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1Abstract—In islanded hybrid AC/DC multi-microgrids 
(MMGs), interconnected AC microgrids (ACMGs) can operate 
with their own frequency and power sharing strategy. Hence, to 
formulate the load-flow problem of multi-frequency islanded 
MMGs, conventional single-frequency load-flow approaches are 
not applicable. To this aim, in this paper a novel unified load-flow 
framework for AC/DC hybrid MMGs, is proposed. The principles 
of the proposed method are based on the modified augmented 
nodal analysis (MANA) formulation, which can be utilized for an 
arbitrary number of interconnected multiphase MGs. Then, an 
unbalanced MMG, which includes two ACMGs, one DC MG 
(DCMG), and two interlink converters (ICs), is used to verify the 
validity of the proposed MANA-based formulation. 

Index Terms—Coordinated droop controller, load-flow, 
MANA formulation, multi-frequency, multi-microgrid. 

I. INTRODUCTION

IRECT  integration of renewables, due to their intermittent
nature, can raise several problems in reliability, power
quality and energy efficiency of power grids. MGs can be 

considered as a solution [1], [2]. The most basic duty of MGs is 
to maintain the economic balance of supply and demand by 
energy management systems. However, due to the uncertainties 
in supply and demand sides, the balancing task becomes 
challenging [3]. An interesting solution is based on the 
integration of MGs to create multi-microgrid (MMGs), which 
can address the uncertainties, optimize power sharing, and 
improve system resiliency [3], [4], [5]. In fact, MMGs, due to 
their high number of MGs, are able to satisfy their power 
demand by their own distributed generators (DGs) [5]. They are 
also able to exhibit high self-healing features, in presence of 
faults or outages [6]. To best integrate multiple MGs, 
understanding the benefits, needs, and challenges of networking 
the MGs is an important topic of research and development [7], 
[8].  

Load-flow solutions are used to find the steady-state 
conditions of MMGs for design, control, and operation needs. 
It is possible to find fundamental frequency and harmonic 
steady-state solutions. The fundamental frequency load-flow 
solution using frequency domain equations is a fast approach 
for establishing the initial network conditions with various 
constraints related to conventional generators and converters. 
The aim of this paper is on fundamental frequency load-flow 
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solutions of MMGs, that are essential for the initialization [9] 
of the simulation of electromagnetic transients. Once the fast 
load-flow solution is found, the operational conditions are 
established, and it can be used to start the time-domain 
simulations and support various other initialization methods 
(see [10] and its references, and [11]) for converters, controls 
and nonlinearities, to force the fastest establishment of full 
harmonic steady-state conditions.  

The currently existing load-flow studies of MMGs can be 
divided into two groups. The first group is for MGs connected 
to the main grid as a cluster [12], in which there is not any 
challenge in the load-flow solution. The second group is for 
AC/DC hybrid MGs (HMGs) [13], in which there is only one 
islanded AC subgrid, and hence only one frequency is 
considered as a load-flow variable. In the case of MMGs, each 
islanded AC MG, can have its own frequency and power 
sharing strategy, and depending on the operation modes of 
interlinking converters ICs, there is coupling among their load-
flow variables. Hence, proposing MMG load-flow solutions, 
which can model multiple interconnected islanded MGs, is an 
important contribution. For HMGs, there are two approaches 
for load-flow solutions: sequential and unified. For the 
sequential approaches [14], the load-flow solutions of all HMG 
subsystems, including ICs, AC and DC subgrids are found 
separately, and then additional loops are utilized to achieve 
convergence. Hence, their implementation is complicated for 
MMGs, which have a high number of subsystems. While in 
unified approaches [15], the entire system is modeled and 
solved simultaneously. Hence, the system formulation is of 
great importance to decrease computational complexity. To the 
best of our knowledge, so far, for interconnected islanded 
MMGs, no specific load-flow solution has been proposed in the 
literature. To fill this research gap, in this paper, a unified 
multiphase load-flow solution, which is based on modified 
augmented nodal analysis (MANA) formulation [16], [17], 
[18], [19] is presented for multi-frequency islanded MMGs. 
MANA modeling is component-based, and each component has 
its own variables and constraints. Hence, it is conceptually 
much simpler to assemble MANA equations as compared to 
traditional mismatch equations. Moreover, MANA formulation 
can directly account for circuit-based models such as switches 
and transformers, which is another significant advantage. 
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 It can in fact easily include arbitrary and complex models of 
lines/cables, rotating machines and else. It can be directly used 
for the initialization of transients [9], [18]. The principles of 
MANA-based load-flow solutions of islanded MGs, have been 
presented in [19]. These principles are based on adding new 
types of constraints, such as frequency as a new load-flow 
variable, and adding new droop-controlled constraints of grid-
forming DGs to the MANA-based Jacobian matrix. However, 
in [19], only one MG has been considered, and networking the 
MGs to create MMGs, ha not been considered. In MMGs case, 
there is a network of AC and DC MGs, which are 
interconnected through ICs. Hence, each AC MG would have 
its own frequency considered as a load-flow variable. However, 
due to the presence of ICs, load-flow variables of MGs, would 
not be independent, and need to be solved as a unified load-flow 
problem. This increased complexity adds new challenges. The 
focus of this paper is on MANA-based load-flow solution of 
MMGs and demonstration of new capabilities. The paper also 
contributes a new MMG test system. 

The proposed unified MANA-based load-flow solution of 
MMGs in this paper, can model multiple interconnected 
islanded MGs. It is multiphase and can be utilized for 
unbalanced MMGs. It can be used directly for the initialization 
of transients. It contributes an algorithm with reduced number 
of iterations. It is shown that due to the presence of ICs, there is 
coupling among load-flow variables of the directly and even 
indirectly connected MGs. It is shown that the number of ICs, 
can affect coupling among load-flow variables of different 
MGs. 

This paper is organized as follows. Section II presents the 
proposed formulation and explains how to create the MMG 
Jacobian matrix with its sub-Jacobians. Operation modes of ICs 
and DGs are discussed in Section III. Numerical results and 
comparisons are presented in Section IV.  

II.  PROPOSED FORMULATION 

The proposed MANA formulation of MMGs, is presented 
as: 

 𝑱𝑴𝑴𝑮∆𝑿𝑴𝑴𝑮 = −𝒇𝑴𝑴𝑮 (1) 

where 𝑱𝑴𝑴𝑮 is the Jacobian matrix of MMG, ∆𝑿𝑴𝑴𝑮 includes 
all load-flow variables of MMGs, and 𝒇𝑴𝑴𝑮 is the vector of 
MANA functions (to be minimized) for MMG. Each MMG is 
divided into three types of subsystems: ACMGs, DCMGs, and 
the ICs, and each of them has its own load-flow variables and 
mismatch equations. Hence, (1) can be expanded as: 

 
൥

𝑱𝑨𝑪𝑴𝑮 𝟎 𝑱𝑨𝑪𝑴𝑮ି𝑰𝑪 
𝟎 𝑱𝑫𝑪𝑴𝑮 𝑱𝑫𝑪𝑴𝑮ି𝑰𝑪

𝑱𝑰𝑪ି𝑨𝑪𝑴𝑮 𝑱𝑰𝑪ି𝑫𝑪𝑴𝑮 𝑱𝑰𝑪

൩ ൥

∆𝑿𝑨𝑪𝑴𝑮

∆𝑿𝑫𝑪𝑴𝑮

∆𝑿𝑰𝑪

൩=

቎

𝒇𝑨𝑪𝑴𝑮

 𝒇𝑫𝑪𝑴𝑮

𝒇𝑰𝑪

቏ 

(2) 

where ∆𝑿𝑨𝑪𝑴𝑮, ∆𝑿𝑫𝑪𝑴𝑮 and ∆𝑿𝑰𝑪 include load-flow variables 
for ACMGs, DCMGs and ICs, respectively. 𝒇𝑨𝑪𝑴𝑮, 𝒇𝑫𝑪𝑴𝑮, and 
𝒇𝑰𝑪 represent the minimized functions of ACMGs, DCMGs and 
ICs, respectively. As seen in (2), 𝑱𝑴𝑴𝑮 is composed of several 

block-diagonal sub-Jacobians: 𝑱𝑨𝑪𝑴𝑮, 𝑱𝑫𝑪𝑴𝑮 and 𝑱𝑰𝑪. These are 
the Jacobians of assembled subsystems. The 𝑱𝑨𝑪𝑴𝑮ି𝑰𝑪, 
𝑱𝑫𝑪𝑴𝑮ି𝑰𝑪, 𝑱𝑰𝑪ି𝑨𝑪𝑴𝑮  and 𝑱𝑰𝑪ି𝑫𝑪𝑴𝑮 , are non-diagonal sub-
Jacobians, which represent Jacobian terms of one subsystem, 
with respect to another subsystem. 

A.  ACMG Formulation 

Each ACMG has its own MANA-based nodal and 
component constraints [16]- [19]. For ACMG nodal constraints, 
the AC-side currents of ICs need to be considered. Hence, the 
corresponding Jacobian terms are included in 𝑱𝑨𝑪𝑴𝑮 and 
𝑱𝑨𝑪𝑴𝑮ି𝑰𝑪, which respectively represent derivative terms of AC 
constraints, with respect to ∆𝑿𝑨𝑪𝑴𝑮 and ∆𝑿𝑰𝑪. The ACMG 
variables are defined as: 

∆𝑿𝑨𝑪𝑴𝑮೔
= 

⎣
⎢
⎢
⎢
⎡
∆𝑽𝒏𝑖

∆𝑰𝑳𝑖

∆𝑰𝑮𝒊

∆𝑬𝑮𝑖

∆𝜔𝑖 ⎦
⎥
⎥
⎥
⎤

 

(3) 

where for ACMG௜, ∆𝑽𝒏೔
, ∆𝑰𝑳೔

, ∆𝑰𝑮೔
, ∆𝑬𝑮೔

 and ∆𝜔௜ are AC nodal 
voltages, currents of AC loads, currents of AC generators, 
internal voltages of AC generators and frequency, respectively. 
It is noted that each islanded ACMG, has its own frequency 
variable. Hence, MMGs with multiple islanded ACMGs are 
supposed to be considered as multi-frequency power systems. 
The Jacobian matrix 𝑱𝑨𝑪𝑴𝑮𝒊

 for block i is given by: 

𝑱𝑨𝑪𝑴𝑮௜
=

⎣
⎢
⎢
⎢
⎡
𝒀𝒏೔

𝑨𝑰𝑳೔
𝑨𝑰𝑮೔

𝟎 𝟎

𝑪𝑳೔
𝑫𝑳೔

𝟎 𝟎 𝑨𝑳𝝎೔

𝑪𝑮೔
𝟎 𝑫𝑮೔

𝟎 𝑨𝑮𝝎೔

𝒀𝑮೔
𝟎 𝑩𝑮೔

𝒀𝑮𝑬೔
𝟎 ⎦

⎥
⎥
⎥
⎤

 

(4) 

where, the first-row elements represent the AC nodal 
constraints. Assuming exponential and frequency dependent 
load models, their nonlinear power constraints are included in 
the second row of 𝑱𝑨𝑪𝑴𝑮௜

 . Constraints of different operation 
modes of generators are included in the third row of 𝑱𝑨𝑪𝑴𝑮௜

. 
Internal-voltage constraints of AC generators are included in 
the fourth row. The above coefficient sub-matrices are self-
explanatory (see also [16]- [19]) and include nodal equations 
with nodal admittance matrix 𝒀𝒏೔

 interconnected to load (𝑨𝑰𝑳೔
) 

and generator currents (𝑨𝑰𝑮೔
). The remaining coefficient sub-

matrices present the constraints related to loads and generators. 

B.  DCMG Formulation 

As above, each DCMG has its own MANA-based nodal and 
component constraints. For DCMG nodal constraints, the DC-
side currents of ICs need to be considered. Hence, their 
corresponding Jacobian terms are included in 𝑱𝑫𝑪𝑴𝑮 and 
𝑱𝑫𝑪𝑴𝑮ି𝑰𝑪, which respectively represent derivative terms of DC 
constraints, with respect to ∆𝑿𝑫𝑪𝑴𝑮 and ∆𝑿𝑰𝑪. The DCMG 
variables are: 

∆𝑿𝑫𝑪𝑴𝑮𝒋
=

⎣
⎢
⎢
⎢
⎡
∆𝑽𝒏𝒋

∆𝑰𝑳𝒋

∆𝑰𝑮𝒋

∆𝑬𝑮𝒋⎦
⎥
⎥
⎥
⎤

 

(5) 
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where for DCMG௝, ∆𝑽𝒏𝒋
, ∆𝑰𝑳𝒋

, ∆𝑰𝑮𝒋
 and ∆𝑬𝑮𝒋

 are DC nodal 

voltages, currents of DC loads, currents of DC converters, and 
internal voltages of DC converters, respectively. The sub-
Jacobian 𝑱𝑫𝑪𝑴𝑮𝒋

 represents the derivative terms of DCMG 

constraints. Hence, for block j: 

𝑱𝑫𝑪𝑴𝑮௝
=

⎣
⎢
⎢
⎢
⎡
𝒀𝒏,𝒅𝒄ೕ

𝑨𝑰𝑳,𝒅𝒄ೕ
𝑨𝑰𝑮,𝒅𝒄ೕ

𝟎

𝑪𝑳,𝒅𝒄ೕ
𝑫𝑳,𝒅𝒄ೕ

𝟎 𝟎

𝑪𝑮,𝒅𝒄ೕ
𝟎 𝑫𝑮,𝒅𝒄ೕ

𝟎

𝒀𝑮,𝒅𝒄ೕ
𝟎 𝑩𝑮,𝒅𝒄ೕ

𝒀𝑮𝑬,𝒅𝒄ೕ ⎦
⎥
⎥
⎥
⎤

 

(6) 

where, the first-row elements, represent DC nodal constraints. 
Assuming exponential load models, their nonlinear power 
constraints are included in the second row of 𝑱𝑫𝑪𝑴𝑮௝

. The 

constraints of different operation modes of DC converters are 
included in the third row of 𝑱𝑫𝑪𝑴𝑮௝

. Internal-voltage constraints 

of DC converters are included in the fourth row. The coefficient 
submatrices of (6) are self-explanatory (see also [16]). 

C.  IC Formulation 

ICs, due to their AC-side and DC-side currents, play a role 
in both nodal constraints of ACMGs and DCMGs, which are 
interconnected through them. Hence, their corresponding 
Jacobian terms are included in 𝑱𝑨𝑪𝑴𝑮ି𝑰𝑪 and 𝑱𝑫𝑪𝑴𝑮ି𝑰𝑪. The 
remaining of IC constraints, depending on IC operation modes, 
are affected by their own variables and the variables of their 
neighboring ACMG and DCMG. The IC variables are 
presented as: 

∆𝑿𝑰𝑪ೖ
=

⎣
⎢
⎢
⎢
⎡

∆𝑰𝑰𝑪ೖ
 

 ∆𝑬𝑰𝑪ೖ

∆𝑰𝑰𝑪,𝒅𝒄ೖ

∆𝑬𝑰𝑪,𝒅𝒄ೖ⎦
⎥
⎥
⎥
⎤

 

(7) 

where for ICk, ∆𝑰𝑰𝑪ೖ
 and ∆𝑬𝑰𝑪ೖ

 are AC-side currents and 
internal-voltages, and ∆𝑰𝑰𝑪,𝒅𝒄ೖ

 and ∆𝑬𝑰𝑪,𝒅𝒄ೖ
 are DC-side 

currents and internal-voltages.  

The 𝑱𝑰𝑪௞
 for block k is given by: 

𝑱𝑰𝑪௞
= ቎

𝑫𝑰𝑪ೖ
𝟎 𝑫𝑰𝑪,𝒅𝒄ೖ

𝟎

𝑩𝑰𝑪ೖ
𝒀𝑰𝑪ೖ

𝟎 𝟎

𝟎 𝟎 𝑩𝑰𝑪,𝒅𝒄ೖ
𝑮𝑰𝑪ೖ

቏ 

(8) 

where, the first-row elements, including 𝑫𝑰𝑪ೖ
 and 𝑫𝑰𝑪,𝒅𝒄ೖ

 
represent derivation of constraints with respect to ∆𝑰𝑰𝑪ೖ

 and 
∆𝑰𝑰𝑪,𝒅𝒄ೖ

, respectively. Second row elements, including 𝑩𝑰𝑪ೖ
 

and 𝒀𝑰𝑪ೖ
 are the derivations of AC-side internal-voltage 

constraints, with respect to ∆𝑰𝑰𝑪ೖ
 and ∆𝑬𝑰𝑪ೖ

, respectively, and 
the third row elements, including 𝑩𝑰𝑪,𝒅𝒄ೖ

 and 𝑮𝑰𝑪ೖ
 are the 

derivations of DC-side internal-voltage constraints, with 
respect to ∆𝑰𝑰𝑪,𝒅𝒄ೖ

 and ∆𝑬𝑰𝑪,𝒅𝒄ೖ
, respectively. 

D.  𝑱𝑨𝑪𝑴𝑮ି𝑰𝑪 Sub-Jacobian  

This sub-Jacobian represents derivative terms of ACMG 
constraints, with respect to IC variables. It is presented as 
follows: 

𝑱𝑨𝑪𝑴𝑮೔ି𝑰𝑪ೖ
= ൦

𝑨𝑰𝑪೔,ೖ
𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎

൪ 

(9) 

where, there is only one non-zero sub-matrix 𝑨𝑰𝑪𝒊,𝒌
, which 

represents the role of AC-side currents of IC௞ ൫∆𝑰𝑰𝑪ೖ
൯ in ACMG௜ 

nodal constraints. The remaining rows are zero since the rest of 
IC variables do not play any role in ACMG constraints. 

E.  𝑱𝑫𝑪𝑴𝑮ି𝑰𝑪 Sub-Jacobian 

This sub-Jacobian represents derivative terms of DCMG 
constraints, with respect to IC variables. Hence, the related 
block of each interconnected DCMG௝ and IC௞, is represented by: 

𝑱𝑫𝑪𝑴𝑮ೕି𝑰𝑪ೖ
= ൥

𝟎 𝟎 𝑨𝑰𝑪,𝒅𝒄ೕ,ೖ
𝟎

𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎

൩ 
(10) 

where, there is only one non-zero element 𝑨𝑰𝑪,𝒅𝒄ೕ,ೖ
, which 

represents the role of DC-side currents of IC௞ (∆𝑰𝑰𝑪,𝒅𝒄ೖ
) in 

DCMG௝ nodal constraints. As seen, the rest of rows are zero 
since the rest of IC variables do not play any role in DCMG 
constraints. 

F.  𝑱𝑰𝑪ି𝑨𝑪𝑴𝑮  Sub-Jacobian 

This sub-Jacobian represents derivative terms of IC 
constraints, with respect to ACMG variables. Hence, the related 
block of each interconnected  IC௞ and ACMG௜, is represented 
by: 

𝑱𝑰𝑪ೖି𝑨𝑪𝑴𝑮೔
= ቎

𝑪𝑰𝑪ೖ,೔
𝟎 𝟎 𝟎 𝑨𝑰𝑪𝝎ೖ,೔

𝒀𝑰𝑪ೖ,೔
𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎

቏ 
(11) 

where, the first-row elements, including 𝑪𝑰𝑪ೖ,೔
 and 𝑨𝑰𝑪𝝎ೖ,೔

 

represent derivation of constraints of different operations 
modes of IC௞, with respect to ∆𝑽𝒏೔

 and ∆𝜔௜, and the second-
row element 𝒀𝑰𝑪ೖ,೔

 represents derivation of AC-side internal-

voltage constraint of ICs with respect to ∆𝑽𝒏೔
. As seen, the third 

row has no non-zero elements, since there is no dependency 
among DC-side constraints of ICs and ACMGs variables. 

G.  𝑱𝑰𝑪ି𝑫𝑪𝑴𝑮  Sub-Jacobian 

This sub-Jacobian represents derivative terms of IC 
constraints, with respect to DCMG variables. Hence, the related 
block of each interconnected IC௞ and DCMG௝, is represented by: 

𝑱𝑰𝑪ೖି𝑫𝑪𝑴𝑮ೕ
= ቎

𝑪𝑰𝑪,𝒅𝒄ೖ,ೕ
𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎
𝑮𝑰𝑪,𝒅𝒄ೖ,ೕ

𝟎 𝟎 𝟎
቏ 

 
(12) 

where, the first-row element, 𝑪𝑰𝑪,𝒅𝒄ೖ,ೕ
 represents derivation of 

constraints of IC௞ operations modes, with respect to ∆𝑽𝒏ೕ
, and 

the third-row element, 𝑮𝑰𝑪,𝒅𝒄ೖ,ೕ
, represents derivation of DC-

side internal-voltage constraint of ICs with respect to ∆𝑽𝒏ೕ
. As 

seen, the second row has no non-zero elements, since there is 
no dependency among AC-side constraints of IC and DCMG 
variables. 
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III.  OPERATION MODES OF ICS AND GENERATORS 

Multi-frequency behavior of MMGs, is due to the islanded 
operation modes of ACMGs. However, operation modes of ICs, 
can also affect the coupling among MGs variables. Hence, in 
this paper, for the sake of simplicity, the focus is only on 
coordinated droop control [20] of ICs. This mode is only 
responsible for exchanging the active power, which is a 
function of frequency and DC voltage of respectively AC and 
DC MGs. To make comparisons between frequency and DC 
voltages, which have different scales, they need to be equalized 
using their normalized values. To this aim, both frequency and 
DC voltages are mapped to a common per-unit range. Then, to 
have an equalized power sharing between MGs, the difference 
between the normalized frequency of ACMG௜ (𝜔ෝ௜) and DC 
voltages of DCMG௝ (𝑉෠௡ೕ

), known as ∆𝑒௜,௝ = 𝜔ෝ௜ − 𝑉෠௡ೕ
, is fed to a 

PI controller, which minimizes this difference. Fig. 1 shows the 
coordinated droop controller of ICs in a MMG, including two 
ACMGs and one DCMG, in which 𝑛 and 𝑛ᇱ are respectively 
DC buses which are interconnected to ACMGଵ and ACMGଶ, 
through ICଵ and ICଶ. As seen, each ACMG has its own 
frequency, which is tuned through the coordinated controller of 
the corresponding ICs. Hence, each IC is responsible for 
coordinated load-flow management of its interconnected 
ACMG and DCMG, and for IC௞ which interconnects ACMG௜ 
and DCMG௝, we have: 

𝑃ூ஼ೖ
= 𝑘௔௖ௗ௖ିௗ௥௢௢௣ ቀ𝜔ෝ௜ − 𝑉෠௡ೕ

ቁ  (13) 

where, 𝑃ூ஼ೖ
, for a given IC௞, is the injected active power from 

AC-side to the DC-side, and 𝑘௔௖ௗ௖ିௗ௥௢௢௣ is the droop 
coefficient of the coordinated controller. It is noted that this 
figure can easily be extended to an arbitrary number of MGs. 

1

-1

1

-1

1

-1

1

-1

 
Fig. 1 Illustration of coordinated droop controller of ICs in an MMG including 
two ACMGs and one DCMG. 

 
In this paper, AC and DC generators are all assumed to be in 

their droop-controlled modes. However, PV and PQ operation 
modes can also be included in component constraints of MGs. 
For AC generators of ACMG௜, 𝑃 − 𝜔 and 𝑄 − 𝑉 functions, are 
presented as: 

 𝑃 ା − 𝑃଴ = 𝛼ௗ௥௣(𝜔଴ − 𝜔௜) (14) 

 𝑄ீ
ା − 𝑄଴ = 𝛽ௗ௥௣൫|𝑉଴| − ห𝑉 ାห൯ (15) 

where, 𝑃 ା and 𝑄ீ
ା are respectively positive-sequence active 

and reactive powers of generators, 𝑃଴ and 𝑄଴ are active and 
reactive power set points, which are normally set to zero [21], 
[22], 𝛼ௗ௥௣ and 𝛽ௗ௥௣ are active and reactive power coefficients 
of the droop controller, 𝜔଴ and 𝑉଴ are no-load frequency and 
voltage of droop-controlled generators, which are the nominal 
frequency and voltage of the ACMG௜ [23], [24], and 𝜔௜ and 𝑉 ା 
are also system frequency and output positive-sequence voltage 
of generator of ACMG௜.  

For DC generators, there are two linear 𝑉 − 𝐼 or nonlinear 
𝑉 − 𝑃 droop functions: 

 𝑉஼ௗ௥௣ = 𝑉଴,ௗ௖ − 𝛾஼ௗ௥௣
ିଵ𝐼 ,ௗ௖ , (16) 

 𝑉௉ௗ௥௣ = 𝑉଴,ௗ௖ − 𝛾௉ௗ௥௣
ିଵ𝑃 ,ௗ௖ , (17) 

where, 𝑉஼ௗ௥௣ and 𝑉௉ௗ௥௣ are output voltages of droop-controlled 
generators, for respectively current and power DC droop 
functions, 𝑉଴,ௗ௖ is the no-load  voltage, which is considered as 
nominal voltage of the DCMG, 𝛾஼ௗ௥௣ and 𝛾௉ௗ௥௣ are coefficients 
of respectively current and power droop functions, and 𝐼 ,ௗ௖ and 
𝑃 ,ௗ௖ are output current and power of droop-controlled 
generators [25], respectively.  In this paper, for DCMG, the 
focus is on nonlinear 𝑉 − 𝑃 droop function. 

IV.  RESULTS AND DISCUSSIONS 

In this section, the load-flow results of the proposed MANA 
formulation, are presented for the MMG shown in Fig. 2. This 
MMG includes:  
1. ACMG#1: an unbalanced 25-bus ACMG [26], [27]; 
2. DCMG: a 22-bus DCMG [13], [28]; 
3. ACMG#2: an unbalanced 38-bus ACMG [26], [29]. 

ACMG#1 is a 4.16 kV MG, with three droop-controlled DGs 
located on buses 13, 19 and 25. DCMG is a 7.5 kV MG, with 
four droop-controlled DC generators, located on buses 4, 8, 13 
and 15. ACMG#2 is a 12.66 kV MG, with five droop-controlled 
DGs, located on buses 34, 35, 36, 37 and 38. There are also two 
ICs: IC#1 which interconnects bus 5 of the ACMG#1 to bus 1 
of the DCMG, and IC#2 which interconnects bus 23 of 
ACMG#2 to bus 5 of DCMG.  Both ICs are also assumed to 
operate in their coordinated droop-controlled mode. Details of 
droop coefficients and ratings of generators of ACMG#1, 
DCMG and ACMG#2, and the ICs are summarized in Table I 
to Table  III and Table IV. With the proposed MANA-based 
solution, the load-flow problem converges in only 5 iterations.  

To validate the proposed load-flow formulation, its results 
are verified with the AC/DC hybrid formulation of Newton-
Raphson, with traditional mismatch equations [15], [19]. To 
this aim, the MMG needs to be simplified in two steps: 

- For the first step, ACMG#1, and IC#1, seen from bus#1 
of DCMG, depending on their power direction, are 
modeled as constant power load or generator; and the 
MMG is simplified into a Hybrid AC/DC MG. Hence, 
its load-flow can be calculated by the AC/DC hybrid 
formulation, with traditional mismatch equations. This 
step will converge in 8 iterations. 

- For the second step, ACMG#2, and IC#2, seen from 
bus#5 of DCMG, depending on their power direction, 
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are modeled as constant power load or generator; and 
the MMG is simplified into a Hybrid AC/DC MG, for 
the second time. Hence, similarly, its load-flow can be 
calculated by the AC/DC hybrid formulation, with 
traditional mismatch equations. This step will also 
converge in 8 iterations. 
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Fig. 2 The MMG test system, including ACMG#1, ACMG#2, and DCMG, 
and ICs#1 and 2. 

It is noted that this two-step validation is valid, only when 
the operating point is known. Both methods have the same 
results, hence only MANA-based results are shown in Table V. 
Output power and operation modes of ICs (from AC-side to 
DC-side), and all the DGs of ACMG#1, ACMG#2 and DCMG 
are summarized in Table VI. It is noted that output powers of 
DGs and ICs are not allowed to exceed Q୫ୟ୶ and  S୫ୟ୶ (for AC 
DGs and ICs), and P୫ୟ୶ (for DC DGs), and when  approaching 
the powers to these constraints, auxiliary modes are activated. 
Hence, as seen in Table VI, some DGs are operated in their PQ 
modes. In the following, more details are presented on how 
ACMG frequencies are affected by different MG loading 
factors and the number of ICs. 

TABLE I  
DROOP DATA OF ACMG#1 

 𝑆௠௔௫ 
(𝑀𝑉𝐴) 

𝑄௠௔௫ 
(𝑀𝑉𝐴𝑟) 

𝛼ௗ௥௣ 
(𝑊/(𝑟𝑎𝑑. 𝑠ିଵ)) 

𝛽ௗ௥௣ 
(𝑣𝑎𝑟/𝑉) 

DG#1 4.0 2.4 1.06 × 10଺ 2.88 × 10ସ 
DG#2 2.0 1.2 5.30 × 10ହ 1.44 × 10ସ 
DG#3 4.0 2.4 1.06 × 10଺ 2.88 × 10ସ 

 
TABLE II  

DROOP DATA OF ACMG#2 
 𝑆௠௔௫ 

(𝑀𝑉𝐴) 
𝑄௠௔௫ 

(𝑀𝑉𝐴𝑟) 
𝛼ௗ௥௣ 

(𝑊/(𝑟𝑎𝑑. 𝑠ିଵ)) 
𝛽ௗ௥௣ 

(𝑣𝑎𝑟/𝑉) 
DG#1 3.0 1.8 7.96 × 10ହ 7.11 × 10ଷ 
DG#2 1.5 0.9 3.98 × 10ହ 3.55 × 10ଷ 
DG#3 0.5 0.3 1.33 × 10ହ 1.18× 10ଷ 
DG#4 1.0 0.6 2.65× 10ହ 2.37× 10ଷ 
DG#5 0.5 0.3 1.33 × 10ହ 1.18× 10ଷ 

 
TABLE III 

DROOP DATA OF DCMG 
 DC DG#1 DC DG#2 DC DG#3 DC DG#4 

𝑃௠௔௫ (𝑀𝑉𝐴) 0.50 1.00 0.50 1.00 

𝛾௉ௗ௥௣ (𝑊/𝑉) 3.33 × 10ଷ 6.66 × 10ଷ 3.33 × 10ଷ 6.66 × 10ଷ 

 
TABLE IV 

DROOP DATA OF THE ICS 
 𝑆௠௔௫ (𝑀𝑉𝐴) 𝑄௠௔௫ (𝑀𝑉𝐴𝑟) 𝑘௔௖ௗ௖ିௗ௥௢௢௣ (𝑊) 

ICs 3.0 1.8 1.5 × 10଺ 

 
TABLE V 

LOAD-FLOW RESULTS OF THE PROPOSED MANA-BASED FORMULATION FOR THE STUDIED MMG. 
ACMG#1 DCMG 

Bus No. Phase a Phase b Phase c Bus No Mag. (p.u.) 
Mag. (p.u.) Angle (°) Mag. (p.u.) Angle (°) Mag. (p.u.) Angle (°) 1 0.9900 

1 0.9679 -0.1290 0.9676 -120.1013     0.9683 119.8457 4 0.9926 
5 0.9670 -0.1472 0.9670 -120.1472     0.9670 119.8528 8 0.9875 

10 0.9782 -0.0190 0.9782 -120.0018     0.9782 119.9715 10 0.9863 
13 0.9917 0.0000 0.9917 -120.0000     0.9917 120.0000 12 0.9912 
19 0.9854 -0.5090 0.9854 -120.5090     0.9854 119.4910 13 0.9929 
25 0.9953 0.4071 0.9953 -119.5929     0.9953 120.4071 14 0.9926 

ACMG#2 15 0.9914 
Bus No. Phase a Phase b Phase c 16 0.9862 

Mag. (p.u.) Angle (°) Mag. (p.u.) Angle (°) Mag. (p.u.) Angle (°) 17 0.9854 
1     0.9751 -0.9428 0.9751 -120.9455 0.9751 119.0540 18 0.9863 

10     0.9776 -0.6895 0.9775 -120.6943 0.9771 119.3069 19 0.9850 
23     0.9715 -0.9493 0.9715 -120.9493 0.9715 119.0507 20 0.9847 
34     0.9970 0.0000 0.9970 -120.0000 0.9970 120.0000 21 0.9846 
35     1.0086 -0.1392 1.0086 -120.1392 1.0086 119.8608 22 0.9846 
36     0.9858 -0.6371 0.9858 -120.6371 0.9858 119.3629 ACMGs Frequencies 
37     0.9989 -0.7830 0.9989 -120.7830 0.9989 119.2170 𝜔ଵ 𝜔ଶ 
38     0.9711 -1.0539 0.9711 -121.0539 0.9711 118.9461 375.5920 375.6886 
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TABLE VI 
OUTPUT POWER OF DGS AND ICS OF THE STUDIED MMG 

  Output Power Mode 
 

ACMG#1 
DG#1 1.4831 × 10଺ + 1.0013

× 10଺𝑗 
droop 

DG#2 7.4293 × 10ହ + 8.7703
× 10ହ𝑗 

droop 

DG#3 1.4831 × 10଺ +  5.7061 × 10ହ𝑗 droop 
 
 

ACMG#2 

DG#1 1.0368 × 10଺ +   2.6928 × 10ହ𝑗 droop 
DG#2 1.2000 × 10଺ +   9.0000 × 10ହ𝑗 PQ 
DG#3 4.0000 × 10ହ +   3.0000 × 10ହ𝑗 PQ 
DG#4 8.0000 × 10ହ +   6.0000 × 10ହ𝑗 PQ 
DG#5 4.0000 × 10ହ +   3.0000 × 10ହ𝑗 PQ 

 
DCMG 

DCDG#1 1.8520× 10ହ droop 
DCDG#2 6.2335× 10ହ droop 
DCDG#3 1.7654× 10ହ droop 
DCDG#4 4.2912× 10ହ droop 

ICs IC#1 3.8986× 10ହ droop 
IC#2 5.1192× 10ସ droop 

 
TABLE VII 

OUTPUT POWER OF DGS AND ICS OF THE STUDIED MMG 
Scenario 𝜆஺஼ெீ#ଵ 𝜆஽஼ெீ 𝜆஺஼ெீ#ଶ Iterations 

1 2 1 1 5 
2 1 3 1 5 
3 1 1 1.5 5 
4 1.4 1.4 1.4 5 

A.  MG Loading Factors 

Fig. 3, Fig. 4 and Fig. 5 show the frequency changes of 
ACMGs, versus loading factors of DCMG, ACMG#1, and 
ACMG#2. To this aim, all the loads of each MG are multiplied 
by 𝜆, which is the MG loading factor. Obviously, loading factor 
of each MG, affects its own load-flow variables. Hence, as seen 
in Fig. 4 (blue curve) and Fig. 5 (red curve), by increasing the 
loading factors of each ACMG, their frequencies decrease. 
Loading factors of directly connected MGs to the ACMGs, can 
also affect the ACMG frequencies. Fig. 3 verifies that by 
increasing loading factor of DCMG, both ACMGs frequencies 
decrease. However, as shown in Fig. 4 (red curve) and Fig. 5 
(blue curve), by increasing the loading factors of indirectly 
connected MGs, the ACMG frequency is not highly affected. 
Hence, the frequency of ACMG#1 is not highly affected by the 
loading factor of ACMG#2, and vice versa. 

B.  Iterations of Different Loading Factors 

In the following, it is shown that for the proposed approach, 
changing loading factors of different MGs does not affect the 
number of iterations. As seen in Table VII, for the four 
considered scenarios, the iterations remain at 5. 

C.  Higher Number of ICs 

As discussed, indirectly connected MGs, compared to the 
directly connected MGs, have less effect on ACMG 
frequencies. However, there are some factors which can 
increase coupling among load-flow variables of the indirectly 
connected MGs. One of these factors is the number of ICs 
among the indirectly connected MGs. To this aim, in one 
scenario, an IC is added on bus 2 of ACMG#2 and bus#10 of 
DCMG (red curve of Fig. 6), and in another scenario, the second 
IC is added on bus#29 of ACMG#2 and bus#19 of DCMG 
(green curve of Fig. 6). As shown, by increasing the number of 
ICs connected between the ACMG#2 and DCMG, coupling 

among ACMGs increases, and hence the sensitivity of 
frequency of ACMG#1 to the loading factor of ACMG#2 
increases. 

D.  Large-Scale case-study 

To verify the performance of the proposed load-flow 
solution, a much larger case has been also tested. The large case 
(LC) study was made by substituting the ACMGs in Fig. 2 with 
the IEEE-906 bus test feeder. Details of this test feeder and its 
added droop-controlled DGs are given in [19] and [30]. With 
the method proposed in this paper, the LC converges in only 6 
iterations, which further demonstrates its performance. 

 

 
Fig. 3 ACMGs frequencies, with increasing loading factor of ACMG#1. 

 
Fig. 4 ACMGs frequencies, with increasing loading factor of ACMG#2. 

 
Fig. 5 ACMGs frequencies, with increasing loading factor of DCMG. 

 
Fig. 6 ACMG#1 frequency, with increasing loading factor of ACMG#2, in 
presence of different number of ICs, between ACMG#2 and DCMG. 
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V.  CONCLUSIONS 

In this paper, a new load-flow solution method for MMGs is 
proposed. The principles of the proposed solution are based on 
multiphase MANA formulation with new developments for 
different structures of MMGs, and their different operating 
modes. The contributed new solution is unified, and hence all 
the MGs formulations are included in one Jacobian matrix, 
which simultaneously solves all equations at each iteration.  

In the proposed method, for each islanded ACMG, one 
separate frequency is considered as a load-flow variable. 
Hence, multi-frequency load-flow is achieved for MMGs with 
multiple islanded ACMGs. In this paper, it is shown that for the 
proposed load-flow solution, the number of iterations is not 
greatly affected by loading factor or the scale of different MGs. 
Then it is demonstrated that ACMG frequencies are more 
affected by loading factors of directly connected MGs, 
compared to those of indirectly connected MGs. It has been also 
shown that a higher number of ICs can increase coupling, even 
among indirectly connected MGs.  

The presented load-flow solution method can be used 
directly for initializing EMT simulations. 
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