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Abstract—The growing use of renewable energy sources such
as wind and solar in distribution networks (DNs) poses a
challenge for DN protection. Inverter-based resources (IBRs)
have fault responses that differ from conventional generators,
which can have a significant impact on how the DN is protected
and lead to misoperations, such as blinding. Use of simplified
inverter models may result in incorrect relay settings and
relay misoperations. This paper leverages a comprehensive
grid-following inverter with dynamic reactive current (DRC)
limiting model. The inverter with DRC model is combined with
distribution system equations, to form a nonlinear differential
and algebraic equations (NDAE) model, in which the fault
response is verified. The grid-following inverter with DRC
limiting is then implemented in a distribution system with
protection elements and compared with a simplified fault
response model based on frozen control. The system is tested
under varying irradiance conditions, as well as varying dynamic
factor K of the DRC limiting model. The effect of the DRC
current limiting model on protection blinding is investigated as
well. The case study reveals that precise modeling of the PV
inverter including the DRC limiter is indeed required to properly
identify and predict blinding scenarios in the DN.

Keywords—Dynamic reactive current, grid-following inverter,
nonlinear differential and algebraic equations, overcurrent relay,
protection

I. INTRODUCTION

MOdeling of power electronics inverters with current
limiting strategies is important for understanding the

transient fault response of the network, ensure system
protection, and avoid relay misoperations. With the recent
integration of inverter-based resources (IBRs) into the
distribution network (DN), traditional protection systems can
face challenges in maintaining safe and reliable operation
of the grid. IBR integration affects the fault currents of the
system due to limited inverter current contribution during
faults [1], and causes bidirectional current flows that impact
the protection system. In addition, if there is a large number
of inverters integrated into the DNs, the increase in fault
current may cause misoperation of the protective devices [2],
particularly overcurrent relays (OCR), which are typically used
in DNs to protect from faults [3]. The OCR continuously
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monitors the current and if the current exceeds the specified
setpoint, called pickup setting, the relay sends a trip signal
to the circuit breaker. Greater penetration of IBRs can
reduce upstream fault currents below the pickup setting,
causing blinding misoperations [4], which is the focus of
the present study. In addition to greater IBR penetration, PV
irradiance, which varies throughout the day, may also cause
significant changes in fault currents and this effect is also
investigated in this work. Accurate fault analysis is required
to determine OCR settings, thus modeling of the inverter and
its fault response, is of great importance for protection studies
considering distribution networks with IBRs.

Modeling of grid-following inverter controls includes
the phase-locked loop (PLL), LCL filter, power controller,
and current controller generally designed in the dq
(direct-quadrature or synchronous) reference frame [5]–[8].
The works in [5]–[8] do not include fault studies, however
they focus on the dynamical models of inverter control and
the response to step disturbances resulting from inverter power
commands. Model nonlinearities are bypassed by linearizing
the nonlinear equations around an equilibrium point. Also,
the aforementioned works do not place particular emphasis
on the distribution network and how the bus voltages, which
amount to algebraic states of the network, vary when IBRs
are integrated. In [9], although the nonlinearities in the IBRs
integrated DN are considered, the developed model only
studies dynamic stability under relatively small disturbances,
such as a trip of lines, and step change in loads. In addition, the
work in [9] mentions that the proposed model cannot be used
to perform short circuit analysis. The short circuit response
of inverters and their current limiting capability have been
previously studied; see e.g., [1], [10]–[15]. The fault current
contribution from inverters is typically limited to 1.2–1.5 times
the rated current. Although studies on inverter short circuit
contribution exist, such as the ones mentioned previously, most
of these works lack in standardizing the inverter model and
current limiting strategies for fault studies. In general, during
faults, the inverter must provide fault current as a function of
the terminal voltage at the point of common coupling (PCC).
Specifically, the dynamic reactive current (DRC) limiting
model for the inverter postulates reactive current injection
which is proportional to the voltage deviation from the nominal
voltage during the fault [16]. The proportionality between the
inverter reactive current injection and the voltage deviation



at the PCC is defined by the dynamic factor K. While the
current limiting of inverters has been modeled and studied, the
applicability of such models for fault studies, and by extension
for protection studies, are recently receiving wider attention.
For example, the optimization based solver developed in [12]
performs short-circuit analysis of inverter-integrated DNs but
only considers a constant current source model for the inverter.
CYME distribution analysis software, recently introduced a
nonlinear inverter fault response model in version 9.3, whereas
previous versions contained only constant current and voltage
source behind impedance models. Studying the effect of
inverter nonlinear models on protection systems is a growing
area of interest, explained more in the next paragraph.

There are studies which investigate phenomena such as
harmonic pollution [17], fault impedance [18], and transformer
inrush [19], and their effects on overcurrent protection.
Similarly, the effect of IBRs on network protection is a
growing research area, but with respect to dynamic current
limiting and OCR-based protection, it is not yet very well
studied. The work in [11] studies the impact of IBRs on
protection but lacks insight on the impact to OCRs and
blinding misoperations. The fault response of solar DERs
is explored in [10], but very little focus is placed on the
protection. The work in [20] investigates the effect of negative
sequence current injection on impedance-based protection,
compared to conventional generators. The effect of nonlinear
IBR fault models on incremental quantities-based protection is
studied in [21]. The aforementioned papers study the effect of
nonlinear IBR models on certain protection elements, however,
the effects of the PV inverter dynamic current limiter on
OCRs for DN, considering varying solar irradiance, as well
as varying dynamic factor K, remains a desired study topic.

This paper develops a detailed nonlinear differential and
algebraic equation (NDAE) model of a grid-following inverter
interacting with a distribution system. Commercial simulation
tools are usually limited to one inverter model with a few
control types, as well current limiting strategies which cannot
be modified by the user. When compared to commercial
simulation, the NDAE model allows any different inverter
model and control, as well as fault limiting strategies and
can be tested on different distribution networks. A detailed
DRC control and limiter model is incorporated together with
legacy short-circuit response characterized by frozen control
for comparison purposes. The grid-following inverter model
also includes a PLL, LCL filter, power controller, and current
controller. Subsequently, this paper leverages the detailed
grid-following inverter model, which is extended to include
a PV system, to present an analysis of blinding misoperations
in protection systems.

The contributions of this work are summarized as follows:

• Development of a comprehensive NDAE model
that includes distribution system dynamics and a
grid-following inverter with DRC limiting.

• Simulation of balanced faults with the NDAE model on
a 5-bus distribution system using MATLAB’s ordinary
differential equations (ODE) solver and comparison with
the Simulink model.
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Fig. 1. Grid following inverter schematic.

• Simulink implementation of grid-following inverter for a
solar PV system, connected to 5-bus distribution system
with protection elements.

• Study of the effect of DRC limiting model on protection
blinding while considering varying solar irradiance and
different K-factor of the DRC limiter.

II. NDAE MODELING OF THE INVERTER-INTEGRATED
DISTRIBUTION SYSTEM

Consider an n-bus, 3-phase distribution system modeled as a
tree network with set of edges denoted by E . Bus-1 (root node)
is the slack bus. The inverter is connected to a bus designated
as the point of common coupling (PCC) through an LCL filter.
In this work, we leverage the dynamics of the grid-following
inverter model depicted in Fig. 1 represented in a local
dq synchronous reference frame. The dynamics of the rest
of the system (that generically includes loads, transformers,
and lines) are represented in a global synchronous reference
frame DQ. The transformation angles the define the respective
synchronous reference frames are given in the sequel. The
overall system dynamics depend on the dynamics of the
inverter combined with the current limiting strategy, as well as
the connected load, transformer, and distribution lines between
them. The various elements of the NDAE model are presented
next.

A. Inverter

In this section, the detailed analytical model of the inverter
and its controls including the current limiting strategies are
developed.

1) Phase-Locked Loop (PLL)
The PLL is necessary to measure the actual frequency

of the system. This work adopts a dq-based PLL [5]. The
PLL synchronizes the estimated frequency ωPLL to the grid
synchronous frequency and produces the angle δ for the dq
transformation. The PLL aligns the d or q axis to the measured
voltage and correspondingly sets voq or vod to zero upon
synchronization. In this paper, it is assumed that the PLL will
set vod = 0 at steady-state. The equations pertaining to the



PLL block are

v̇od,f = ωc,PLLvod − ωc,PLLvod,f (1a)

Φ̇PLL = −vod,f (1b)
ωPLL = ωn − kp,PLLvod,f + ki,PLLΦPLL (1c)

δ̇ = ωPLL − ωn (1d)

where vod,f is the filtered d-axis voltage component; ωc,PLL

is the cut-off frequency of the PLL low-pass filter; ΦPLL is an
auxiliary state; ωPLL is the estimated PLL frequency; ωn is
the nominal grid synchronous frequency; kp,PLL and ki,PLL

are the gains of the PI controller. The dynamic state vector
corresponding to the PLL block is xPLL =

[
vod,f ,ΦPLL, δ

]T
.

2) LCL filter
The LCL filter in Fig. 1 consists of the filter inductance

Lf , filter capacitance Cf , filter resistance Rf , the coupling
inductance Lc and resistance Rc, and a damping resistor Rd.
The differential equations are obtained by applying Kirchoff’s
voltage law (KVL) between nodes at the input, output, and
filter capacitor branches of the LCL filter in Fig. 1. The KVL
equations in phase domain (abc) are converted to dq frame
using the transformation discussed in [22, Ch. 3] to yield the
equations pertaining to the LCL filter as follows [5]

i̇id =
1

Lf
(vid − vod −Rf iid) + ωPLLiiq (2a)

i̇iq =
1

Lf
(viq − voq −Rf iiq)− ωPLLiid (2b)

i̇od =
1

Lc
(vod − vPCC,d −Rciod) + ωPLLioq (2c)

i̇oq =
1

Lc
(voq − vPCC,q −Rcioq)− ωPLLiod (2d)

v̇od =
1

Cf
(iid − iod) + ωPLLvoq +Rd(i̇id − i̇od) (2e)

v̇oq =
1

Cf
(iiq − ioq)− ωPLLvod +Rd(i̇iq − i̇oq) (2f)

where iidq are the dq frame input currents of the filter.
Assuming that the system is lossless, we consider that the
commanded voltages v∗idq—depicted as outputs of the current
controller in Fig. 1 and discussed in Section II-A5—appear
at the input of the filter inductor, that is, v∗idq = vidq . The
output currents and the output voltages of the inverter in dq
frame are denoted as iodq and vodq , respectively. The voltages
vodq are fed back to the power controller for the reference
currents calculations (cf. the next section). The bus voltages
at PCC are defined as vPCC,dq . The PCC will be any bus
j = 2, . . . , n of the network where an IBR is connected to.
The dynamic state vector for the LCL filter block is defined
as xLCL =

[
iid, iiq, iod, ioq, vod, voq

]T
.

3) Power Controller
The power controller regulates the output power by

computing the output current references i∗odq based on
feedback from the output voltages vodq using the instantaneous

Fig. 2. Grid code requirement for reactive current injection during faults.

power theory [1]. The equations pertaining to the power
controller are

îod =
2

3

1

v2od + v2oq
(vodPref + voqQref) (3a)

îoq =
2

3

1

v2od + v2oq
(voqPref − vodQref) (3b)

where Pref , Qref are the real and reactive power reference set
points. The outputs of the power controller are as follows

i∗od = iid + îod − iod (4a)

i∗oq = iiq + îoq − ioq (4b)

Under faulted conditions, the current references îodq need to
be adjusted, as described next.

4) Current Limiter
To protect the power electronics from damage due to over

voltage or over currents during faults, the inverter output
current should be limited. The current references produced by
the power controller [cf. (4)] are not applied during faults and
the inverter acts like a current source subject to the following
current limiting strategies:

• Frozen control: In this current limiting strategy, the
inverter remains connected to the system and continues to
feed its pre-fault output current, i.e, irefodq = iodq,prefault.

• Dynamic reactive current control: The inverter remains
connected to the network and injects reactive current to
the system. First, the inverter rated current is defined as

Irated =

√
P 2

rated+Q
2
rated√

3VPCC,LL,rated
, where VPCC,LL,rated is the rated

line-to-line voltage at the PCC. During faults, the inverter
has the capability to provide current larger than its rated
value by a factor typically in the range of 1.2–1.5. In
the present paper, the maximum injected current during
faults is defined as Ilimit = 1.2Irated.

Typical grid code requirement for positive-sequence reactive
current (iod) injection is shown in Fig. 2. The premise is
to ensure that inverters contribute reactive current during
faults, with the purpose of providing voltage support. The
per-unit change in terminal voltage at the PCC is ∆vpu =√
v2PCC,d+v

2
PCC,q−Vnom

Vnom
, where Vnom =

VPCC,LL,rated√
3

. When
∆vpu is within ±5% (cf. the deadband in Fig. 2), the inverter
does not alter the current references computed by the power
controller, that is, irefodq will take the values calculated in (4).
When the per-unit voltage deviation at the PCC ∆vpu is
outside of the deadband, the inverter injects positive sequence



reactive current proportionally to ∆vpu. The slope is denoted
by dynamic factor K in Fig. 2. The reactive current injection
is

ireactive = iod,prefault −K∆vpu
√
2Irated (5a)

irefod = min
{
max

{
ireactive,−

√
2Ilimit

}
,
√
2Ilimit

}
(5b)

where the factor
√
2 accounts for the transformation from

phase frame quantities (Irated and Ilimit) to dq frame quantities
(iod) following the dq transformation definition given in [22,
Ch. 3]. Eq. (5a) adjusts the pre-fault reactive current reference
(if non-zero) by adding a component that follows the
requirement of Fig. 2. Eq. (5b) projects the reactive current
reference to respect the limit given by Ilimit.

The available active current injection is given by

irefoq = sign(̂ioq)min

{
|̂ioq|,

√
(
√
2Ilimit)2 − (irefod )

2

}
(6)

Eq. (6) prescribes that the active current reference produced
by (4b) either remains unchanged or it is reduced so that
together with irefoq the current limit is respected. The output
currents irefodq are given as the input to the current controller to
calculate the commanded voltages v∗idq as discussed next.

5) Current Controller
The current controller takes the difference between the

output currents irefodq obtained after applying the current
limiting strategy and the input currents of the filter to calculate
the commanded voltages v∗idq . The dynamic equations that
describe the behavior of the current controller include the state
variables γdq as follows

γ̇d = i∗od − iid (7a)
γ̇q = i∗oq − iiq (7b)

The outputs of the current controller are defined as

v∗id = −ωnLf iiq + kic,dγd + kpc,dγ̇d + vod (8a)
v∗iq = ωnLf iid + kic,qγq + kpc,qγ̇q + voq (8b)

where kic,dq and kpc,dq are the gains of the PI controller. The
outputs v∗idq of the current controller appear at the input of
the LCL filter, i.e., vidq = v∗idq . The dynamic state vector
corresponding to the current controller block is defined as
xCC =

[
γd, γq

]T
.

Next, the equations for source, transformer, line, and load
in the global synchronous reference frame DQ are discussed.

B. Source

The slack bus is a positive sequence voltage source denoted
as v1,abc(t) = [Vs cosωnt, Vs cos(ωnt − 120◦), Vs cos(ωnt +
120◦)]T . Three-phase variables of the network are transformed
to a global synchronous DQ frame rotating at the grid nominal
frequency ωn with initial angle 0◦ [22]. The slack bus voltage
equations in global DQ frame are given as

v1,D = −
√
2Vs sin(0) (9a)

v1,Q =
√
2Vs cos(0) (9b)

The source also includes an equivalent system impedance
modeling the grid behind the substation. If the short-circuit
MVA is given, then the equivalent positive-sequence
impedance can be calculated [23]. The impedance can be
modeled in the same fashion as a distribution line, as described
in the sequel.

C. Transformer

Consider a grounded wye-grounded wye step-down
transformer between bus i and bus j. The differential equation
pertaining to variables of phase a is obtained by applying
KVL between nodes i and j as follows vj,a = 1

nt
vi,a −

RT iTX,a−LT i̇TX,a, and likewise for phases b and c, where nt
is the transformer ratio, iTX is the current on the low-voltage
side, and RT + jωnLT is the leakage impedance referred
to the low-voltage side. The dynamics in the abc frame are
then converted to the global DQ frame by applying the
transformation given in [22, Ch. 3] and are given as follows:

i̇TX,D =
1

LT
(−RT iTX,D +

vi,D
nt

− vj,D) + ωniTX,Q (10a)

i̇TX,Q =
1

LT
(−RT iTX,Q +

vi,Q
nt

− vj,Q)− ωniTX,D (10b)

The dynamic state vector corresponding to the transformer is
xT =

[
iTX,D, iTX,Q

]T
.

D. Distribution Line

Consider a line connected between bus i and bus j. Self and
mutual impedances between phases are respectively denoted as
Rϕ,ϕ+ jωnLϕ,ϕ and Rϕ,ψ + jωnLϕ,ψ , where ϕ, ψ ∈ {a, b, c}
and ϕ ̸= ψ. The present section gives for simplicity the
dynamical model of a symmetrical line, where the self and
mutual reactances are defined as Ls = Laa+Lbb+Lcc

3 and
Lm = Lab+Lbc+Lac

3 and likewise for the resistances Rs and
Rm. The differential equation for phase a of the line is
obtained from KVL as vi,a − vj,a = Rsiline,a + Rmiline,b +
Rmiline,c +Lsi̇line,a +Lmi̇line,b +Lmi̇line,c; and likewise for
phases b and c. The dynamics are converted to the global
DQ frame by applying the transformation in [22, Ch. 3]. The
resulting equations are

i̇line,D =
1

Lline
(−Rlineiline,D + vi,D − vj,D) + ωniline,Q

(11a)

i̇line,Q =
1

Lline
(−Rlineiline,Q + vi,Q − vj,Q)− ωniline,D

(11b)

where Rline + jωnLline = (Rs−Rm)+ jωn(Ls−Lm) is the
positive-sequence impedance of the line. The dynamic state
vector corresponding to the line is xline =

[
iline,D, iline,Q

]T
.

E. Load

The differential equations for a load connected to bus i are
obtained in the abc frame by applying KVL between bus i and
the ground, and then converted to the global DQ frame [5].



Fig. 3. 5-Bus distribution system.

Supposing a load given by Rload+ jωnLload is connected per
phase, the resulting dynamical model is

i̇load,D =
1

Lload
(−Rloadiload,D + vi,D) + ωniload,Q (12a)

i̇load,Q =
1

Lload
(−Rloadiload,Q + vi,Q)− ωniload,D (12b)

The dynamic state vector corresponding to the load is xload =[
iload,D, iload,Q

]T
.

F. Algebraic Equations of the System

In this section, the algebraic equations describing
relationships among the state variables and the bus voltages are
discussed. The algebraic equations include the relations among
the currents of the inverter, load, and line are determined
by Kirchoff’s Current law (KCL) at each bus. In addition,
the algebraic equations for transforming the dq synchronous
reference frame that is local to each inverter to the global DQ
frame are needed. This is because the inverter output currents
are represented in the dq frame local to the inverter as shown
in the Sections II-A2 and II-A4, and the current injections to
each node are represented in the global DQ frame. Note that
for simplicity, the equations (13)–(16) are written assuming
only one inverter is connected to the system.

The dq frame to DQ frame transformation is given next [6]

ioD = cos(−δ)iod + sin(−δ)ioq (13a)
ioQ = − sin(−δ)iod + cos(−δ)ioq (13b)

The PCC bus voltage in the inverter’s LCL filter dynamics in
the Section II-A2 is in dq frame, but the bus voltages of the
system are calculated in the global DQ frame. The global DQ
frame to dq frame transformation equations are given by [6]

vPCC,d = cos(−δ)vPCC,D − sin(−δ)vPCC,Q (14a)
vPCC,q = sin(−δ)vPCC,D + cos(−δ)vPCC,Q (14b)

Assume that the inverter and a load are connected to bus
j. The KCL equation represented in the global synchronous
reference frame DQ for the non-faulted bus j is given as

iij,DQ −
∑
jk∈E

ijk,DQ = ioDQ − iload,DQ (15)

where the left hand side of (15) includes the currents of
distribution lines and transformer connected to bus j. For a
faulted bus j where the inverter and a load are connected, the
KCL equation the global DQ frame is stated as

iij,DQ −
∑
jk∈E

ijk,DQ = ioDQ − iload,DQ + ifault,DQ (16)

where ifault,DQ is the fault current. The overall NDAE model
of the inverter-based distribution system is summarized as

NDAE: ẋ = f(x,a,u) (17a)
0 = g(x,a) (17b)

where the dynamic state vector is x =
[xPLL,xLCL,xCC,xload,xT ,xline]

T ; the
algebraic variables are included in a =
[{vj,D, vj,Q}nj=1, vPCC,d, vPCC,q, ioD, ioQ]

T ; and the vector
u = [Pref , Qref ]

T is defined. The nonlinear vector-valued
functions f and g respectively collect the dynamic and
algebraic equations of the system.

III. NUMERICAL RESULTS FOR THE NDAE MODEL

In this section, simulation results for the inverter-integrated
distribution system NDAE model are presented.

The 5-bus distribution network depicted in Fig. 3 is
modeled, consisting of a 13-kV slack bus (designated as
000) with a grid resistance of 0.237 Ω and grid inductance
of 0.0082 H. A 13kV/480V grounded wye-grounded wye
step-down transformer is connected between buses 100 and
200 with resistance and inductance of 4.15 mΩ and 357
mH, respectively, referred to the low-voltage side. The
positive-sequence impedance of the lines is determined from
configuration 601 of the IEEE-13 test feeder. Line lengths for
lines 000−100, 200−300, and 300−400, are 800 ft, 300 ft, and
300 ft, respectively. We consider constant impedance loads of
650 kW and 15 kvar on bus 300 and 450 kW and 15 kvar on
bus 400. A 900-kW inverter at unity power factor is connected
on bus 300. The LCL parameters of the inverter are given in
Table I. The proportional and integral constants of the PLL
block are 0.6 and 20 respectively. The proportional and integral
constants of the current controller block are kpc,d = 10,
kic,d = 300, kpc,q = 20, and kic,q = 50. The dynamic factor is
set to K = 2. MATLAB’s ode15i solver is used. The NDAE
simulation is performed for a timespan of 0.6s and step size
1µs, and the LLLG fault at bus 400 is applied at t = 0.3
sec. The transformation to convert the variables from the DQ
global frame to abc is given in [22].

To verify the accuracy of the NDAE simulation, a simulink
switching model of the inverter for a solar PV system
connected to the 5-bus DN is setup as shown in Fig. 4.
The two models are validated with the same LLLG fault at
0.3 sec. The inverter output current and the inverter PCC
voltage (bus 300) in abc frame from the NDAE and Simulink
simulations are shown in Fig. 5 and Fig. 6, respectively.
Under fault conditions, if the change in PCC voltage is more
than 5%, the inverter must inject reactive current up to the
maximum transient current capacity Ilimit according to the
DRC control discussed in Section II-A4. From the figures,
it is seen that during fault conditions, the inverter injects
current close to the maximum transient current limit, but
does not exceed this value. The pre- and post-fault PCC
voltage and current magnitudes for the NDAE and Simulink
simulations are listed in Table II. The inverter output current
magnitude error between the NDAE and Simulink simulations
is 2.7% (pre-fault) and 5% (post-fault). The PCC voltage
magnitude error for the two simulations is 0.2% (pre-fault)



Fig. 4. Simulink PV Inverter and Protection System
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Fig. 5. NDAE simulations for a LLLG fault at bus 400.
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Fig. 6. Simulink simulations for a LLLG fault at bus 400.

and 16.5% (post-fault). The post-fault error is due to ripple
voltage in Simulink’s switching model which was observed to
be approximately 28 V.

The inverter-integrated DN model is further extended with
protection elements in the sequel.

IV. PROTECTION SYSTEM STUDY

Protection misoperations for OCRs in DNs are well
known as blinding and sympathetic-tripping, and they can
be categorized as a failure-to-trip and as an undesired-trip,
respectively. There must also be coordination between OCRs,
where for every protection zone, there is a designated primary
and backup relay. For each primary backup pair, there must be
a minimum delay, called the coordination time interval (CTI),
which is held in between the operation time of relays. For
electronic relays, the CTI is taken as 0.2 s. Discrimination

TABLE I
LCL FILTER PARAMETERS

Lf Rf Lc Rc Cf Rd
600µH 1µΩ 10µH 1µΩ 10µF 1µΩ

TABLE II
PCC VOLTAGE AND INVERTER CURRENT MAGNITUDES FOR NDAE AND

SIMULINK SIMULATIONS

Fault condition voltage/current NDAE Simulink

Pre-fault PCC voltage 394 V 395 V
Inverter current 1500 A 1580 A

Post-fault PCC voltage 167 V 200 V
Inverter current 1825 A 1800 A

time is defined as ∆t = Tb − Tp, where Tb and Tp are the
operation times of the backup and primary relays, respectively.
To coordinate the relays, the following should hold true:
Tb−Tp ≥ CTI , that is the discrimination time should always
be greater than or equal to the CTI. The operating time T
of a relay is defined in Eq. 18, where TDS is the time dial
setting, IF is the fault current, IP is the pickup setting, and
A,B, and ρ are the relay curve characteristic coefficients.

T = TDS

 A(
IF
IP

)ρ
− 1

+B

 (18)

There are two types of blinding misoperations, namely,
complete blinding and backup blinding, as shown in Fig.
7. Complete blinding occurs when there is a fault current
which is lower in magnitude compared to the pickup setting,
meaning the relay will not operate for that fault current.
Backup protection blinding can be defined as a failure-to-trip
within a specified time, for a relay which is acting as backup
protection. This time can be referred to as the blinding
threshold, and for a well coordinated relay pair, it would hold
that CTI ≤ ∆t ≤ tblind. Blinding is more likely to occur
due to increased IBR currents, which reduce the fault current
contributed by the upstream line [24, Fig. 4], potentially
moving fault currents below the pickup setting, or causing
delayed operation past the threshold for blinding. This work



(a) Complete Blinding (b) Backup Blinding

Fig. 7. Blinding Misoperations

Fig. 8. Operation time with irradiance 1000 W/m2.

studies the impact of the current limiting model on potential
backup blinding events.

V. DN & PV INVERTER SYSTEM FOR PROTECTION STUDY

The distribution network used in this study is same as
shown in Fig. 3. The line and load parameters are the same as
presented in Section III. The protection elements added to the
network are described next. Lines 200 − 300 and 300 − 400
each have an OCR placed at the sending bus. The relays follow
the IEEE Moderately Inverse characteristic with coefficients
A = 0.0515, B = 0.114, and ρ = 0.02, taken from IEEE
Standard C37.112-201 [25]. The relay on line 200 − 300 is
R1, and the relay on line 300 − 400 is R2. The CT ratio for
R1 is 1800 : 1, and the ratio for R2 is 900 : 1. The pickup
currents for R1 and R2 are 1.6 and 3 p.u., respectively, and
the TDS is set to 0.131 and 0.05, respectively.

The grid-following inverter, rated at 900 kW , is extended
with a PV system. The inverter filter parameters are listed in
Table I. The active power reference to the inverter comes from
the active power output of the PV array. The reactive power
setpoint is set to zero during normal operation.

VI. SIMULATION RESULTS WITH PROTECTION SYSTEM

The distribution network, PV inverter system, and inverter
control with current limiting have all been implemented in
MATLAB/Simulink with a discrete time-step of 1 µs. For
this study, relay R2 is bypassed, to emulate the failure of
the primary protection, and to observe the operation time of
the backup protection R1. The complete system is tested by
placing a three-phase fault on bus 400, at t = 3 s and removing
the fault at t = 3.8 s. Relay R1 is also reset at t = 3.8 s.

Fault ride through standards, such as the German grid
code [26], state that inverters must remain connected for up
to 0.7 s for a 45% voltage drop, and may require sustained
connection for up to 1.5 s depending on the voltage drop. A
simple fault ride through strategy is implemented in the PV
inverter, where after 150 ms any voltage drop below 30% will
cause the inverter to disconnect [26]. If the fault is cleared
and the voltage recovers above 90%, the inverter is connected
back to the network.

Fig. 9. Discrimination times.

Fig. 10. Power measurement with irradiance 1000 W/m2 and K = 6.

The fault is applied and the discrimination time is recorded,
for frozen-control and DRC limiting with dynamic factors
K = 2 and K = 6. The K factor controls the rate of how
much reactive current is injected for a given voltage drop, with
K = 2 and K = 6 being the typical minimum and maximum
values, respectively. Additionally, the irradiance is varied in
five discrete points {650, 700, 800, 900, 1000} W/m2. In
the present case study, we consider tblind to be 0.5 s, thus
any discrimination time greater than 0.5 s is considered to be
backup protection blinding.

Fig. 8 depicts the actual operation times for backup relay
R1 (blue) and the expected operation time of primary relay R2
(orange), for the irradiance case of 1000 W/m2; 1 means the
breaker is closed and 0 means the breaker is open. Operation
time for R2 is said to be expected because the relay is bypassed
but the time is still computed and plotted.

Inverter power measurements are shown in Fig. 10. At 0.5 s
the inverter is connected to the network and the active power
goes to 900 kW. At 3 s, the fault is applied and the reactive
power injection by the inverter can be observed. At 3.56 s,
the backup relay opens and the voltage drops below 30%, at
which point the inverter stops operating. After 3.8 s, when the
fault is removed and the breaker is reset (closed), the voltage
goes above 90% and the inverter is connected again.

Results of the discrimination times for frozen control and
DRC limiting are shown in Fig. 9, where the left axis has the
DRC discrimination times and the right y-axis has the frozen
discrimination times. For frozen control, the discrimination
times are all between the CTI and tblind, 0.2 s and 0.5 s
respectively, and it can be said that the relay settings are
reasonably coordinated. Both DRC lines, K = 2 and K =
6, are following the same trend, where as the irradiance



(a) Frozen (b) Dynamic K = 2 (c) Dynamic K = 6

Fig. 11. Inverter output current for different current limiting modes

(a) No Inverter (b) Inverter, 650 W/m2, K = 6 (c) Inverter, 1000 W/m2, K = 6

Fig. 12. Impact of the inverter current on the upstream line 200− 300

increases, discrimination time also increases. This is because
as irradiance increases, so does the PV current contribution,
which decreases the current contributed through line 200−300.
The trend of the line for K = 2 looks similar to that of
K = 6, with a vertical shift upwards. Higher currents, in
the case of K = 6, will result in faster operation times of
the backup relay, thus lower discrimination times. Conversely,
lower currents, in the case of K = 2, will result in delayed
or longer operation times, thus increased discrimination times.
For dynamic factor K = 6 and the last two irradiance points,
the discrimination time has exceeded the blinding threshold,
potentially affecting the safe DN operation. With dynamic
factor of K = 2, the relay settings under all irradiance cases
have resulted in blinding. From these results, it is evident that
protection system which is coordinated through fault analysis
performed with simplified fault response models, may face
misoperations when the actual nonlinear fault response occurs
in the network. Further, it is concluded that considering the
dynamic factor setting is also critical in the fault analysis used
for protection settings coordination.

The transient responses for frozen-control, and
dynamic-control with K = 2 and K = 6 modes, are
shown in Fig. 11. In Fig. 11a, the response for frozen control,
the current magnitude during the fault remains very close to
the prefault magnitude. In Figs. 11b and 11c, under DRC
control, it can be seen the current magnitude during fault
is increased in compared to the prefault magnitude. Fig. 12
shows the current through line 200−300, without the inverter,
and with the inverter under irradiance values of 650 W/m2

and 1000 W/m2. The impact of the inverter current on
the upstream line 200 − 300 is evident by comparing the
no inverter plot to the ones with inverter. With the inverter

connected, the upstream current is reduced, which is the
cause of the delayed operation of backup relay R1.

VII. CONCLUSIONS AND FUTURE WORK

A nonlinear differential and algebraic equation model for
inverters with DRC limiting connected to a distribution
network under faulted conditions is developed. The PV inverter
control system with DRC limiter has been implemented in
Simulink and coupled with a 5-bus distribution network,
which has a protection system consisting of two OCRs.
Discrimination times are recorded for various irradiance
scenarios for fault response following frozen control as well as
dynamic control with K = 2 and with K = 6. It is observed
that increasing irradiance causes increased discrimination time
between primary and backup relays for dynamic limiting
mode. Further, if K factor for the inverter current limiter is
changed, discrimination times can increase, potentially causing
blinding scenarios. It is thus of critical importance to properly
model the current limiter when performing fault analysis, to
protect the network from potential blinding events.

Future research includes analysis of larger networks,
introducing unbalanced faults, and investigating DRC limiter
strategies with simultaneous positive- and negative-sequence
current control.
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