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Small-Argument Analytical Expressions for the
Calculation of the Ground-Return Impedance and

Admittance of Underground Cables
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Abstract—This paper proposes small-argument
approximations for two closed-form equations that were
recently derived for the calculation of the ground-return
impedance and admittance of underground cables. The
proposed expressions are shown to be accurate up to 1 MHz
for a typical cable configuration and frequency-dependent
ground parameters. Their accuracy is also demonstrated in
the calculation of transients on underground cables taking as
reference results obtained with more general formulations.
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I. INTRODUCTION

THE calculation of the per-unit-length parameters of cable
systems has been attracting a lot of attention in the

last decades [1]–[5]. Recent efforts have been often directed
to the derivation of rigorous expressions for determining
the ground-return impedance and admittance of underground
cables [6]–[8]. However, the obtained expressions are cast
in terms of improper integrals whose evaluation is not
straightforward. This has been the prime motivation for the
derivation of simplified analytical expressions that could serve
as an alternative to these integral equations within certain
limits [9]–[12].

One of the most promising integral equations proposed
in the recent years for the calculation of the ground-return
impedance and admittance of underground cables was
introduced by Xue et al. [8]. Their validity was demonstrated
both in the frequency and time domains through comparisons
with full-wave electromagnetic models [13]–[15]. However,
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the calculation of the ground-return impedance and admittance
with Xue et al.’s equations in their original form is not
straightforward because three improper integrals need to be
evaluated.

In a recent paper, De Conti et al. [16] proposed a pair of
closed-form expressions that reproduce the behavior of the
equations of Xue et al. [8] with great accuracy up to 10 MHz
for typical cable separations and a wide range of ground
resistivities. However, no extensive transient simulations were
performed to demonstrate the accuracy of these newly
proposed expressions in the time domain. Moreover, although
the proposed expressions significantly simplify the calculation
of the ground-return impedance and admittance compared to
Xue et al.’s equations [8], they still depend on the computation
of Bessel functions that can be unfriendly for practitioners and
cannot be easily evaluated in a scientific calculator.

This paper proposes an additional simplification to the
closed-form expressions introduced in [16] by adopting
a small-argument approximation to the Bessel functions
appearing in these expressions. The obtained small-argument
equations are shown to be accurate up to 1 MHz for different
values of ground resistivity, which covers the frequency
range of most transient phenomena affecting underground
cable systems. The validity of the proposed equations is
demonstrated through the calculation of transients on a typical
138-kV cable configuration. The simulations also demonstrate
the accuracy of the closed-form expressions proposed in [16]
in the simulation of electromagnetic transients.

This paper is organized as follows. Section II introduces
the proposed small-argument approximations. Section III
demonstrates the validity of the proposed equations in the
frequency domain. Time-domain results are presented in
Section IV, followed by conclusions in Section V.

II. PROPOSED EQUATIONS

A. Closed-form Approximations proposed in [16]

By performing suitable approximations to the integral
equations of Xue et al. [8], De Conti et al. [16] derived
the following closed-form expression for calculating the
ground-return impedance of underground cables

Zg(m,n) =
jωµ0

2π

[
K0 (γ1d)

+
(γ1 − γ0)

(γ0 + γ1)
e−(hm+hn)γ1

(
2
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1r
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)]
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where ω is the angular frequency, µ0 is the vacuum
permeability, K0 is the modified Bessel function of order zero,
hm > 0 and hn > 0 correspond to the burial depths of cables
m and n, respectively, r is the horizontal cable separation,

measured from center to center, d =

√
(hm − hn)

2
+ r2, and

γ0 and γ1 are the intrinsic propagation constants of the air and
the ground, given by

γ0 = jω
√
µ0ε0 (2)

γ1 =
√

jωµ1 (σ1 + jωε1) (3)

where ε0 is the vacuum permittivity, µ1 = µ0 is the
ground permeability, σ1 is the ground conductivity and ε1
is the ground permittivity. Equation (1) can be used to
directly determine the off-diagonal terms of the ground-return
impedance matrix of a system of underground cables. For
calculating the main-diagonal term Zg(m,m), r must be
replaced by the total radius of cable m in (1), including the
external jacket, and hn = hm is assumed.

For calculating the potential coefficients required for
determining the ground-return admittance matrix, De Conti
et al. [16] proposed the following equation after performing
approximations to the integral equations of Xue et al. [8]

Pg(m,n) =
jω

2π (σ1 + jωε1)

[
K0 (γ1d) + αK0 (γ1D)

]
(4)

where

α =
γ2
1 − γ2

0

γ2
1 + γ2

0

(5)

and D =

√
(hm + hn)

2
+ r2.

After using (4) to assemble matrix Pg , the ground-return
admittance matrix is determined as

Yg = jωPg
−1 (6)

Equations (1) and (4) were shown in [16] to reproduce
Xue et al.’s equations [8] in a wide frequency range for
ground resistivities ranging from 100 to 10000 Ωm and typical
cable separations considering horizontal, vertical and trefoil
cable configurations. Both equations are taken as reference
for obtaining the approximations introduced in the next
subsection. Although the ground-return admittance has been
historically dismissed in the calculation of the ground-return
parameters of underground cables, it is shown in [17] that this
parameter should not be neglected for frequencies above some
tens of kHz, for low-resistivity soils, and that this frequency
limit is expected to reduce as the ground resistivity increases.

B. Small-Argument Approximations

By using the small-argument representation [18]

K0 (z) ≈ − ln
(z
2

)
− γ (7)

where γ = 0.5772 . . . is the Euler-Mascheroni constant and
0 < z ≪ 1, equations (1) and (4) can be respectively
simplified to

Zg(m,n) =
jωµ0

2π
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and

Pg(m,n) =
jω

2π (σ1 + jωε1)

{
ln

(
D

d

)
− (α+ 1)

[
γ + ln

(
γ1D

2

)]}
. (9)

Equations (8) and (9) have the advantage over (1) and (4)
of avoiding the calculation of Bessel functions, which make
them easily evaluated in any scientific calculator. However,
it is necessary to investigate whether these equations are
sufficiently accurate for the calculation of the ground-return
parameters of underground cables. This is performed in the
next couple of sections.

III. FREQUENCY-DOMAIN ANALYSIS

To investigate the validity of the small-argument
approximations (8) and (9) in the frequency domain,
the 138-kV cable configuration shown in Fig. 1 is considered.
Details of the cable properties and dimensions are given in
Table I. For calculating the ground-return impedance and
admittance of the cable, the realistic soil model proposed by
Alipio and Visacro [19] is considered. This model predicts
the frequency dependence of the ground conductivity and
permittivity with the following equations

σ1 = σ + 4.68× 10−6σ0.27f0.54 (10)

ε1 = 12ε0 + 9.54× 104σ0.27f−0.46ε0 (11)

where σ is the low-frequency ground conductivity, in S/m,
which is related to the low-frequency ground resistivity ρ as
σ = 1/ρ, and f is the frequency, in Hz. Equation (10) is
a semi-theoretical model that describes the mean variation
of the ground conductivity with frequency based on in situ
measurements of the frequency response of this parameter
for 65 different types of soil with resistivity values ranging
from 60 to 18,000 Ωm. Equation (11) is derived from (10)
using the KramersKronigs relations to assure model causality.
The validity of (10) and (11) was strictly demonstrated for
frequencies below 4 MHz [19], but due to their physical
consistency they have been often applied in a wider frequency
range [20], [21]. Here, they are assumed to be valid up to
10 MHz. Equations (10) and (11) are recommended by the
Cigré for including the frequency dependence of the soil
parameters in electromagnetic modeling [20].
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Fig. 1. 138-kV underground cable system.

TABLE I
CABLE PARAMETERS

Parameter Core Sheath
Internal radius (m) 0 0.032315
External radius (m) 0.012975 0.035315
Resistivity (Ωm) 1.93× 10−8 2.20× 10−7

Relative permeability 1 1
Relative permittivity of insulation 2.963538 2.3
Total cable radius (m) 0.039315

A. Ground-Return Impedance

Fig. 2 illustrates the relative error in the calculation
of the self-term of the ground-return impedance matrix,
Zg(1,1), considering the closed-form expression (1) and the
small-argument approximation (8), taking as reference Xue et
al.’s integral equation [8]. The calculations were performed
for ρ = 100, 1000, and 10000 Ωm considering the soil
model of Alipio and Visacro [19]. The results are shown for
frequencies greater than 100 Hz because for lower frequencies
the errors are negligible. Although the validity of Xue et
al.’s equations has not been demonstrated for a ground
resistivity of 10000 Ωm in the high-frequency range, this value
was considered for illustrating the ability of the proposed
expressions to reproduce their behavior even for an extreme
value of ground resistivity and consequently all values in
between. It is observed in Fig. 2 that (1) and (8) lead to
equivalent results regardless of ground resistivity, and that the
deviations with regard to Xue et al.’s equations do not exceed
2% neither in the absolute value nor in the phase angle of
Zg(1,1). Since the three cables are equal, Zg(1,1) = Zg(2,2) =
Zg(3,3).

Fig. 3 shows the relative error in the calculation of the
mutual term Zg(3,1) of the ground-return impedance matrix,
which relates phases A and C (see Fig. 1). The calculations
were again performed with (1) and (8), taking as reference
Xue et al.’s integral equation [8]. This time, the relative errors
obtained with (1) are slightly larger than the ones previously
obtained for Zg(1,1). This result was already expected because,
as shown in [16], equation (1) gradually loses accuracy in the
high-frequency range as the cable separation increases [16].
Even so, the relative errors due to (1) are mostly within 5%,
except for the phase angle associated ρ = 1000 Ωm, which
exceeds 7% above 8 MHz. Interestingly, the small-argument
approximation (8) presents a performance comparable to (1)
up to the 1-2 MHz range, regardless of ground resistivity,
which covers most transient phenomena affecting cable
systems. The errors associated with the calculation of Zg(2,1),
which is the mutual ground-return impedance between phases
A and B (and, equivalently, between phases B and C) are
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Fig. 2. Relative error in the calculation of element (1,1) of the ground-return
impedance matrix taking as reference Xue et al.’s integral equation [8]. Solid
lines: closed-form expression (1); dashed-lines with markers: small-argument
expression (8). The results obtained with both equations are indistinguishable.
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Fig. 3. Relative error in the calculation of element (3,1) of the ground-return
impedance matrix taking as reference Xue et al.’s integral equation [8]. Solid
lines: closed-form expression (1); dashed-lines with markers: small-argument
expression (8).

greater than those observed for Zg(1,1) (see Fig. 2), but lower
than those shown in Fig. 3 for Zg(3,1). For this reason, they
are not shown here.

B. Ground-Return Potential Coefficients

Fig. 4 shows the relative error in the calculation
of the self-term Pg(1,1) of the ground-return potential
coefficient matrix calculated with (4) and the small-argument
approximation (9). For calculating the error in the absolute
value of Pg(1,1), the corresponding value obtained from Xue
et al.’s integral equation [8] was taken as reference at each
frequency sample. For determining the error in the argument
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Fig. 4. Relative error in the calculation of element (1,1) of the ground-return
potential coefficients matrix taking as reference Xue et al.’s integral equation
[8]. Solid lines: closed-form expression (4); dashed-lines with markers:
small-argument expression (9).

of Pg(1,1), the maximum phase angle predicted by Xue et al.’s
integral equation was considered. This was necessary to avoid
a division by zero in the high-frequency range due to a zero
crossing in the argument of Pg(m,n) [16]. The calculations
were again performed for ρ = 100, 1000 and 10000 Ωm.

The results in Fig. 4 demonstrate the high accuracy of
(4) in the whole frequency range, regardless of the value of
ground resistivity, with relative errors well below 5%. This
confirms the results obtained in [16], but now considering
frequency-dependent soil parameters. On the other hand, the
small-argument expression (9) presents similar accuracy only
up to 1 MHz or so. Greater errors are verified with (9) for the
100 Ωm soil. However, this problem is alleviated by the fact
that for a low-resistivity soil the influence of the ground-return
admittance on the calculation of the per-unit-length parameters
of the cable is generally less important [6], [7], [12], [15].

The relative errors associated with the calculation of
Pg(3,1) with (4) and (9), taking as reference Xue et al.’s
integral equations, are shown in Fig. 5. This element relates
phases A and C in the ground-potential coefficients matrix.
The calculations were performed as before, and a similar
trend is observed, with (4) performing accurately in the
whole frequency range, regardless of soil resistivity, and
the small-argument approximation (9) losing accuracy above
1 MHz or so. Although not shown, the mutual term relating
cables A and B (or, equivalently, B and C) behaves similarly.

IV. TIME-DOMAIN ANALYSIS

The validity of the proposed small-argument approximations
is further demonstrated in this section by considering
switching transient studies in the 138-kV cable system shown
in Fig. 1. The tested cases considered the mixed-mode
excitation shown in Fig. 6(a) and the ground-mode excitation
shown in Fig. 6(b). To excite a wide frequency range, a step
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Fig. 5. Relative error in the calculation of element (3,1) of the ground-return
potential coefficients matrix taking as reference Xue et al.’s integral equation
[8]. Solid lines: closed-form expression (4); dashed-lines with markers:
small-argument expression (9).

voltage with 1 kV amplitude was applied. The calculation
of the cable parameters including core losses, sheath losses,
internal insulation and external jacket was performed in Matlab
following the approach described in [22] with the data of
Table I. As before, ground resistivity values of 100, 1000 and
10000 Ωm were considered according to the Alipio-Visacro
model [19].

The transient calculations were performed with the universal
line model (ULM) [23] implemented in the Alternative
Transients Progam (ATP) as a foreign model [24]. Two cable
lengths, 100 m and 1 km, were considered to illustrate the
model response to different resonant frequencies associated
with the multiple reflections occurring at the cable ends. The
ground-return parameters were determined with Xue et al.’s
integral equations [8], with De Conti et al.’s equations (1) and
(4) [16], and with the small-argument expressions (8) and (9).

Phase A

Phase B

Phase C

Phase A

Phase B

Phase C

(a)

(b)

Fig. 6. Configurations for the transient simulations.
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The fitting of the characteristic admittance and the
propagation function required in the ULM was performed in
Matlab using the vector fitting technique [25]. In the cases
involving Xue et al.’s and De Conti et al.’s equations, the
fitting was performed from 0.1 Hz to 10 MHz, except for
ρ = 10000 Ωm, in which case the upper frequency was limited
to 5 MHz to avoid instabilities in the time-domain simulations.
For the small-argument expressions, the fitting was performed
up to 1 MHz.

Figs. 7, 8, and 9 illustrate the core voltages calculated at
the receiving ends of phases A and C for ρ =100, 1000
and 10000 Ωm, respectively, considering the configuration
of Fig. 6(a) and different cable lengths. It is observed in
the figures that the calculated voltages are coincident in all
tested conditions. The good performance of the proposed
small-argument expressions is verified even for the cable
length of 100 m, which excites higher resonant frequencies
due to the shorter oscillation period associated with successive
reflections at the cable ends, regardless of the ground
resistivity value. The performance of the small-argument
expressions (8) and (9) is equivalent to (1) and (4) in this
case, and consequently to Xue et al.’s equations [8].

Fig. 10 illustrates the core voltages at the receiving end
of phase B for the ground-mode excitation of Fig. 6(b),
for ρ = 100, 1000 and 10000 Ωm and cable lengths of
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Fig. 7. Receiving-end voltages at the core of phases A and C for ρ = 100 Ωm
and the mixed-mode excitation of 6(a). (a) 100-m long cables; (b) 1-km long
cables. Black solid lines: Xue et al.’s equations [8]; red-dashed lines: De Conti
et al.’s equations (1) and (4) [16]; square dots: small-argument approximations
(8) and (9). .

100 m and 1 km. In all cases, the voltages calculated with
the different expressions are equivalent regardless of ground
resistivity and cable length. Such a good agreement is related
to the fact that the resonant frequencies estimated from
the waveforms shown in Fig. 10 are well below the upper
frequency limit of the small-argument approximations (8) and
(9), even for the 100-m long cable. Since the ground-mode
excitation is the one in which the ground-return impedance and
admittance play the most significant role in terms of transient
responses, the obtained results confirm not only the accuracy
of the approximate expressions (1) and (4), but also of the
small-argument approximations (8) and (9), even though the
latter are strictly valid only up to 1 MHz or so.

V. CONCLUSIONS

This paper proposes small-argument approximations for the
calculation of the ground-return impedance and admittance of
underground cables. The proposed small-argument expressions
are simplified versions of two closed-form expressions
proposed by De Conti et al. [16] as an approximation to the
integral equations of Xue et al. [8].

The validity of the proposed small-argument expressions
is demonstrated through simulations both in the frequency
domain and in the time domain for ground resistivity values
ranging from 100 Ωm to 10000 Ωm and different cable lengths.
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Fig. 8. Receiving-end voltages at the core of phases A and C for ρ =
1000 Ωm and the mixed-mode excitation of 6(a). (a) 100-m long cables; (b)
1-km long cables. Black solid lines: Xue et al.’s equations [8]; red-dashed
lines: De Conti et al.’s equations (1) and (4) [16]; square dots: small-argument
approximations (8) and (9). .
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Fig. 9. Receiving-end voltages at the core of phases A and C for ρ =
10000 Ωm and the mixed-mode excitation of 6(a). (a) 100-m long cables; (b)
1-km long cables. Black solid lines: Xue et al.’s equations [8]; red-dashed
lines: De Conti et al.’s equations (1) and (4) [16]; square dots: small-argument
approximations (8) and (9). .

The ground-return parameters were calculated considering
a realistic soil model that takes into consideration the
frequency-dependent nature of both ground resistivity and
permittivity. The proposed small-argument approximations are
shown to perform accurately up to 1 MHz or so, which
covers most phenomena of interest to underground cables.
If a greater accuracy is required in the high-frequency
range, the closed-form expressions proposed in [16] could be
alternatively used.

The performed transient studies demonstrated that the
proposed small-argument approximations lead to results that
are equivalent to those obtained with the integral equations
of Xue et al. [8] for different types of excitation and a wide
range of ground resistivities. This suggests that the proposed
expression can be conveniently used in switching transient
studies without incurring in significant errors. The results also
demonstrate the accuracy of the closed-form equations of De
Conti et al. [16] for transient studies. Although a typical
138-kV single-core cable system with flat configuration was
taken as reference, similar conclusions could be drawn for
typical vertical and trefoil cable configurations.

The proposed expressions are simple and can be easily
implemented in a computer code for the evaluation of the
per-unit-length parameters of underground cable systems.
More importantly, they can be easily typed in scientific

(b)

(a)

-0.5

0

0.5

1

1.5

2

0 20 40 60 80

V
o

lt
ag

e
 (

kV
)

Time (ms)

100 Wm

10000 Wm

1000 Wm

-0.5

0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000

V
o

lt
ag

e 
(k

V
)

Time (ms)

100 Wm

1000 Wm

10000 Wm

Fig. 10. Receiving-end voltages at the core of phase B for the ground-mode
excitation of 6(b) and different values of ground resistivity. (a) 100-m long
cables; (b) 1-km long cables. Black solid lines: Xue et al.’s equations [8];
red-dashed lines: De Conti et al.’s equations (1) and (4) [16]; square dots:
small-argument approximations (8) and (9)..

calculators, which makes them particularly convenient for
practitioners and non-academic users. For long cables
and low-resistivity soils, an even simpler approach in
which only the ground-return impedance obtained with the
small-argument approximation (8) is considered and the
ground-return admittance is completely neglected could lead to
sufficiently accurate results in low-frequency transient studies
[12], [17]. Although this approach has been considered in
most electromagnetic transient simulation tools for many
decades, it is not sufficiently general. Consequently, both the
ground-return impedance and admittance should be considered
for a consistent modeling of underground cables, especially for
high values of ground resistivity and short cables [15].
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