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Abstract--In this paper, a rigorous and independent validation 

of two different approaches for calculating the ground-return 

impedance and admittance of multiconductor underground cable 

systems using the transmission line theory is carried out. 

Furthermore, analyses are performed to evaluate the accuracy of 

a closed-form approximation for the calculation of the ground-

return admittance of underground cable systems. The validations 

are based on the full-wave finite-difference time-domain (FDTD) 

method and consider the calculation of transients on flat and 

trefoil underground cable arrangements for different excitation 

types. Short cable lengths of 50 m and 100 m and soil resistivities 

of up to 1000 Ωm are considered. The results demonstrate the 

validity of the transmission line theory for the calculation of fast 

transients (with risetimes as low as 0.2 µs) on underground cables 

provided the ground-return parameters are rigorously 

determined, with the advantage of presenting much greater 

efficiency and easiness to implement in electromagnetic transient 

simulators compared to the full-wave FDTD method. Lastly, it is 

shown that the ground-return admittance approximation, despite 

its simplicity, leads to results comparable to those obtained 

through more complete formulations for the calculation of 

transients in underground cables, but more efficiently and 

without significant loss of accuracy. 
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I. INTRODUCTION

HERE has been a renewed interest in the search for more

accurate models for the simulation of electromagnetic

transients in underground cables using the transmission line 

theory, including a more rigorous calculation of the ground-

return parameters [1]. It has been shown, for example, that 

neglecting the ground-return admittance leads to inaccurate 

results in the simulation of high-frequency transients, 

especially for high-resistivity soils [1]–[5]. However, most 

electromagnetic transient (EMT)-type simulators still neglect 

this parameter in the calculation of the per-unit-length cable 

parameters [6]. This may compromise the accuracy of 

insulation coordination studies, especially in case of short 

cable sections used in grid-connected renewable energy 

sources and hybrid overhead/underground line systems [7], 

[8], which present natural frequencies reaching hundreds of 

kHz and beyond. 

Different approaches have been proposed to calculate the 

ground-return parameters of underground cables [5], [9]–[13]. 

Recent contributions include the formulations of 

Papadopoulos et al. [5] and Xue et al. [13], which were 

derived based on a quasi-TEM approximation of the modal 

equation resulting from the application of the Hertz potentials 

to solve the problem of a buried dielectric-coated wire. The 

overall consistency of these formulations has been confirmed 

via comparisons with existing expressions [1], [5], [13], [14] 

or frequency-domain studies taking as reference full-wave 

electromagnetic models [15], [16]. However, their validity for 

the simulation of transients on multiconductor underground 

cable systems has not been fully demonstrated. 

A first attempt to provide a rigorous and independent 

validation of the expressions proposed by Papadopoulos et al. 

[5] and Xue et al. [13] for the calculation of transients in

underground cables was carried out by the authors in [17]

using the full-wave finite-difference time-domain (FDTD)

method. Nevertheless, only the case of a single underground

cable was considered. Here, the analysis presented in [17] is

extended to verify the accuracy of both equations for the

calculation of electromagnetic transients in a three-phase

underground cable system using the transmission line theory.

In order to complement the analyses involving the

transmission line theory, an assessment of the validity of the

approach proposed in [14] for calculating the ground-return
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admittance of underground cable systems is performed as an 

alternative to simplify the calculation of the per-unit-length 

cable parameters without loss of accuracy. Once again, a full-

wave FDTD model is taken as reference to provide a rigorous 

framework for the model validation. This analysis is of 

paramount importance not only for providing an independent 

validation of both expressions, but for confirming the need of 

a complete change of paradigm in the calculation of ground-

return parameters of underground cable models available in 

EMT-type simulators. 

This paper is organized as follows. Section II presents the 

three-phase cable configurations considered in the analysis 

and introduces the simulated cases. The per-unit-length cable 

parameter calculation is presented in Section III. The solution 

methods based on the full-wave FDTD method and the 

transmission line theory are described in brief in Section IV. 

Results and analysis are presented in Section V, followed by 

conclusions in Section VI. 

II.  SIMULATED CASES 

To investigate the validity of the expressions of 

Papadopoulos et al. [5] and Xue et al. [13] for the calculation 

of ground-return admittance in the simulation of transients on 

multiconductor underground cable systems using transmission 

line theory, and to check the accuracy of the simplified 

expression proposed by Duarte et al. [14], the flat and trefoil 

configurations shown in Fig. 1 are considered [18]. To single 

out the influence of the ground-return parameters on the 

resulting transient waveforms, each cable was reduced to a 

solid core surrounded by a dielectric layer for simplicity. The 

extension of the results to more realistic internal cable 

structures is straightforward and can be performed with the 

formulation proposed in [19]. 

Each cable core has a radius 𝑎 = 2.3 cm and a resistivity 

𝜌𝑐 =1.7×10-8 Ωm; the insulating layer has an external radius 

𝑏 =10 cm and a dielectric constant 𝜀𝑟𝑖𝑛 = 𝜀𝑖𝑛/𝜀0 , where 

𝜀𝑖𝑛 =3.5 is the relative permittivity of the insulation and 𝜀0 =
 8.85 × 10-12 F/m is the vacuum permittivity; the burial depth 

is ℎ = 1 m; the separation between adjacent cables is 𝑥𝑖𝑗 = 

30 cm, and the total cable length ℓ is varied from 50 m to 

100 m to investigate short sections often found in renewable 

energy parks [20]. The soil has a conductivity 𝜎1 , a 

permittivity 𝜀1 = 𝜀𝑟1𝜀0, and a permeability 𝜇1, where 𝜀𝑟1 = 

10 and 𝜇1 = 𝜇0 = 4π × 10-7 H/m. The air conductivity is 

σ0 = 0. 

Two different types of excitations were considered, namely 

a longitudinal excitation with an ideal voltage source placed at 

the midpoint of the cable (𝑥 = ℓ/2), as shown in Fig. 2(a), and 

a lateral excitation with an ideal voltage source positioned at 

the sending end of the cable (𝑥 = 0), as shown in Fig. 2(b). 

The longitudinal excitation was previously used in [17], 

following the scenario simulated by Theethayi et al. in [4]. It 

can represent, for example, the coupling of an external 

electromagnetic field with the cable [3]. The lateral excitation 

can represent the effect of a switching or lightning transient 

overvoltage. 

 
(a) 

 
(b) 

Fig. 1.  Cable system configurations: (a) flat and (b) trefoil. 

 

 
 

(a) (b) 
Fig. 2.  (a) Longitudinal and (b) lateral excitations. 

III.  PER-UNIT-LENGTH CABLE PARAMETER CALCULATION 

For simulating the three-phase cable systems shown in   

Fig. 1 using the transmission line theory, the per-unit-length 

impedance 𝒁  and admittance 𝒀  matrices are calculated 

using (1) and (2), respectively, 

 

𝒁 = 𝒁𝒊 + 𝒁𝒆 + 𝒁𝒈 (1) 

𝒀 = 𝑗𝜔𝑷−1 (2) 

𝑷 = 𝑷𝒆 + 𝑷𝒈 (3). 
 

Matrix 𝒁 in (1) is the sum of the internal impedance 𝒁𝒊, 

the external impedance 𝒁𝒆 = 𝑗𝜔𝑳 , and the ground-return 

impedance 𝒁𝒈 [4]. The elements of the diagonal matrix 𝒁𝒊 

are given by [21] 

 

𝑍𝑖𝑖𝑖
=

𝜌𝑐√𝑗𝜔𝜇0/𝜌𝑐

2𝜋𝑎
 
𝐼0(√𝑗𝜔𝜇0/𝜌𝑐𝑎)

𝐼1(√𝑗𝜔𝜇0/𝜌𝑐𝑎)
 (4) 

 

where 𝐼0 and 𝐼1 are modified Bessel functions of the first 

kind. The elements of 𝒁𝒆, which is also diagonal, are given by 

[21] 

 

𝐿𝑖𝑖 =
𝜇0

2𝜋
𝑙𝑛 (

𝑏

𝑎
) (5). 

 

Finally, the elements of 𝒁𝒈  are calculated with the 

expressions of Papadopoulos et al. [5], Xue et al. [13] or with 

Sunde’s equation [22]. 

In (2) and (3), 𝑷 is the potential coefficient matrix. It 

corresponds to the sum of the external diagonal matrix 𝑷𝒆, 

whose elements are given by [4] 

Air: 

Soil: 

Air: 

Soil: 



𝑃𝑒 𝑖𝑖
=

𝑙𝑛 (
𝑏
𝑎

)

2𝜋𝜀𝑖𝑛

 (6) 

 

and the ground-return potential coefficient matrix 𝑷𝒈 , whose 

elements are calculated with the expressions proposed by 

Papadopoulos et al. [5] or Xue et al. [13], or in terms of the 

ground-return admittance approximation 𝒀𝒈  derived by 

Duarte et al. [14] from Vance’s formula [10] as 
 

𝑷𝒈 =  𝑗𝜔𝒀𝒈
−1 (7) 

𝒀𝒈 =  𝜸𝒈
2 𝒁𝒈

−1 (8) 
 

where 𝒁𝒈 is given by Sunde’s expression [22] and 𝜸𝒈
2  is a 

diagonal matrix whose elements are equal to 𝛾𝑔
2

𝑖𝑖
=

𝑗𝜔𝜇0[𝜎1 + 𝑗𝜔𝜀1]. 

IV.  SOLUTION METHODS 

A.  FDTD full-wave method 

The modeling of each cable of Fig. 1 using the FDTD 

method is the same as in [17]. Each cable core is represented 

as a thin wire [23] with radius 𝑎 = 23 mm embedded in a 

rectangular prism with cells of cross-sectional area of 0.1 m x 

0.1 m, relative permittivity 𝜀𝑟𝑖𝑛= 3.5, and permeability 𝜇0, 

whose electromagnetic properties correspond to those of the 

cable insulation. For the lateral excitation shown in Fig. 2(b), 

the reference terminal of the source was connected to a 

grounding rod, modeled as a vertical thin wire with a radius of  

23 mm and a length of 5 m. This was necessary because in the 

simulations with the transmission line theory the lateral 

voltage source must be either referred to the remote earth 

potential or connected to a grounded element. However, to 

connect the negative terminal of the voltage source to a remote 

point with zero potential using the FDTD method, a long wire 

should be extended from the source terminal to the absorbing 

layer. Since this condition would interfere in the simulations 

and would be difficult to reproduce with the transmission line 

theory, the use of a grounding rod of finite length was seen as 

a compromise. In addition to being a more realistic condition, 

the grounding rod can be easily included in the transmission 

line theory modeling through its input impedance, which 

represents the voltage/current ratio in the frequency domain. 

The working volume is divided in Yee cells whose 

electromagnetic properties correspond to the air in the upper 

half-space, with zero conductivity, vacuum permittivity, and 

vacuum permeability, and to the soil in the lower half-space. 

The working volume is surrounded by an absorbing boundary 

modeled with perfectly matched convolutional layers [24]. To 

reduce the computational burden, non-uniform cells are 

considered as in [17]. To simulate cable lengths of 50 m and 

100 m, the working volumes are of 200 m x 380 m x 160 m 

and 400 m x 380 m x 160 m, respectively. The cable voltages 

are obtained by integrating the electric field along a linear path 

in the 𝑦 direction from a point 188 m below the ground, 

where the electromagnetic fields are negligible in the 

investigated conditions, to the wire surface. The FDTD code 

was developed by the authors and implemented in MATLAB. 

It was validated in [17] for both bare and insulated 

underground conductors. 

B.  Transmission line theory solution 

To simulate the cases shown in Fig. 2 using the 

transmission line theory, a technique based on the nodal 

admittance matrix �̅� is used. The nodal admittance matrix is 

determined by [21] 
 

�̅� = [
𝒀𝟏𝟏 𝒀𝟏𝟐

𝒀𝟐𝟏 𝒀𝟐𝟐
] (9) 

 

 

where 𝒀𝟏𝟏 = 𝒀𝟐𝟐 = 𝒀𝒄(𝟏 + 𝑨2)(𝟏 − 𝑨2)−1 , 𝒀𝟏𝟐 = 𝒀𝟐𝟏 =

−2𝒀𝒄𝑨(𝟏 − 𝑨2)−1, 𝟏 is the identity matrix, 𝒀𝒄 = 𝒁−1√𝒁𝒀 

and 𝑨 = exp (−ℓ√𝒁𝒀) . The nodal admittance matrix is 

obtained from the exact solution of telegrapher’s equations in 

the frequency-domain. It relates voltages 𝑽 and currents 𝑰 at 

the cable ends as 
 

𝑰 = �̅�𝑽 (10) 
 

where, for a single cable segment, 𝑽  and 𝑰  are 2𝑛 × 1 

vectors, �̅�  has size 2𝑛 × 2𝑛 , and 𝑛  is the number of 

conductors. 

All the calculations are performed in the frequency-domain 

and the transient responses are obtained with the numerical 

Laplace transform [25]. In the simulations with excitation at 

the end of the cable, the frequency-dependent input impedance 

𝑍𝑟𝑜𝑑(𝑠) of the grounding rod, connected to the reference 

terminal of the excitation source as shown in Fig. 2(b), is first 

computed using an accurate electromagnetic model [26] in the 

frequency range from dc to 10 MHz. Then, a pole-residue 

model of the calculated 𝑍𝑟𝑜𝑑(𝑠) of the form (10) is obtained 

using the vector fitting technique [27], [28]. Finally, the 

grounding rod input impedance is included into the nodal 

admittance matrix through its fitted pole-residue model. In 

(11), 𝑘𝑖 and 𝑝𝑖  are, respectively, the residues and poles, 𝑁 

is the order of the approximation and 𝐷 is a real scalar. In the 

Appendix, the values of the poles and residues of the 

grounding rod model, as well as their frequency responses, are 

presented. 
 

𝑍𝑟𝑜𝑑(𝑠 = 𝑗𝜔) = ∑
𝑘𝑖

𝑠 − 𝑝𝑖

+ 𝐷

𝑁

𝑚=1

 (11). 

V.  RESULTS AND ANALYSIS 

Two sets of analyzes are carried out. The first considers the 

horizontal arrangement shown in Fig. 1(a) for longitudinal and 

lateral excitations as illustrated in Fig. 2. The second analysis 

involves the trefoil arrangement shown in Fig. 1(b) and the 

same excitations previously mentioned. In both cases, the 

applied voltage corresponds to a normalized impulse 

waveform with an amplitude of 1 V, a risetime of 0.2 µs, and a 

time-to-half value of 1.83 µs. This waveform was chosen to 

cover a wide frequency range for a more consistent evaluation 

of the transmission line formulations. For the modeling of the 

voltage source, a single Heidler function 
 

𝑣(𝑡) = (𝑉0/𝜂)𝑒−𝑡/𝜏2{(𝑡/𝜏1)𝑛/[1 + (𝑡/𝜏1)𝑛]} (12) 
 

with 𝑉0/𝜂 = 1.39 V, 𝜏1 = 0.138 µs, 𝜏2 = 1.8 µs, and 𝑛 = 



2 is considered. Two different soil resistivities are assumed, 

namely 200 Ωm and 1000 Ωm. The latter corresponds to the 

upper limit recommended for the equations of Xue et al. [13], 

also used by Papadopoulos et al. [5]. The calculations were 

performed with either the full-wave FDTD method or the 

solution of the transmission line equations considering the 

expressions of Xue et al. [13] and Papadopoulos et al. [5], and 

the extension of Vance’s approximation proposed in [14] with 

Sunde’s formulation [22] for determining the ground-return 

parameters. 

For the longitudinal excitation, the voltage source is 

inserted at the midpoint of phase A as shown in Fig. 2(a). The 

sending and receiving ends of phases A, B and C were both 

left open. The voltages were calculated at the receiving ends 

of phases A and C (nodes 4 and 6, respectively). The results 

are shown in Figs. 3-6 for total cable lengths of 50 m and 100 

m. 

For the lateral excitation, the voltage source is inserted 

between the grounding rod and the sending end of phase A 

(node 1), while the sending ends of the remaining cables and 

all receiving ends were left open. Once again, the voltages 

were calculated at the receiving ends of phases A and C 

(nodes 4 and 6, respectively) for total cable lengths of 50 m 

and 100 m. The obtained results are shown in Figs. 7-10. 

The induced voltages at the receiving end of phase B were 

also calculated for the horizontal and trefoil configurations. 

Although not shown, the obtained results are similar to those 

presented for phase C and confirm the generality of the 

analyses performed with the formulations of Papadopoulos et 

al. [5], Xue et al. [13], and Duarte et al. [14]. 

As shown in Figs. 3-6, which refer to the longitudinal 

excitation, a good agreement is observed between the voltage 

waveforms calculated with the transmission line approach and 

the full-wave FDTD method regardless of the formulation 

considered for determining the ground-return parameters. This 

demonstrates that, for this type of excitation, the transmission 

line theory is sufficiently accurate even for the simulation of 

short cable sections, for which in principle a transverse 

electromagnetic (TEM) field structure should not be strictly 

valid. This is possibly motivated by the symmetry of the 

problem, which favors the formation of a quasi-TEM 

structure. Interestingly, the good agreement between the 

different approaches is observed even for a poorly conducting 

soil with a1000-Ωm resistivity, and for the voltages induced in 

the neighboring cables. These results, which are for the first 

time available in the literature, demonstrate the accuracy of 

the proposed transmission line formulations for calculating the 

ground-return parameters of multiconductor underground 

cable systems, particularly the mutual coupling effects. They 

are also in line with the analysis presented [17], which was 

restricted to a single cable. 

For the lateral excitation, whose results are shown in Figs. 

7-10, the agreement between the calculated voltage 

waveforms is also generally good, although greater deviations 

are observed at early times between the transmission line 

theory and the full-wave FDTD method for the 1000-Ωm soil. 

Such deviations are more significant for the 50-m long cable, 

as shown in Figs. 7(b) and 9(b) for the horizontal and trefoil 

arrangements, respectively. This suggests that, for the lateral 

excitation, the combination of short cable lengths and high-

resistivity soils creates a non-TEM field structure in which 

case the accuracy of the transmission line theory is slightly 

reduced [17]. Another possible source of inaccuracy in the 

lateral excitation case is the lack of electrical coupling 

between the vertical grounding rod and the cable in the 

simulations performed with the transmission line theory. In 

any case, the deviations observed for the lateral excitation are 

considered acceptable given the huge difference in the 

computer resources required for performing the simulations 

with the transmission line theory and the full-wave FDTD 

model. As an example, considering the scenario shown in Fig. 

3(b), the simulation time for the full-wave FDTD method is of 

approximately 60 h, whereas the corresponding simulation 

with transmission line theory, including the evaluation of the 

improper integrals of the extended transmission line 

approaches [5], [13], requires only few seconds in a computer 

with 128-GB memory and 2.9 GHz Intel Core I9-7920X 

processor. For the 200-Ωm soil, a good agreement between the 

calculated voltage waveforms is noted in all scenarios, 

regardless of cable arrangement and length, which possibly 

stems from the fact that for low resistivity soils, the effect of 

the ground-return admittance is less significant [17]. 

A remarkable feature of the results shown in Figs. 3-10 is 

the good agreement verified between the curves calculated 

with the approach proposed by Duarte et al. in [14], which is 

based on the extension of Vance’s formula [10] to 

multiconductor cable systems, and the FDTD method, 

especially for the induced voltages. The major advantage of 

this approach is that, similarly as with the closed-form 

approximations proposed in [29], the calculation of the 

improper integrals required in the equations proposed by Xue 

et al. [13] and Papadopoulos et al. [5] for determining the 

ground-return impedance is completely avoided. Also, it must 

be noted that the performed validation is not restricted to 50-m 

or 100-m long cables. For longer cables, the frequency content 

is reduced, and an even better agreement is expected between 

the transmission line theory and the full-wave FDTD method. 
 

  
(a) 

  
(b) 

 
Fig. 3.  Voltage waveforms calculated at the receiving ends of phases A (left) 

and C (right) considering a cable length of 50 m, soil resistivities (a) 200 Ωm 

and (b) 1000 Ωm and longitudinal excitation for a horizontal configuration. 



  
(a) 

  
(b) 

 
Fig. 4.  Voltage waveforms calculated at the receiving ends of phases A (left) 

and C (right) considering a cable length of 100 m, soil resistivities (a) 200 Ωm 

and (b) 1000 Ωm and longitudinal excitation for a horizontal configuration. 

 

  
(a) 

  
(b) 

 
Fig. 5.  Voltage waveforms calculated at the receiving ends of phases A (left) 

and C (right) considering a cable length of 50 m, soil resistivities (a) 200 Ωm 

and (b) 1000 Ωm and longitudinal excitation for a trefoil configuration. 

 
 

  
(a) 

  
(b) 

 
Fig. 6.  Voltage waveforms calculated at the receiving ends of phases A (left) 

and C (right) considering a cable length of 100 m, soil resistivities (a) 200 Ωm 

and (b) 1000 Ωm and longitudinal excitation for a trefoil configuration. 

 

  
(a) 

  
(b) 

 
Fig. 7.  Voltage waveforms calculated at the receiving ends of phases A (left) 

and C (right) considering cable a length of 50 m, soil resistivities (a) 200 Ωm 
and (b) 1000 Ωm and lateral excitation for a horizontal configuration. 

 
 

  
(a) 

  
(b) 

 
Fig. 8.  Voltage waveforms calculated at the receiving ends of phases A (left) 

and C (right) considering cable a length of 100 m, soil resistivities (a) 200 Ωm 

and (b) 1000 Ωm and lateral excitation for a horizontal configuration. 

 
 

  
(a) 

  
(b) 

 
Fig. 9.  Voltage waveforms calculated at the receiving ends of phases A (left) 

and C (right) considering a cable length of 50 m, soil resistivities (a) 200 Ωm 
and (b) 1000 Ωm and lateral excitation for a trefoil configuration. 

 
 



  
(a) 

  
(b) 

 
Fig. 10.  Voltage waveforms calculated at the receiving ends of phases A 

(left) and C (right) considering a cable length of 100 m, soil resistivities (a) 

200 Ωm and (b) 1000 Ωm and lateral excitation for a trefoil configuration. 

VI.  CONCLUSIONS 

A rigorous and independent validation of the extended 

transmission line approaches proposed by Papadopoulos et al. 

[5] and Xue et al. [13] for the transient analysis of 

multiconductor underground cable systems is presented in this 

paper. Furthermore, the validity of the closed-form 

approximation proposed by Duarte et al. [14] for calculating 

the ground-return admittance of underground cable 

arrangements is also shown. 

It is demonstrated that both methodologies lead to voltage 

waveforms in good agreement with those predicted by a 

rigorous full-wave FDTD model for different types of 

excitations and arrangements, short cable lengths of 50 m and 

100 m, and soil resistivities of up to 1000 Ωm. This agreement 

is expected to be even further if the proximity effect is 

included. It is also demonstrated that the approximation 

proposed by Duarte et al. [14] is sufficiently accurate for 

characterizing the ground-return admittance of underground 

cable systems. 

By generalizing the conclusions drawn in [17] for a single 

dielectric-coated cable, the obtained results show that the 

transmission line theory can be used to simulate transients on 

underground cable systems with an accuracy that is at least 

comparable to that of a full-wave FDTD model, with the 

advantage of presenting much greater computational 

efficiency and of being more easily implemented in EMT-like 

simulation programs for the simulation of complex electrical 

systems. 

VII.  APPENDIX 

The poles and residues of the grounding rod model used in 

the simulations with a lateral excitation are presented in Table 

I for soil resistivities of 200 Ωm and 1000 Ωm, respectively. 

The corresponding grounding impedances are shown in Fig. 

11. 

  

(a) (b) 

Fig. 11.  Grounding rod impedance for (a) 200 Ωm and (b) 1000 Ωm soil 

resistivities. 

TABLE I 
RATIONAL MODEL OF THE GROUNDING ROD 

𝑁 
200 Ωm 1000 Ωm 

𝑝𝑖 𝑘𝑖 𝑝𝑖 𝑘𝑖 
1 -7.3003× 104 5.5391× 104 -7.0563× 105 3.9665× 106 

2 -1.0001× 106 1.6182× 106 -1.1014× 107 2.0393× 109 

3 -6.2766× 106 1.7528× 107 -1.7410× 108 -2.2391× 1010 

4 
-2.6299× 107 

+𝑗4.0852× 107 
5.9170× 108 

+𝑗7.1241× 108 
-9.6987× 106 

+𝑗5.3780× 107 
1.7663× 109 

+𝑗3.6174× 107 

5 
-2.6299× 107 

−𝑗4.0852× 107 
5.9170× 108 

−𝑗7.1241× 108 
-9.6987× 106 

−𝑗5.3780× 107 
1.7663× 109 

−𝑗3.6174× 107 
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