Fig. 13 and the current at terminal #1 is presented in Fig. 14.
Employing a time-step of ∆t = 10 µs, a very accurate match
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Fig. 11. Case #2: Fitting results

is observed without substantial loss of accuracy in comparison
with the NLT algorithm.
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Fig. 12. Case #1: Circuit for time-domain simulation

V. CONCLUSIONS

This paper has introduced a new approach for simulation of
electromagnetic transients involving cables and overhead lines
in phase-coordinates exploiting the fully-coupled structure
of the admittance matrix. Resorting to the idempotent
decomposition, it showed to be a feasible alternative
to circumvent the poor rational fitting of the smallest
eigenvalues of the nodal admittance matrix Yn at the lower
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Fig. 13. Case #2: Receiving end voltage at terminal # 4
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Fig. 14. Case #2: Current at terminal # 1

frequency range provinding accurate time-domain results. The
idempotent model is particularly useful as an alternative to the
well-known MoC-based model to handle time-step constraints
associated with traveling-wave times in the presence of short
and long cable lengths when simulating bulky power systems.
Furthermore, has the benefit of handling highly coupled
arrangements like parallel circuits. It allows to avoid the
replacement of short line lengths by a frequency independent
equivalent π–circuit inasmuch as the frequency dependence
can be taken into account.

APPENDIX

A. State-space realization

Consider a scalar element with the following transfer
function in the frequency domain

I(s) =
r

s− a
V (s) + d V (s) (10)

where V (s) and I(s) are the complex voltage and current, r, d
and a are real. In the time-domain, it is possible to rewrite (10)
as

ẋ(t) = ax(t) + bv(t)

i(t) = rx(t) + dv(t)
(11)

Using either the trapezoidal rule of integration or recursive
convolution leads to the following discrete time equivalent

x(n) = αx(n− 1) + (αλ+ µ) v(n− 1)

i(n) = x(n) + (λ+ d) v(n)
(12)

where the coefficients α, λ and µ are given by (13) if
trapezoidal rule is applied

α =
2 + a∆t

2− a∆t
λ = µ =

r∆t

2− a∆t
(13)

and in the case recursive convolutions are considered

α = exp (a∆t) λ = − r

a

(
1 +

1− α

a∆t

)
µ =

r

a

(
α+

1− α

a∆t

) (14)

The equation in (12) represents a companion network where

i(n) = his(n) + g v(n) (15)

with

his(n) = αhis(n− 1) + c v(n− 1)

g = λ+ d

c = αλ+ µ

(16)

B. HVDC Cable data

TABLE I
CASE #1: SUBMARINE CABLE DATA

Core conductor R1 = 18.95 mm ρc = 1.723 x 10−8 Ω.m
First insulation layer R2 = 28.95 mm ε1 = 2.5

Sheath R3 = 30.65 mm ρs = 22 x 10−8 Ω.m
Second insulation layer R4 = 33.15 mm ε2 = 2.5

Armour R5 = 35.65 mm ρa = 11 x 10−8 Ω.m, µa = 90
Armour insulation R6 = 44.10 mm ε3 = 2.5
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