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Abstract—This paper proposes a novel strategy to detect and
classify power quality disturbances. The strategy comprises the
Teager-Kaiser energy operator (TKEO) and the discrete energy
separation algorithm (DESA). The TKEO is used to track the
signal energy and capture the energy changes, whereas the DESA
algorithm is utilized to estimate the frequency and amplitude of
the signal. These features are employed to build a ruled decision
tree to detect and classify 15 PQ disturbances. PQ events with a
complex nature are generated given the IEEE-1159 standard by
PQ-SyDa toolbox. To confirm the effectiveness and performance
of the proposed strategy, it is evaluated using synthetic signals,
time-domain simulations performed in Matlab/Simulink, and real
sag events where an accuracy prediction of around 97% is
reached.

Keywords—Classification, detection, discrete energy separation
algorithm, power quality disturbances, ruled decision tree,
Teager-Kaiser energy operator.

I. INTRODUCTION

Nowadays, the micro-generation systems integration,
switching of capacitor banks, presence of nonlinear loads,
input and output of large inductive loads, faults in the primary
distribution feeder, lightning, and the power electronics
equipment increase and their sensitive components to supply
fluctuations, among other factors are caused by the power
quality assessment importance [1], [2], [3], [4].

To ensure power quality adequate level, it is necessary to
identify and classify the PQ events correctly. PQ events are
described in the IEEE 1159 standard, which depends on their
time-varying statistical characteristics [5], [6]. On the other
hand, the PQ measurement methods to achieve the information
to obtain the class of an event and their parameters are reported
in the IEC61000-4-30 standard [7].

The detection and classification of power quality
disturbances have been meanly addressed by two approaches:
signal processing techniques and the application of pattern
recognition techniques [8], [9], [10], [11]. The former focuses
on feature extraction techniques such as Fourier transform, S
transform, Hilbert Huang transform, Wavelet transform, and
miscellaneous feature extraction techniques [8], [9], [10], [11].
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The latter is based on machine learning-based classification
techniques such as Support Vector Machine, Artificial Neural
Network, Fuzzy Logic, Neuro-Fuzzy, Genetic algorithms, and
Deep learning classification methods [8], [9], [10], [11].

Into the signal processing-based feature extraction
techniques are included the short-time Fourier transform
(STFT) [12], and the Gabor transform (GT) [13], which
provides phase and frequency information, but exhibits
inadequate temporal resolution and susceptibility to long-term
problems. The wavelet transform (WT) results in a suitable
tool for discontinuous and suddenly changing signals, and
also presents usefulness in identifying events such as sags,
swell, over-voltage, flickers, power interruption, electrical
noise, and harmonic distortion. However, it presents degraded
phase information in noisy conditions [14], [15], [16],
[17]. The Stockwell transform (ST) improves the adaptive
time-frequency resolution but at a high computational cost
[18].

Conversely, adaptive mode
have gained popularity due to their highly adaptive
capabilities and data-driven nature. For instance, the
empirical mode decomposition (EMD) is a method that
decomposes complex signals into intrinsic mode functions
and adaptive time-frequency decomposition, but exhibits
limited decomposition performance due to mode mixing and
endpoint effect [19]. On the other hand, the features of the
Hilbert Huang transform (HHT) are based on instantaneous
time and frequency extracted with basic EMD building
blocks, however, it presents a misidentification in the
frequency signal that introduces distortion [20]. Furthermore,
variational mode decomposition (VMD) aims to decompose
a complex signal into a number of user-defined modes but
presents limited decomposition performance due to abrupt
signal onset and endpoint effect [21]. Another adaptive
and data-driven method similar to the EMD is the intrinsic
time-scale decomposition (ITD) that offers flexibility and
adaptability to capture the underlying features of complex
non-stationary and non-linear signals [22]. Alternatively, the
extended Kalman filter (EKF) is one method that presents less
computation time without signal segmentation and feature
selection step but presents errors due to a mismatch of signals
and filter model [23]. Furthermore, Refs. [8], [9], [10],
[11] provide a comprehensive summary of power quality
disturbance detection and classification methods.

decomposition methods

A. Contribution

The novelty of this investigation lies in the signal-processing
technique (STP) based on the Teager-Kaiser energy operator



(TKEO) and the discrete energy separation algorithm (DESA)
for feature extraction to detect and classify PQ disturbances.
The second-order discrete-time Teager-Kaiser energy operator
[24] to track the signal energy is used in the detection
stage. Subsequently, the discrete energy separation algorithm
[25] to extract the features of frequency and amplitude for
a signal is used to classify the PQ event. In this way,
the combination of the TKEO and DESA techniques is
utilized to build a decision tree that allows the detection and
classification of 15 different types of PQ disturbance signals.
The potential and effectiveness of the proposed strategy
(TKEO-DESA-based decision tree) are unveiled and tested
under synthetic, simulated, and real data environments. Finally,
our proposal exposes an accuracy prediction of around 97%.

Furthermore, compared to other approaches in the literature,
the proposed technique has the advantage of being able to
compute a signal’s energy, frequency, and amplitude using
three continuous samples. This allows a simple algorithm
implementation using these three main features to build a
decision tree to detect and classify PQ events.

II. DISCRETE ENERGY SEPARATION ALGORITHM BASED
ON TEAGER-KAISER ENERGY OPERATOR

The Teager-Kaiser energy operator (TKEO) is a nonlinear
energy operator for continuous-time and discrete-time signals
that was developed by Teager [26] and subsequently
introduced systematically by Kaiser [24]. The TKEO is highly
effective for numerous applications including the development
of the energy separation algorithm (ESA) for demodulating
AM-FM signals, tracking speech modulations, detecting events
in non-stationary signals [27], and power systems applications
[28], [29], [30].

In this paper, the TKEO with its discrete-time energy
operator and the discrete energy separation algorithm (DESA),
which provides instantaneous frequency and amplitude
estimates, are used to detect and classify power quality events.

A. Discrete-time Teager-Kaiser Energy Operator

The second-order operator is introduced by Kaiser where it
is started by a second-order differential equation that describes
Newton’s law of motion applied to a mass m suspended by a
spring of force constant k as can be seen in (1) [24].

k
i+ —z=0 (1)
m

So, the solution of (1) is given by x(t) = Acos(wt+¢) that
corresponds to the displacement produced by a mass-spring
undamped linear oscillator, where A and w = \/k/m are the
amplitude and frequency of the oscillation, respectively, and ¢
is the initial phase [24]. Thus, the total energy E of the system
is given by the sum of the potential energy of the spring and
the kinetic energy of the object [24]:
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where the right side in (2) is for the solution x when this is
substituted in E.

Then, for the discrete operator, let z:(n) be a digital signal
described by [24]

z(n) = Acos (Qn + ¢) 3)

where ) = w7 and T denotes the sampling period, and let
z(n—1) and z(n + 1) two equally-spaced samples signals of
x(n) as shown in (4) [24].

z(n—1) =Acos (Qn+1) + ¢) @
z(n+1) =Acos (Q(n —1) + ¢).

Now, with the aid of the trigonometric identities given by

cos a cos 3 :%[COS (o = B) + cos (a + )] )
cos (20) =1 — 2sin? o
equation (4) results in [24]
z(n+ 1z(n —1) = A%cos?(Qn + ¢) — A%sin?(Q)  (6)
where is evident that A2 cos?(Qn + ¢) = x2(n). Therefore,
A%sin?(Q) = 22(n) — z(n + V)z(n — 1). (7)

for small values of €, sinQ) ~ . Thus, the discrete-time
energy operator for the second order to track the energy is
expressed by [24], [25], [26], [27]:

E(n) = Y[z(n)] = 2*(n) — x(n + Da(n — 1) (8)
where E(n) = ¥[z(n)] = A%sin?(Q) ~ A2Q2.

B. Discrete-time energy separation algorithm

For the discrete-time energy separation algorithm (DESA),
consider the first derivative of x(n) using two-sample
backward difference approximation as [25]:

y(n) = z(n) —z(n - 1). ©)

Thus, applying the discrete energy operator to the first
derivative described by (9) becomes [25]:
Uly(n)] = 442 sin? (2/2) sin? Q (10)
So, the expression in (10) may be combined with (7) and
used to obtain the following expression:

Ply(n)]

20 [x(n) (an

= 2sin? (22/2) = 1 — cos (Q)

Now, considering the above expressions, the DESA allows
us to obtain the energy operator and separate the output energy
product to estimate the instantaneous frequency and amplitude

[25].
Q(n) =~ arccos (1 — ;IIJ%U((T;))]J (12)
A(n) ~ Pz (n)] (13)
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ITII. PROPOSED METHODOLOGY FOR PQ EVENTS
DETECTION AND CLASSIFICATION

The proposed methodology for the detection and
classification of power quality events based on the
Teager-Kaiser energy operator and the discrete energy
separation algorithm is described in this Section. For
the proposed approach, PQ disturbances are synthetically
generated using the Power Quality Synthetic Disturbances
DataSet toolbox (PQ-SyDa) [31]. This toolbox is based on
the IEEE standard 1159 [6] and is available in [32]. Also,
29 different PQ event datasets can be generated. Then, the
proposal methodology is able to classify 15 of the 29 types
of different PQ disturbances generated by PQ-SyDa and are
presented in Table I.

TABLE I
PQ TEST SIGNALS AND THEIR LABELS

Signal Label Signal Label

Pure Signal Ml Harmonics with Swell M9

Sag M2 Flicker M10

Swell M3 Flicker with Sag Ml11

Interruption M4 Flicker with Swell Mi12

Peak/Impulse M5 Sag with Harmonics Mi13

Oscillatory Transient M6 Swell with Harmonics | M14

Harmonics M7 Notch M15
Harmonics with Sag M8

The flowchart for the TKEO-DESA methodology to detect
and classify PQ disturbances is illustrated in Fig. 1.

According to Fig. 1, the input signal should be in PU to
define the thresholds of the proposal and keep them to the
same values for any input signal. In addition, a 9-cycle analysis
window is used.

So, to describe the proposal methodology a test signal is
used. This test signal corresponds to a synthetic sag signal
labelled M2 (see Table I) and is generated by PQ-SyDa as
shown in Fig. 2(a). For all synthetic signals, a 7680 Hz
sampling frequency is used, considering a 60 Hz nominal
frequency. Thus, for the second step of Fig. 1, the TKEO
and DESA algorithms are applied to the input signal through
(8), (12)-(13), respectively. So, with the Teager-Kaiser energy
operator, F(n), the signal energy can be tracked. This allows
us to detect the disturbance using the change in the energy

x(n)
| TKEO-DESA |
Q) | A

A

| Signal processing (14) & (15) |

| Clasification |

Fig. 1. General flowchart for the TKEO-DESA methodology to detect and
classify PQ disturbances.

AE; presented in the signal. In this way, for the test signal
with sag, the TKEO is able to detect two energy changes
AFE; and AFE,, that is, when the disturbance starts and when
the disturbance stops. This is shown in Fig. 2(b) and is
indicated by the two red circles. Likewise, this allows us
to know the duration of the disturbance, which is denoted
as t;. Besides that, the analysis window can be split into
three subwindows using these two points. The first subwindow
contains the samples before the event and is denoted as be, the
second subwindow incorporates the event duration samples
and is represented by ed, and finally, the third subwindow is
composed of the after-event samples and is symbolised as ae.
These variables are depicted in Figs. 1 and 2(b) as be, ed, and
ae, respectively.

Now, for the classification of power quality disturbances, a
DESA-based decision tree is used as shown in Fig. 3.

So, for the decision tree based on the TKEO and DESA
methods, additional feature extraction from PQ events of both
the actual signal and its amplitude and frequency are used to
classify the PQ disturbances. These extracted features consist
of the peak-to-peak value and the mean value as shown in (14)
and (15), respectively.

fd = fmaw - fmin

1 N
fmzﬁzljf(n)

where f can represent the actual signal z(n), its frequency
Q(n), or its amplitude A(n), which are described by (3), (12),
and (13), respectively. So, f; and f,, denote the peak-to-peak
and mean values, respectively, whether for the actual signal,
its frequency, or its amplitude. Besides, IV is the number of
samples for a corresponding analysis window or subwindow.
In this way, f4 and f,,, can be applied to the three subwindows
getting x4(ed), Ap(be), Am(ed), An(ae), Aq(be), Qq(ed),
Qp(be), Q. (ed), and Q,, (ae). Also, we can get x,,, A, and
Qg when (14) and (15) are applied for the complete analysis
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Fig. 2. (a) Signal with sag. (b) TKEO. (c) Amplitude mean value. (d)

Frequency mean value.
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Fig. 3. TKEO-DESA-based decision tree for PQ events classification.

window. These features are used for the decision tree in the
PQ disturbances classification as shown in Fig. 3.

Then, for the test signal, the most important features are
A,, and €, measurements as illustrated in Figs. 2(c) and
2(d), respectively. Notice that A,, signal is into the threshold
shown in the decision-tree flowchart, ie, between 0.1 and 0.9.
On the other hand, €, is less than le~3, so, following the
decision tree, the test signal is classified as a sag, i.e., M2
label. With the proposed TKEO-DESA-based decision tree,
the classifier can classify 15 PQ disturbances using the input
signal and its amplitude and frequency features.

IV. RESULTS AND VALIDATION FOR THE PROPOSED
METHODOLOGY

To validate the applicability of the proposal three test cases
are described in the following: (i) theoretical PQ disturbances
generated by PQ-SyDa, (i) simulated signals by simulink
cases, and (iii) real-life power quality sags.

A. Application on theoretical PQ disturbances

To test the proposal with synthetic PQ disturbances the
PQ-SyDa is used to generate 100 random events for each
disturbance presented in Table 1. Table II shows the accuracy
results for the 15 PQ disturbances. Notice that the proposal
methodology has a 99.2% for the harmonics with sag signal
and a 94% for the harmonics signal, with an overall accuracy
of 97.03%.

For instance, Fig. 4 illustrates the results for a harmonics
with sag synthetic case. Notice that the proposal is able to

YES 1< Ay (ed) NO Interruption

£

TABLE II
TKEO-DESA-BASED DECISION TREE CLASSIFICATION RESULTS FOR PQ
DISTURBANCES
Signal ACE;; )a cy Signal AC(C;; )a ey

Pure Signal 100 Harmonics with Swell 98.2

Sag 98 Flicker 954
Swell 97.8 Flicker with Sag 97
Interruption 98.2 Flicker with Swell 97
Impulse 98.2 Sag with Harmonics 96
Oscillatory Transient 96 Swell with Harmonics 96
Harmonics 94 Notch 95

Harmonics with Sag 99.2 Overall accuracy 97.03

detect and identify the PQ disturbance as an M8 label, i.e.,
harmonics with sag according to Table I. For the decision tree,
Fig. 4(b) depicts the signal energy tracked by the TKEO where
two energy changes are detected. This lets us know the number
of samples for each subwindow and classify the event. In this
way, Figs. 4(c) and 4(d) show the most important features to
carry out the classification which are A,, and §2,,, respectively.
Besides, the thresholds presented in the decision tree of Fig. 3,
also are illustrated in Figs. 4(c) and 4(d) indicate that the PQ
disturbance corresponds to harmonics with sag disturbance.

For comparison purposes, Table III depicts the accuracy
of different techniques used for PQ event detection and
classification in the literature; for more detail, please see
Table 6 from ref. [33]. For that, the number of complex PQ
disturbances and the number of features are taken into account,
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Fig. 4. (a) Harmonics with sag signal, (b) TKEO, (c) Amplitude mean value,
(d) Frequency mean value.

where complex means that multiple PQ events appear. So,
for the proposal method, just the complex PQ disturbances
presented in Table I are considered in Table III. Notice that
the proposed algorithm used fewer features compared to the
methods presented in Table III reaching an accuracy of around
97%.

TABLE III
COMPARISON AMONG DIFFERENT WORKS FOR PQ EVENTS DETECTION
AND CLASSIFICATION

Number of | Number of Overall
Ref. Technique Complex features Accuracy
PQ Events (%)
[34] ST+APSO 4 6 96.5
[35] DWT + WNs 6 8 97.5
[36] Spline WT+ST 3 8 97
[33] ST+FES 6 7 98.7
Proposed | TKEO-DESA 6 4 97
B. Application on power quality disturbances

simulation

This section applies the proposed methodology to two
simulated signals obtained from MATLAB/Simulink models
[37]. The first model is a capacitor bank energization to
simulate a voltage oscillatory transient and is presented in Fig.
5. According to [37], the model contains a three-phase source
of 11 kV, 30 MVA, 60 Hz that feeds an 11 kV/0.4 kV, 1 MVA
delta/wye transformer to a 100 kW and 100 kvar resistive and
inductive loads, respectively. The capacitor bank at 0.4 kV bus
is 40 kvar, whereas, the capacitor bank at 11 kV bus is 100
kvar.

To validate the applicability of the proposal, the test signal
is obtained from a 0.4 kV bus (see Fig. 5) and is shown
in Fig. 6(a). Figure 6(b) illustrates the phase a in p.u. for
testing the proposal where the classification is labeled as M6,
corresponding to Table I as an oscillatory transient. For the
decision tree, Fig. 6(c) depicts the signal energy where two
energy changes are detected. Notice that these two points

Capacitor Bank Energizing Model
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Fig. 5. Simulation of a capacitor bank energizing [37].
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TKEO of phase a. (d) Amplitude mean value. (e) Frequency mean value.

clearly limited the event in time. Finally, Figs. 6(d) and
6(e) illustrate the two main features with which the event
can be classified showing that both measurements exceed the
thresholds proposed in the decision tree of Fig. 3.

For the second simulated model, a single-phase nonlinear
load is used and is shown in Fig. 7 [37]. This model simulates a
harmonic voltage disturbance caused by a single-phase bridge
rectifier common for domestic and commercial buildings.
According to [37], the model contains an 11 kV, 30 MVA,
60 Hz three-phase source to feed an 11 kV/0.4 kV, 1 MVA
delta/wye transformer to a 1 MW resistive load.

Figure 8(a) depicts the three-phase signals obtained from
the 0.4 kV bus of the Simulink model in Fig.7. So, phase a
in p.u. is used to test the proposal and is shown in Fig. 8(b)
where the proposed methodology classifies the test signal as
harmonics, i.e., M7 label of Table I. For the decision tree, the
main feature is the instantaneous amplitude which is depicted
in Fig. 8(c) being less than 1, which classifies the event as
harmonic, according to Fig. 3.
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C. Application on real power quality sags

The proposed methodology is also applied to detect and
classify real-life sag events. The dataset employed is available
in [38] and provides signal recordings from the power network
of the University of Cadiz during the last five years (electrical
network according to the UNE-EN-50160: 2011 [38]). The
signals have been designed from the basis of representative
single-isolated events for a 50Hz network with a sampling
frequency of 20 kHz (400 samples per cycle) [38]. To
demonstrate the effectiveness of the methodology, two random
real sag events are chosen from the dataset in [38] where a
second-order low-pass filter type Butterworth (360 Hz cut-off
frequency) is used as an anti-aliasing filter. As a result, Figs.
9(a) and 10(b) show the two real sag events before and after
the Butterworth filter is applied. Notice that the signals are
also converted to p.u. So, the TKEO-DESA-based decision
tree classified the disturbance as harmonic with sag according
to Table I, i.e., M8 label. It is important to mention, that since
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Fig. 9. (a) First real sag event. (b) First real sag event in p.u. after the

Butterworth filter is applied. (c) TKEO, (d) Amplitude mean value, (e)
Frequency mean value.
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even at first glance it seems that the signal is free of harmonics,
when it is observed in more detail, the signal contains noise
and harmonic content, and since it is not a pure signal, the
decision tree classifies as a harmonic with sag. Thus, the
classification of this event is the same as shown in Fig. 4.

Finally, the second real sag disturbance is shown in
Fig. 10(a). So, similarly to the previous real sag case, the
TKEO-DESA-based decision tree classified the disturbance as
harmonic with sag, i.e., M8 label as can be seen in Fig. 10(b).
The main features are illustrated in Figs. 10(c)-(d) which are
similar to the Fig. 4.

V. CONCLUSIONS

This paper has successfully demonstrated that a new
strategy based on a signal-processing technique for feature
extraction can appropriately detect and classify 15 power
quality disturbances. The proposed methodology used the



Teager-Kaiser energy operator and the discrete energy
separation algorithm to build a ruled decision tree strategy
to detect and classify PQ disturbances. The TKEO is applied
to track the signal energy and in this way, detect the energy
changes. Furthermore, the frequency and amplitude of the
signal can be obtained using the DESA algorithm. Thereby, a
TKEO-DESA-based ruled decision tree is built that allows us
to detect and classify PQ events using the features obtained
by these algorithms. Moreover, its easy implementation and
the fixed window of 9 cycles make it suitable for possible
real-time applications.
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