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Passivity Enforcement of Wideband Model through a 
New and Full Perturbation Formulation 
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Abstract— Passive component models are necessary to ensure 
numerical stability in the simulation of electromagnetic transients 
in power systems. However, it is challenging to represent 
transmission lines and cables with frequency-dependent wideband 
models that are accurate, efficient, and passive.  This paper 
proposes a new method for the passivity enforcement of wideband 
line and cable models. The wideband models rely on pole-residue 
identification of characteristic admittance and propagation 
function in rational forms. In case the resulting models are not 
passive, the proposed method simultaneously applies perturbation 
to the residue matrices of characteristic admittance and 
propagation function. The set of equations related to passivity 
enforcement through the residues of propagation function in phase 
domain is complex and presented for the first time in this paper. 
The proposed approach minimizes the overall perturbation for 
maintaining passivity as opposed to the existing simplified 
approaches that rely on the perturbation of the residues of either 
characteristic admittance or diagonal elements of propagation 
function. The performance of the method is validated with 
application cases, and it is shown that it outperforms the existing 
methods that seek simplification in problem formulation.   

Keywords—Electromagnetic transients, passivity, 
transmission-line model. 

I. INTRODUCTION

Transient simulators are commonly used in power systems to 
assess switching and lightning-induced overvoltages, precise 
short-circuit currents, harmonics, and resonance conditions [1]. 
In these studies, wideband models that consider the frequency 
dependence of electrical parameters are needed for higher 
accuracy. Other than integration and interpolation errors, non-
passivity of wideband models may also lead to numerically 
unstable simulations in the time domain [2]–[5]. Thus, ensuring 
passivity will facilitate troubleshooting of an unstable time-
domain simulation. 

To accelerate time-domain simulations, wideband line/cable 
models including Universal Line Model (ULM) [6], [7], and 
Frequency Dependent Cable Model (FDCM) [4], rely on the 
rational fitting of the propagation function and characteristic 
admittance matrices (also known as line/cable functions). 
However, fitting processes performed in the complex domain 
such as vector fitting or the recently proposed more efficient 
algorithms [8], [9] do not guarantee passive models. A model is 
deemed passive if its line admittance matrix is positive real. It is 
also known that passivity violations might stem from theoretical 
assumptions made to compute the line/cable parameters [10]. 

Passivity is usually enforced with perturbations [11]-[15], in 
case of wideband line/cable models through perturbation of 
residues of the rationally fitted line/cable functions. This 
perturbation should still preserve the accuracy of the fitted 
model. However, the enforcement of passivity in wideband 
line/cable models is not straightforward because the line 
admittance matrix is a complex function of the propagation 
function and characteristic admittance. The difficulty arises 
often because of the fitting of the propagation function since it 
is a multi-delay matrix function. The characteristic admittance 
itself is a passive function and its fitting is less stringent. The 
current methods try to enforce passivity through residue 
perturbation of either the fitted characteristic admittance or the 
diagonal elements of the fitted propagation function, but not 
simultaneously [5], [11]. Although the passivity problem is often 
associated with the fitting of propagation function, perturbation 
of the residues of the fitted characteristic admittance as 
suggested in [11] is also reported to enforce passivity in some 
cases. Although this approach gives the impression to be 
disconnected from the root cause of the passivity problem, it can 
be justified given the fact that the reconstructed nodal 
admittance function of a line or cable is a function of its 
characteristic admittance.  

Another weakness of the existing passivity enforcement 
techniques is the perturbation of the diagonal elements of the 
fitted propagation function and lack of a complete passivity 
enforcement scheme in full phase domain. The procedure of 
passivity enforcement with the perturbation of characteristic 
admittance residues does not apply to the propagation function 
because the relation between the nodal admittance and the 
propagation function is non-linear. 

In this paper, a new passivity enforcement method is 
proposed, which is based on the simultaneous perturbation of the 
characteristic admittance and propagation function in full phase 
domain. Its mathematical foundation allows dealing with 
nonlinear dependence between line admittance and propagation 
function. The proposed method results in faster convergence and 
reduced perturbations compared to existing methods, which 
either modify the characteristic admittance or the diagonal 
elements of the propagation function. The proposed method 
does not significantly alter the fitted functions and maintains 
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fitting accuracy compared to the existing methods. This paper 
presents for the first time the set of equations related to passivity 
enforcement through the residues of propagation function in full 
phase domain. 

The paper is organized as follows: in Section II, the concept 
of passivity is briefly revisited to set the base. Section III 
discusses the proposed method. Several numerical examples are 
presented in Section IV with an elaborate discussion about their 
results. A discussion about the implementation aspects of the 
proposed method is provided in Section V. Conclusions are 
given in Section VI.  

II. PASSIVITY OF TRAVELLING WAVE-TYPE MODELS  

The passivity of a system represented by its admittance 

 n sY  can be assessed through the following condition [12], 

[16]:  

   0 ;i i s s j      Θ   (1) 

with     being the eigenvalue function and  sΘ  given by: 

      H
n ns s s Θ Y Y   (2) 

where  H
n sY  is the Hermitian of  n sY .  

In the case of wideband line and cable models,  n sY  can be 

generated as a function of s  from the fitted characteristic 

admittance and propagation functions: 
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Where I is the identity matrix, and YC and HI denote the fitted 
characteristic admittance and propagation functions with 

rational functions, respectively. We drop  s  from the matrices 

for the sake of simplicity. The rational forms for YC and HI are 
given as follows: 
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where n  is the number of poles of  C sY , D  is the constant 

matrix, ip is the ith pole whose corresponding matrix of residues 

is denoted by iR . Also, G  is the number of modal groups of 

 I sH , gn is the corresponding number of poles of the gth 

modal group, g  is the time delay associated with the gth modal 

group, ,ˆ i gp and ,
ˆ

i gR are the ith pole and residue matrix of the 

gth modal group.  

III. PASSIVITY ENFORCEMENT THROUGH MIXED 

PERTURBATION 

A. General definition  

In case a wideband model does not satisfy (1), one can enforce 
passivity by altering parameters of its corresponding YC or  HI . 
Usually, only residue matrices of YC or  HI are perturbed. 
Furthermore, as a common practice, one desires to perturb as 
little as possible in order to preserve the accuracy of the fitted 
model. Hence, passivity enforcement essentially casts in the 
form of a minimization problem with a nonlinear constraint due 
to the eigenvalue function. For the proposed method, the 
minimization problem is defined as: 
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where Rr is a vector that contains the relative perturbations of 
the residue matrices of YC and HI, I is an identity matrix such 

that R R  r I r  , and  msT relates Rr  with the relative 

perturbations of  C msY  and  I msH , as given in Appendix.  

Relative perturbations are treated here as the deviation of any 
given matrix or vector element divided by the value of the 
element itself, and they are chosen over their absolute 
counterparts since they provide better accuracy control [17].  

The frequencies  1 ms s  are chosen as follows:  

1. Computing the eigenvalues of  sΘ with a fine 

logarithmic sampling typically at least 100 per 
decade, in a frequency range that contains the fitting 
frequency range. 

2. The data obtained previously is utilized to determine 
the number of passive and non-passive frequency 

bands of the model, bn . 

3. For the desired number of frequency samples dm , 

close to m , each frequency band is logarithmically 

sampled with the number of samples bm , given in 

(7). 
4. For each non-passive band, an extra sample is added 

with the worst passivity violation (lowest 
eigenvalue) obtained from step one. Thus, m  

represents the final number of frequency samples,  
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Regarding the nonlinear constraint caused by the eigenvalue 
function, it is replaced by a linear approximation because 
otherwise, it is likely to hamper the execution speed and 
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convergence of the minimization problem [11], [14]. Thus, we 
define the minimization problem constraint as: 
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where  is a constant slightly greater than unity and  msP is the 

matrix that relates the first differential of the eigenvalue function 

evaluated at the frequency ms with the relative perturbation of 

the residues Rr . The first differential is the linear part of the 
change of a given function due to a perturbation [18]. The 

definition of P , T   and Rr  are in the Appendix.  

B. Variants of the proposed method 

The proposed method offers a range of possible variants, and 
one can classify them by considering three aspects: (i) perturbed 
functions, (ii) relative quantities and (iii) residue reduction. The 
first aspect leads to YC, HI, and simultaneous perturbations by 
modifying (6), (8) and (A.1)-(A.3) accordingly. The second one 
determines if all perturbations in the objective function are 
referenced to their original value, which requires simple 
modifications in (A.12), (A.14), (A.15) and (A.16) in case 
absolute perturbations are preferred. The third aspect controls if 
the perturbations on the residues and perturbed functions are 
minimized together by including the I matrix in (6).  

It is important to note that the residue reduction benefits the 
convergence of (6) strongly, as it will be shown in Section IV.  

On the other hand, some previous works can be classified as 
subvariants of our proposed method. For example, the methods 
presented in  [11] are obtained by perturbing YC or HI without 
the use of relative quantities and residue reduction. In addition, 
these methods are simplified versions since they are based on the 
perturbation of diagonal elements, which is straightforward to 
include in (6).  

C. Limitations  

The existing passivity enforcement techniques for wideband 
line and cable models are limited to small perturbations [11]-
[15]. The proposed method is also limited to small perturbations 
since it approximates the eigenvalue function with a linear 
function. However, as one of the application cases suggest, the 
proposed method can deal with larger violations compared to the 
existing methods. Passivity enforcement must be iteratively 
applied to achieve passivity since the linear approximation 
cannot guarantee full accuracy in the computation of the 
eigenvalue function [12]. In general, an additional limitation 
caused by using a linear approximation is that frequencies with 
repeated eigenvalues must be excluded since this approximation 
does not exist for these cases [18]. It should also be noted that 
passivity enforcement based on perturbation does not 

theoretically provide a guaranteed solution for all cases that 
present passivity violations. It rather provides a post fitting 
process and solution option to render a wideband line and cable 
model passive to ensure numerically stable time domain 
simulations.   

In cases with large passivity violations near DC, one can vary 
the per-unit-length conductance to mitigate and possibly, 
eliminate the passivity violation [5]. However, this may result in 
false transient responses particularly regarding the decay of 
trapped charge. On the other hand, applying DC correction [19] 
can help passivity without modifying the transient response. 

Unlike the frequency dependent network equivalents 

represented with simple residue pole models, nY has a complex 

form in case of line and cable models since it is reconstructed 
from YC and HI. Note that, YC is intrinsically a passive function 
and not demanding to fit with the existing fitting tools such as 
vector fitting or rational Krylov fitting [20], [21]. Its passivity 
enforcement is straightforward and the guaranteed passivity 
enforcement methods for network equivalents can be applied 
[22]. The propagation function, on the other hand, is not a 
passive function. There is no contemporary rational 
approximation method that provides the fitting of the 
propagation function in the phase domain while enforcing the 

passivity of nY . 

IV. APPLICATION EXAMPLES 

This section presents the metrics, test cases, and application 
results used to compare some variants of the proposed method 
with the following nomenclature “perturbed function”-“other 
aspects”. The perturbed functions can be YC, HI and 
simultaneous or combined (C). Regarding other aspects, we 
consider three options: All (use of relative quantities and residue 
reduction), NoRR (use of relative quantities without residue 
reduction) and existing options in the literature, which are 
described in Section III.B. Hence, the considered variants are C-
All, HI -All,  YC-All, C-NoRR, HI - NoRR,  YC- NoRR,   HI - 
existing, and YC- existing. The first five variants are the ones 
presented and formulated in this paper. The variant C-All is the 
most powerful option in terms of enforcing passivity with 
minimum deviation in YC and HI. The remaining variants are 
presented to demonstrate its performance and the weaknesses of 
the existing methods.  

A. Metrics of efficiency 

   The efficiency of each enforcement option (variant) is 
evaluated by considering the following four metrics, (i) success 
in passivity enforcement, (ii) deviations in YC and HI after the 
enforcement of passivity (iii) execution time, and (iv) number of 
iterations.  

Regarding the first metric, a failure in passivity enforcement 
is declared if the model is not passive at the end of 21 iterations. 
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This limit is quite permissive, considering that C-All converged 
in less than five iterations for most cases.  

The induced deviations in YC and HI are measured by 
applying the Feature Selective Validation (FSV) method [23]-
[24] between DC and 100 MHz with 100 samples per decade.  
FSV gives a metric named Global Difference Measure (GDM), 
which yields a low value when the two datasets are in excellent 
agreement, and it can be interpreted as shown in Table I. We took 
the maximum GDM of all elements in order to provide a global 
metric for all elements of YC (or HI).  

The execution time is included to provide further insight into 
the numerical implementation of the methods presented and 
associated computational burden. Note that passivity 
enforcement is an offline step performed after the rational 
fitting; hence, it does not have an impact on the performance of 
time-domain simulation, but it is evaluated to see if it is 
prohibitively large.  

The number of iterations is provided to facilitate the 
assessment of the speed of convergence provided by the 
execution time. 

B. Test cases 

In this section, five cases are considered: an overhead 
transmission line (Case 1) and four underground multiconductor 
systems (Cases 2-5). The overhead line configuration is shown 
in Fig. 1, whereas the underground cases are based on the 
configuration depicted in Fig. 2. The details of the fitted models 
for all cases are provided in Table II to Table IV. It is important 
to mention that some models used the DC correction [19] to 
avoid large passivity violations at low frequencies. On the other 
hand, Case 5 is deliberately fitted starting from 10 Hz to generate 
large passivity violations and demonstrate the limitation of 
perturbation approach.  

Regarding the frequency sampling, all variants used 20dm 
and enforced passivity between DC and 100 MHz, except for the 
overhead case, which used 80dm  . 

TABLE I: GDM INTERPRETATION SCALE  

Range 
Level of 
similarity 

Range 
Level of 
similarity 

0.1GDM    Excellent  0.4 0.8GDM  Fair  
0.1 0.2GDM  Very good  0.8 1.6GDM  Poor  
0.2 0.4GDM  Good  1.6 GDM  Extremely poor  

 

h1

h2
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d1

d2

d3

d4

d1

d2

d3

d4

Phase 1
Phase 2
Phase 3
Ground wire

 
Fig. 1. Overhead line configuration, the parameters are given in Table I. 
 

TABLE II: PARAMETERS OF CASE #1  
Parameter Value Parameter Value 

Diameter of phase 
conductors 

4.06908 cm 
1h   15.24 m 

Diameter of ground wires 0.98044 cm 
2h   23.622 m 

DC resistance of phase 
conductors 

0.0324 Ω/Km 
3h  30.023 m 

DC resistance of ground 
wires  

1.6216 Ω/Km 
1d  6.3246 m 

Transmission line length 100 Km  
2d  5.8674 m 

Ground return resistivity 100 Ωm  
3d  0.2286 m 

  
4d  3.9319 m 

 

 
Fig. 2. Underground multiconductor configuration. The values of the 
parameters are given in Table III. 

TABLE III: PARAMETERS OF EACH CASE 

Parameter Case #2 Case #3 Case #4 Case #5 

,in Cr   (mm) 3.175 0 3.175 0 

,out Cr  (mm) 12.54 28 12.54 30 

,in Sr   (mm) 22.73 33.5 22.73 48.25 

,out Sr  (mm) 26.22 38 26.22 48.47 

,out OIr  (mm) 29.335 42.5 29.335 53 

C (Ωm) 1.7e-6 3.4e-8 1.7e-8 1.7e-8 

S  (Ωm) 2.1e-5 1.7e-8 2.1e-7 3.4e-7 

Soil (Ωm)  100  150 100  100  

,r CI  3.5 2.81 3.5 2.85 

,r OI  2 2.51 2 2.51 

 tan
CI

  0 0 0.0004 0.01 

 tan
OI

  0 0 0.0004 0.01 

h (m) 1 1 1 1 
d (m) 0.3 0.3 0.3 0.3 

Length (Km) 2 1.6 12 1 

TABLE IV:  MODELS DETAILS FOR EACH CASE 

Parameter 
Case 

#1 
Case 

#2 
Case 

#3 
Case 

#4 
Case 

#5 
YC Order 7 15 5 12 12 
Number of groups 2 4 4 6 4 
Max group order  4 14 4 12 20 
DC correction No Yes No Yes Yes 
Fitted frequency 
range (Hz) 

[1, 
1e8] 

[1e-2, 
1e7] 

[1e-2, 
1e8] 

[1e-1, 
1e8] 

[10, 
1e8] 

Maximum passivity 
violation 

-2.9e-6 -2.9e-5 -3.2e-2 -1.2e-4 -4.54 

C. Discussion of results: Cases 1 to 4 

The results for each metric are shown in Fig. 3-Fig. 7. 
According to Fig. 3, all variants have almost the same execution 
time for problems with small passivity violations, such as Case 

Outer insulator: 
εCI, tan(δ)CI

h

d

rout,C

rin,S

rout,OI

ρSoil

Core: ρC

rin,C

Sheath: ρS

Core insulator: 
εCI, tan(δ)CI

rout,S
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1. The existing approach is the one described in  [11] since it 
epitomizes the state-of-the-art in passivity enforcement 
approaches of line and cable models through residue 
perturbation.  Note that the existing approach for the 
perturbation of HI is excluded in Fig. 3 since its application 
results in numerical problems. Similarly, its data should be 
ignored in Fig. 7. 

As passivity violations become more significant, most 
variants stop being able to enforce passivity, as shown in Fig. 4. 
Only the proposed C-All and HI -All deal with all cases, whereas 
YC-All has limited effectiveness, but it is better than the 
remaining variants. Fig. 4 shows the positive impact of using 
residue reduction on the convergence of the proposed method.  

The low effectiveness of the variants in [11]  is due to the 
diagonal perturbation restriction, which we tested by applying 
this restriction to C-All, HI -All, and YC-All in cases 2, 3, and 4, 
however, we did not include all the results due to space 
constraints. 

 
Fig. 3: Execution times of the different variants of passivity enforcement.  

 
Fig. 4: Success of the considered variants of passivity enforcement (same 
legend as Fig. 3)  

 
Fig. 5: Maximum GDM of YC (same legend as Fig. 3). Variants who only 
perturb HI are not reported since no deviation is induced in YC. 
 

 
Fig. 6: Maximum GDM of HI (same legend as Fig. 3). Variants who only 
perturb YC are not reported since no deviation is induced in HI. 

 
Fig. 7: Number of iterations for each variant with a limit of 21 (same legend as 
Fig. 3).  

 
Regarding the deviation performance, one can appreciate the 

deviation-wise improved performance of C-All compared to 
other variants since C-All has an equal or better performance 
than HI-All and YC-All for all cases, as shown in Fig. 5, and Fig. 
6. Note that C-NoRR has a better performance than C-All, but 
only for the case with the smallest passivity violation. 
Additionally, other variants including the existing ones induce a 
strong deviation (GMD>0.8) before hitting the iteration limit. 

It can be seen in Fig. 7 that C-All converges in fewer iterations 
than other variants and HI-All is the only one which gets similar 
convergence, whereas the execution time shows the C-All and 
C-NoRR variants take more time than their non-concurrent 
counterparts, see Fig. 3. This cost in execution time is due to full 
formulation as opposed to the existing simplified and non-
simultaneous formulations. However, the extra time cost tends 
to be negligible for C-All compared to HI-All and YC-All, which 
is expected given the simple structure of YC in contrast to HI. 

In consequence, C-All can replace other variants since it 
provides lower deviations, better convergence, and comparable 
execution times in general. Passivity enforcement is a one-time 
process before moving forward to time domain simulations and 
it does not have an impact on the CPU time of time domain 
simulations. Therefore, unless prohibitive, its execution time is 
not as important as convergence and deviation characteristics.  

D. Limitations: Case 5 

The passivity violations of the wideband model are shown in 
Fig. 8. None of the perturbation approaches could enforce 
passivity.  This is due to the large passivity violations and the 
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proximity of the eigenvalues, as seen near 1 MHz in Fig. 8. The 
former pushes the passivity enforcement to induce a large 
perturbation to compensate large negative eigenvalues, 
rendering the linear approximation of the functions involved 
inaccurate. The latter reduces even more the range in which the 
linear approximation of the eigenvalues is accurate [25], [26]. 

Fig. 8: Eigenvalues of  sΘ , showing a large passivity violation near 1 MHz 

E. Multicable System: Case 6 

Consider the 6 phase 12 conductor cable system in Fig. 9 with 
electrical and magnetic properties as listed in Table V.  The 
objective of this test case is to show the applicability of the 
proposed combined method for large order systems. Depending 
on the setting of precision and number of poles, different sets of 
residue pole pairs can be obtained in fitting. The resulting model 
could exhibit passivity violations at different scales depending 
on the fitting parameters and selected fitting band. Although not 
guaranteed, if encountered, larger violations can be avoided by 
trying different fitting parameters. In this case, a wideband 
model with violations up to 10-3 in magnitude is obtained. The 
sum of the number of poles of modal groups is 114.  

TABLE V: CABLE DATA FOR THE SYSTEM OF FIG. 9 

Inner-Outer Radius of the Core 3.175-12.54 mm 
Inner-Outer Radius of the Sheath 22.735-26.225 mm 

Outer Insulation Radius 29.335 mm 
Resistivity of Sheath 1.7x10-8 Ohm m 
Resistivity of Core 2.1x10-7 Ohm m 

Core Insulator Relative Permittivity  3.5 
Shield Insulator Relative Permittivity 2.0 

Insulation Loss Factor 0.001 
Cable Length 1 km 

Earth Resistivity 250 Ohm m 

 

reference

1.1 m

0.25 m

0.50 m

1 m

 
Fig. 9: Layout of the 12 conductor cable system 

The proposed combined method effectively eliminates 
passivity violations. The resulting model is tested in the time 
domain using a dc energization test set up for numerical 
purposes. In this test, the shield conductors are grounded. The 
first three core conductors are energized with a dc voltage 

source. The remaining core conductors, whether at the receiving 
or sending ends, are open circuited. It is possible to test the 
model for a rich frequency band using dc step voltage excitation. 
Fig. 10 shows the receiving end core voltage of the first cable 
obtained with the passivity enforced model which overlaps with 
the original solution.  

Fig. 10: Receiving end core voltage 

V. IMPLEMENTATION ASPECTS  

The execution time may occasionally be very long, as shown 
in Fig. 3. This problem is caused by the numerical 
implementation of (6). Note that one can express the objective 

function of (6) as T Tx M Mx , where TM M must be a positive 

definite matrix since  
2

2
Mx is a convex function. This rewritten 

expression is shown in (9). However, TM M may not be positive 
definite due to limited numerical accuracy, even after applying 
suitable preconditioning, such as column normalization. Thus, a 
more robust numerical implementation is used to handle this 
problem at the cost of long execution times. 

  2

2
min . . 8s t

x
Mx   (9) 

We exploited the sparsity of matrices T  and I  to improve 
the execution time of our proposed method, which can be 
implemented in MATLAB with the LSQLIN or FMINCON 
routines.    

Increasing the number of frequency samples may decrease the 
overall perturbation required to achieve the passivity with a 
lower number of iterations, but at the cost of increasing the 
execution time, which as seen in the examples, tends to be very 
short and should not be a concern. However, slightly greater 
perturbations are obtained for 160m  . This behavior can be 

attributed to the loss of weight of Rr with respect to the sheer 
number of the other elements of the norm in (6) when the 
number of frequency samples increases.  Thus, selecting the 
optimum number and location of the samples requires further 
research. 

VI. CONCLUSIONS 

This paper proposes a new simultaneous passivity 
enforcement method. The new method relies on the perturbation 
of characteristic admittance and propagation function 
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simultaneously along with the use of relative quantities and 
residue reduction. Relative quantities improve the accuracy 
control whereas residue reduction helps the methods to converge 
faster. 

The formulation of passivity enforcement problem in full 
phase frame is not straightforward for wideband line and cable 
models and provided for the first time in this paper. The 
proposed method allows obtaining more accurate passive-fitted 
models compared to the existing methods. The test cases show 
that the proposed method can be successfully applied to 
wideband line and cable models. It maintains passivity 
enforcement whereas the existing methods either fail or require 
larger deviations. On the other hand, the perturbation approach 
cannot provide a guaranteed solution and is negatively 
influenced by the scale of passivity violation and proximity of 
eigenvalues violating passivity. On the other hand, it is possible 
to reduce the violations by altering the fitting parameters in the 
first place and render the perturbation process more likely to 
produce a passive model. 

                        APPENDIX: MATRIX DEFINITIONS 

In this appendix, we drop the term  s  for the sake of brevity, 

and we define matrices P ,  T and vector Rr , required by (6), 
as follows: 

 

  
  
  
  

* *

* *

* *

* *

Re

Im

Re

Im

TT

T

T

T

  
 

 
 
  
 

  

E AWF BW F

E BW F AWF
P

E CWG DW G

E DW G CWG

  

 

  

 

  (A.1) 

 
 

 ˆ

L

L

 
 
 
 

Ξ FWF 0
T

0 GWG



   (A.2) 

 

 
 
 
 

Re

Im

ˆRe

ˆIm

R

R

R

R

R

 
 
 
  
 
 
  

r

r
r

r

r

   (A.3) 

where  stands for pseudoinverse, the matrices , , , , ,E A B C D    

ˆ, , , , , ,W W F G F G Ξ
 

 and matrix function L  are given in (A.4)- 

(A.18). Note that the vectors Rr  and ˆ Rr contain the relative 

perturbations of residues in CY and IH . 

 
1 1

2 2

1

c c

T H

i
T H

n n

 
 

  
  

v v

E v

v v

    (A.4) 

  2 cn I A I H Σ   (A.5) 

  *
2 cI n B H I ΣΦ   (A.6) 

 

      
      

       

2

2

2

c

c

c c

T T

C n I

T T
C n I

T T
C I n n I

    

   

     

C B C Y I Σ H D D

B C Y I Σ D DH

Y A Σ H I I H Π



  (A.7) 

 

      
      

      
 

*
2

*

2

* *

*2

c

c

c c

H H

n C I

H H
n C I

H H
C I n n I

H
C

    

   

    

 

D I B C Y Σ D H D Φ

I B C Y Σ DH D Φ

A Y Σ H I I H Φ

A Y ΠΦ



  (A.8) 

 1c cn n n
    W I WΞ I WΞ


   (A.9) 

 

 

 

 

 

1
1 1,

,

ˆ̂
ˆ

ˆ̂
;

ˆ ˆˆ

c

G
c

TT TTs

n g

g

T T
s

n n gG

e

e









                      

W I W

W W

I WW


    (A.10) 

 

 

 

1vech

vech n

 
 

  
 
  

R

r

R

   (A.11) 

  

1

2

0 0

0 0
diag

0 0 n

 
 
  
 
 
 

r

r
F r

r




   


  (A.12) 

 

 

 

1,1

,

ˆvec

ˆ ;

ˆvec
g

g

g

G n g

 
   
       
    

 

Rr

r r

r R

    (A.13) 

  ˆdiagG r   (A.14) 

    1

diag vec C


F Y   (A.15) 

    1ˆ diag vec I


G H   (A.16) 

      2 1 /2
vec vech ; N N

N N N


 

 U Ξ U U    (A.17) 

      
   

Re Im

Im Re
L

  
  
 

U U
U

U U
  (A.18) 

Symbols * and stand for complex conjugate and Kronecker 

product, respectively. iv  is the right eigenvector associated 

with i .  NI  denotes an identity matrix of dimension N and cn

is the number of conductors. The operator  vec   stacks the 
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elements of a matrix into a column vector, whereas operator 

 vech   only stacks the lower triangular part of a symmetric 

matrix.  Matrices , , , , , , , , ,I C iH Y A B C D Φ Σ Π W  and ,
ˆ

i gW are 

given in (A.19)-(A.29) 

  I  H A B C   (A.19) 

 2C C Y I Y   (A.20) 

   12
2 cn I


  A I I H   (A.21) 

    2
2 cn Is   B I I H   (A.22) 

  0 1
2

1 0 I

 
   
 

C H   (A.23) 

    12

cn I s


 D I H   (A.24) 

    2 2vec vecT

N N
U Φ U   (A.25) 

    2 22 4
vec vec

N N
 I U Σ U   (A.26) 

  2 24

0 1
vec vec

1 0 N N

  
   

  
U Π U   (A.27) 

 
1

ci n
is p




W I   (A.28) 

 ,
,

1ˆ
ˆ ci g n

i gs p



W I   (A.29) 

The matrices , ,Φ Σ Π and Ξ  are made of 1’s and 0’s and 
thus, they are not affected by conjugate operations. Φ is the 
commutation matrix and Ξ is the duplication matrix.  

The matrices presented here are obtained by applying matrix 
differentials theory [18].  
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