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Abstract—This paper addresses the frequency warping error
in frequency-dependent equivalents to improve the accuracy of
Electromagnetic Transient (EMT) simulations. This numerical
error, intrinsic to all linear multi-step integration methods, such
as the trapezoidal rule, distorts frequency response and degrades
time-domain simulation accuracy. This work introduces the Pole-
Residue Frequency Warping Compensation (PRFWC) algorithm
to mitigate the frequency warping in rational approximations
with the pole-residue formulation. Performance validation of the
proposed algorithm is conducted through two case studies: a
transmission line and a distribution system. Numerical results
show that the PRFWC improves simulation accuracy by two
orders of magnitude over uncompensated models, with minimal
computational burden.

Keywords—Rational Approximation; Pole-residue Formula-

tion; Frequency Warping; Time-Frequency Analysis; Simulation
Accuracy.

I. INTRODUCTION

HE increasing complexity of power systems are acceler-
Tated by the energy transition from fossil-based to low-
carbon and renewable sources [1]. As a result, in-depth analy-
sis of new dynamic interactions between their components and
subsystems is paramount [2]. In this context, Electromagnetic
Transient (EMT) simulations are an essential tool that can be
tuned to provide sufficient accuracy to anticipate these inter-
actions, ensuring reliable and efficient power system planning
and operation.

Accurate yet efficient simulations can be achieved by
preserving the frequency characteristics of subsystems using
frequency-dependent equivalents [3], [4]. A common approach
is to represent these equivalents using rational functions
derived from data-driven curve-fitting techniques [5], [6],
[7]. Vector Fitting (VF) stands out among the curve-fitting
techniques for its computational efficiency, accuracy, straight-
forward formulation, versatility, and open-source availabil-
ity [S]. Additionally, it is embedded in various EMT-type

A. A. Kida is with the Federal Institute of Bahia, Salvador, BA, Brazil
(e-mail of the corresponding author: alexandre.kida@ifba.edu.br).

A. C. S. Lima is with the Department of Electrical Engineering of the
Federal University of Rio de Janeiro, COPPE/UFRIJ, Rio de Janeiro, Brazil
(e-mail: acsl@dee.ufrj.br).

F. A. Moreira and F. M. Vasconcellos are with the Department of Electrical
and Computer Engineering of the Federal University of Bahia, Salvador, BA,
Brazil (e-mails: moreiraf@ufba.br and felipe.vasconcellos @ufba.br).

This research was supported in part by Coordenagdo de Aperfeicoamento de
Pessoal de Nivel Superior (CAPES) under Grant 001, Conselho Nacional de
Desenvolvimento Cientifico e Tecnolégico (CNPq) under grants 404068/2020-
0, 400851/2021-0, Fundacdo de Amparo a Pesquisa do Estado de Minas Gerais
(FAPEMIG) under grant APQ-03609-17 and Instituto Nacional de Energia
Elétrica (INERGE).

Paper submitted to the International Conference on Power Systems Tran-
sients (IPST2025) in Guadalajara, Mexico, June 8-12, 2025.

simulators, including EMTP-ATP [8], EMTDC/PSCAD [9],
and EMTP [10].

Time-domain simulations require careful consideration re-
garding discretization techniques. The trapezoidal rule is
widely employed in commercial EMT-type simulators [11]]
as it is the most accurate among linear multi-step integration
methods with A-stability [12].

The continuous-time domain transfer function of the inte-

grator is
s _1 b
u(s) s’ (
where b(s) and u(s) are the output and the input of the inte-
grator in s-domain, respectively; s is the complex frequency
variable in the s-domain.
Applying the trapezoidal rule to derive the transfer function
of (I) in the discrete-time domain yields:
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where B|z] and U|z] are the Z-transforms of b(s) and u(s),
respectively, obtained using the trapezoidal rule; z is the
complex variable in the Z-domain.

By equating and (@), then solving for z, yields the
bilinear transformation (also known as the Tustin method)
(13
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The mapping between the analog (continuous-time) fre-

quency w, and its corresponding digital frequency w is derived

by substituting s = jw, and z = exp (jwh) into (@), where h
is the integration time step. Solving for w, yields:

2 wh
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The nonlinear frequency mapping between w, and w in (@)
compresses the discrete-time frequency scale, introducing a
numerical error known as frequency warping [14]. This error
is not unique to the trapezoidal rule but is inherent to all linear
multi-step integration methods [13].

Strategies for frequency warping mitigation mainly involve
adjusting the h size, pre-warping, or relying on non-standard
solution techniques.

Pre-warping techniques are mostly considered in the con-
text of digital filter design [15], [16], [17]. For instance, a
digital frequency specification, such as its cutoff frequency, is
prewarped using (@) to build the analog prototype low-pass
filter specification, which is then transformed into the desired
filter transfer function [15)]. Applications of pre-warping for
frequency-dependent equivalent (FDE) and power systems are
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scarce in the literature. In that regard, the author in [18] pre-
warped the input frequency response data for a given h before
the fitting process. However, this approach cannot be applied
to the existing rational approximation, necessitating a model
recalculation for different i values.

Concerning h adjustments, adaptive h methods based on
energy balance were developed in [19], [20]. However, re-
ducing h might lead to excessive computational overhead.
Additionally, [21] proposed the following guideline for h:

1
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where f,,q. is the highest frequency of interest. However, the
authors in [22] showed that frequency warping can still be
significant for extended simulation durations, even when h
satisfies the criterion in ().

Non-standard solution techniques, such as the high-order
integration method based on the Obreshkov formula, can be
applied to mitigate frequency warping [23]]. In [14]], the authors
showed that although the harmonic balance method may
encounter convergence issues and performance degradation
for signals containing many harmonics, it does not exhibit
frequency warping. The main concern with non-standard dis-
cretization methods is their lack of extensive documentation,
which may lead to unpredictable or undocumented behavior. In
contrast, techniques based on the trapezoidal rule are favored
for their reliability, stability, and straightforward implementa-
tion.

The main contribution of this work is a novel strategy to
compensate for the frequency warping caused by the trape-
zoidal rule, employing rational models based on the pole-
residue formulation. Additionally, this work demonstrates how
pre-warping inductances and capacitances affect a rational
approximation. Finally, the impact of frequency warping on
time-domain simulations of frequency-dependent equivalents
is highlighted.

This paper is structured as follows. Section [[I] provides the
theoretical background for rational approximations, while also
complementing the concepts of frequency warping and pre-
warping introduced earlier in this paper. Section [IT]] details
the proposed algorithm. Section [[V] presents numerical results
based on two test cases, providing insights into the perfor-
mance of the proposed technique. Lastly, key conclusions are
drawn in Section [V]
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II. DISCRETIZATION EFFECT OF INDUCTANCES AND
CAPACITANCES IN A POLE-RESIDUE FORMULATION

An N-port nodal admittance matrix Y(s) € CN*¥ can be
approximated by a rational function Y (s) € CN*¥. Hence,

NP
_ T
Y(s) =~ Y(s) = - D 6
(s) = Y (s) ;sfpﬁ : ©)
where i € {1,...,N,}; s = jw; w is the angular frequency in

rad/s; N, is the number of poles or model order; D € RYV*N

is the constant term (positive definite matrix); p; is the i-th
pole; r; € CN*N i the associated i-th residue matrix.

A single entry m,q of Y(s), Y nq(s), can be synthesized
using basic circuit components such as resistors, inductors and
capacitors [3]], as depicted in Fig. |I} Therefore,
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where D is the constant term; Nrp, Nop are the number of
real and complex poles of the model, respectively.
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Fig. 1. Electrical network synthesis. Adapted from [3].

A. Frequency-Warping
If the differential network equations are solved using the
trapezoidal rule, the capacitances and inductances in be-
come frequency-dependent due to the frequency warping [24].
Therefore,
Lpr(w) = ¥(w)L, 8)

CDT((U) = \Il(w)C, (9)

U(w) = %tan (u;h),

where Lpr(w) and Cpr(w) are the discretized inductance L
and capacitance C, respectively; the frequency warping error
is numerically represented as ¥(w).

(10)

B. Pre-Warping

In the discrete-time domain, the expected (analog) behavior
of inductors and capacitors for a pre-warping frequency w’ can
be retrieved by scaling Lpr(w’) @) and Cpr(w’) @) for a

factor £(w’). Hence,
1 w'h (w’ h)
cot - )

U(w) 2

(1)



L'(W) = W) Lpr() = “’/h%cot (“’;h>, (12)
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where L'(w') and C’(w’) are the frequency-warped-
compensated inductance and capacitance, respectively.

Consider the complex pole-residue modeled using an RLCG
branch [3] depicted in Fig. Therefore, frequency warp-
ing can be mitigated by updating L <+ L'(w’) (I2) and
C + C'(v) (13). Thus,

C'(W') = (W) Cpr(w') =

Y(S) = ! ’

1
R L -
B G e

. sCy + Gy
o s20,C1 + s(R101 + LlGl) + R1G1 + 1’

The roots of Y'(s) in (T4) are its poles p, thus

(14)
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where K = R1C1 + L1G;.
The corresponding residue r of (T4)

r=lim(s—p)Y(s),

S—p
sC1 + G1 (16)
$2L1C1 + sK + R1Gy + 1’
When s approaches p, both numerator and denominator of r
in (T6) approaches zero. Thus,

e L (s —p)(sC1 + G1)]
r = lim = ,
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~ lim (s = p)Cy + (sCy + Gy) _ pCi + G
s5—p 2sL1C1 + K 2pL1C1 + K-

= lim(s —p)
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A frequency-warped-compensated version of (T4)), denoted
as Y'(s), can be obtained by substituting L, and C with their
corresponding pre-warped versions. Hence,

1

Y'(s) =

= (18)
Ry + sLi(w') +

1 ?
SC{ (w’) + G 1
By substituting (I2) and (I3) in (I8) and dropping w’ to
simplify notation, leads to

1
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The poles p’ of Y'(s) are the roots of its denominator, hence
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Thus, by expressing (20) in terms of (I3) and recovering
the suppressed notation results in

p = p
§(w)
The corresponding residue 7’ associated with p’ is
r’ = lim (s — p)Y'(s),
s—p’

lim (s —p)(s£C1 + G1)
sop 82620101 + sEK + R1Gy + 17

2D

(22)

Therefore,
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By substituting 1) in (23) results in
;. pCi+ Gy
C2pELCh +EKC
Finally, replacing in (24) and recovering the suppressed
notation leads to:

(23)

T (24)
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The scaling of Ly and C; by £(w’), implies scaling of p’

and r’ by 1/£(w’). A similar inference applies to the real pole

case (RL branch) using the same methodology outlined in this
section.

The pre-warped version of Y (s), denoted as Y'(s) €

CN*N s expressed as
N, o
Y'(s) = Z - jp, + D, (26)
n=1 i

where p} and r represent the i-th pre-warped pole ZI) and
the matrices of pre-warped residues (23)), respectively.

ITII. THE PROPOSED ALGORITHM

Choosing an appropriate value for w’ is essential for effec-
tive frequency warping mitigation. In the ideal case, the simu-
lated signal contains a single frequency component, allowing
w’ to be set to this value, eliminating the frequency warp-
ing. However, this scenario is seldom encountered in EMT
simulations Furthermore, the precise values of the frequency
components in a transient phenomenon are typically unknown
before the simulation. Therefore, a more general approach is
preferable.

Frequency warping manifests as a disturbance of the original
linearized eigenvalues of the simulated system [14]. Although
these eigenvalues are typically unknown, frequency response
data sampled between ports can be acquired through mea-
surements or simulations. As a result, the equivalent system
and its eigenvalues can be approximated (or identified) with a
rational approximation through data-driven curve-fitting tech-
niques [5]. The well-known VF [25]], [26], [27] approximates
the frequency response using a set of poles and residues.



Once the system is identified, the proposed Pole-Residue
Frequency Warping Compensation (PRFWC) algorithm pre-
warps the pole-residue rational approximation to address the
eigenvalue perturbations introduced by frequency warping.
The framework for achieving frequency-warped-compensated
results with PRFWC as a post-fitting step is shown in Fig. [
The proposed approach offers an alternative mapping between
discrete and continuous-time domains. The algorithm outlined
in Pseudocode || utilizes the contribution of the imaginary
component of each pole in characterizing the oscillatory
behavior of a given transfer function. Accordingly, each p; (ZI)
and r; (23) is scaled based on the pre-warping frequency wj,
such that

Wl = 1(py), 27)

where I(p;) is the imaginary frequency component of p;.

Is Y (s) available? Built Y (s)

/ Get h required for the study /L—

Apply PRFWC on Y (s)
/ Obtain more accurate simulations /—{ Stop]

Fig. 2. Proposed framework of PRFWC.

Pseudocode 1 The PRFWC algorithm

1: for all 7 do > All poles
2 W)« I(pi) > Eq.
3: if |w!| < 7/h then > Nyquist limit
4: & + (wih/2)cot (wih/2) > Eq.
5: p; (*pz/fi DEq @
6: rh—1i/& > Eq. (23)
7: end if

8: t—1+1

9: end for

The proposed algorithm applies strictly to proper rational
functions (@), which does not include the s-proportional ca-
pacitance term in Y(s). This results from the fact that no
single value of w’ can adequately pre-warp this term across
the entire frequency range.

IV. NUMERICAL RESULTS AND DISCUSSION

The performance of the PRFWC is validated using two
frequency-dependent equivalents: a transmission line (Case A)
and a distribution network (Case B). The frequency response
data used in this work are publicly available on the SINTEF
website [28]].

The following considerations apply to both cases. The test
circuit configuration is illustrated in Fig. [3] with all ports

grounded except for port 1. A single voltage source e(t) =
cos(2m f.t) pu applied at port 1 at ¢ = 0s. High-frequency
transients are simulated with five scenarios, consisting of
excitation frequencies f. varying from 10kHz to 90kHz
in 20kHz intervals. The bandwidth of the input frequency
response is 10 Hz to 100 kHz. FDEs are obtained with the VF
considering 50 poles. The outputs are the currents i;(¢) for
7 =1,..., N, following the terminology of the original data
in [28], entering the terminals as depicted in Fig. |3| These
currents are obtained by convolving the voltage input vector
with the FDE and discretizing it using the trapezoidal rule.

FDE

Fig. 3. Test-circuit configuration.

In all scenarios of a given case, h = 1ps unless other-
wise specified. This value complies with the criterion (3,
considering that f,,,, = 100kHz is the highest frequency
component of the frequency response data used to build the
rational approximation.

In the absence of an analytical solution, a reference wave-
form i,.f(t) is generated by simulating the system with
h = 1ps/10000 = 100ps, as the frequency warping is
negligible for such small h.

The accuracy of the proposed algorithm is accessed through
two metrics: the relative root mean square error (RRMSE)
Irrmseg and the normalized max absolute error (NMAE)
Inmag. The former is a normalized and dimensionless metric
of the overall accuracy of the simulation. The latter quantifies
the significance of the largest deviation between the simulated
and reference signals, normalized by the maximum magnitude
of the reference signal. Thus,

SN i(n) — ey (n)?
N S0 Jiger ()2

max (|i(n) —iper(n)|)
max (|ipes(n)])

where n = t/h and Nr is the total number of simulation
steps.

The frequency responses presented in this work are directly
computed by performing a frequency sweep from 10 Hz to
100kHz on the s-domain rational models Y (s) and Y'(s).

IrrMSE = , (28)

Inmag = ; (29)

A. Case A: Transmission Line

The first case involves the modeling of a 132kV overhead
three-phase transmission line, illustrated in Fig. E} The trans-
mission line is modeled as a three-port frequency-dependent
equivalent, with measurements taken at the sending-end of the
line while the receiving-end of the line is open-circuited. The



dc resistance per unit length is 0.121Q/km for the phase
wire and 0.3592/km for the ground wire. The line length
is 12km. The diameters of the phase and ground wires are
21.66 mm and 12.33 mm, respectively. The soil resistance is
100 Q m. The output is the current at port 1 i1(¢), considering
the configuration shown in Fig. [

1 O O
38 m < 45 m >
y [ o o
T 4.5 m 45 m
11.0 m
l Not on scale

Fig. 4. 132kV three-phase transmission line conductor configuration, Case
A. The ground and phase wires are represented as white and black circles,
respectively. Adapted from [29].

PRFWC altered the original frequency response in the
frequency domain to compensate for the distortion imposed
by frequency warping as depicted in Fig. [5] The most no-
ticeable differences between the frequency responses manifest
at higher frequencies, where the frequency warping exerts
a more substantial compressing effect. Likewise, poles with
larger imaginary parts underwent significant pre-warping, as
illustrated in Fig. [6]
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Fig. 5. Magnitude of frequency responses, Case A.
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Fig. 6. Pole placement of the rational approximations, Case A.

Table [] provides quantitative evidence of the substantial
error reduction through the simulation achieved in all tested

scenarios by the proposed method. The accuracy improvement
is of two orders of magnitude across all evaluated scenarios.
The RRMSE of the PRFWC with h = 1pus is comparable
to the original (uncompensated) signal with h = 1us/4 =
250ns, as presented in Table |m Table m demonstrates that
the PRFWC method reduced the worst-case deviation by one
to two orders of magnitude across all scenarios, as quantified
by the NMAE metric. Notably, the uncompensated waveforms
exhibited NMAE values as high as 249.26%, whereas the
PRFWC methodology achieved a significantly lower value of
10.71%.

TABLE I
RRMSE VALUES FOR TIME-DOMAIN SIMULATIONS ACROSS ALL
SCENARIOS IN CASE A

fe PRFWC Original -
(KHz) (%) (‘%b) Ratio
10 2.89 x 1072 7.37x 107! 3.92x 1072
30 387x1072 5.67x1071 6.82x 1072
50 1.71 x 10~1 3.05 5.61 x 10~2
70 9.96 x 10~2 3.48 2.86 x 10~2
90 3.60 x 1071 1.20 x 101 2.99 x 102

fRRMSE of PRFWC over original.

TABLE 11
RRMSE VALUES FOR TIME-DOMAIN SIMULATIONS ACROSS ALL
SCENARIOS IN CASE A, USING A REDUCED TIME-STEP FOR THE ORIGINAL

SIMULATION

fe PRFWC Original* .
(KHz) (%) (%) Ratio

10 2.89 x 1072 3.89 x 1072 7.43x 101

30 3.87x 1072 2.01 x 102 1.93

50 1.71 x 101 1.22 x 101 1.40

70 9.96 x 1072 1.77 x 10~! 5.63 x 10~1

90 3.60 x 10-1  3.48 x 10~ 1.03

*With h reduced from 1ps to 250 ns.
TRRMSE of PRFWC over original with h = 250 ns.

TABLE 111
NMAE FOR TIME-DOMAIN SIMULATIONS ACROSS ALL SCENARIOS IN
CASE A

fe PRFWC  Original .
(KHz) (%) (%) Ratio

10 2.61 25.17 1.04 x 1071

30 1.35 23.53  5.74x 1072

50 5.26 7391 7.12x 1072

70 4.32 89.71 4.82x 1072

90 10.71  249.26  4.30 x 102

NMAE of PRFWC over original.

On the qualitative side, the time-domain waveforms for f,.
values of 50kHz and 90kHz are displayed in Figs. [7] and [§]
respectively. It is clear that, even for the same h, the original
waveform exhibited significant deviations from the reference,
whereas the PRFWC results closely matched the reference.

For the 50 kHz source, the frequency warping increased the
amplitude of the original waveform in Fig. [7] around 0.15 ms,
0.30ms and 0.45 ms. In contrast, the amplitude of the original



signal was reduced around 0.35ms. This behavior can be
understood by analyzing the spectrum near 50 kHz in Fig. [3
Depending on the frequency, the amplitude of the original
frequency response may be either lower or higher than that
obtained with PRFWC. Lastly, Fig. [8§| demonstrates that for
fe = 90kHz, frequency warping led to significant amplitude
errors of the original signal after 0.1s. This effect can be
interpreted as the result of the mapping imposed by frequency
warping, which shifts the original resonance peak with the
highest frequency in Fig. [5] to a value closer to f..
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Fig. 7. Time-domain responses of the reference, original and PRFWC
waveforms (top), along with their absolute error (bottom) with fo = 50 kHz,
Case A.

B. Case B: Distribution Network

The second case, illustrated in Fig. [9]represents a two three-
phase buses (A and B) distribution network modeled as a six-
port FDE. Y (s) is computed regarding both bus-bars. The
output is evaluated as the current at port 2 i5(t), following the
configuration shown in Fig. [3]

As illustrated in Fig. [I0] the PRFWC approach modified the
original frequency response to alleviate the compression ef-
fects induced by frequency warping. As expected, the spectral
components at higher frequencies underwent more significant
pre-warping. This trend is further validated by analyzing the
pole placement generated by the proposed algorithm in Fig. [T}

The PRFWC attained an accuracy improvement of two
orders of magnitude across all scenarios, as outlined in Ta-
ble V] Moreover, the uncompensated signal only reached a
comparable level of accuracy to the PRFWC when h was
decreased from 1 ps to 250 ns as shown in Table [V] For Case
B, Table [VI) highlights that the PREWC method decreased the
NMAE by one to two orders of magnitude across all scenar-
ios. Remarkably, uncompensated waveforms showed NMAE
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Fig. 8. Time-domain responses of the reference, original and PRFWC

waveforms (top), along with their absolute error (bottom) with fe = 90 kHz,
Case A.
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Fig. 9. Single-line diagram of the three-phase distribution system, Case B.
The numbers are the line length in km. Continuous and dashed lines are
overhead lines and underground cables, respectively. Adapted from [30].
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Fig. 10. Magnitude of frequency responses, Case B.

values reaching 128.54%, whereas the proposed approach

achieved a significantly lower value of 14.10%.
Time-domain waveforms for f. = 10kHz and f,

90kHz are shown in Figs. [12] and [13] respectively. Although
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TABLE IV

RRMSE VALUES FOR TIME-DOMAIN SIMULATIONS ACROSS ALL
SCENARIOS IN CASE B

fe PRFWC Original .
(KHz) (%) (%) Ratio

10 5.03x 1072 6.04 x10~! 8.33 x 1072

30 350 x 1072 4.83x 1071 7.26 x 10~2

50 8.56 x 102 2.18 3.93 x 102

70 2.30 x 10~1 5.24 4.40 x 102

90 2.74 x 10~ 1 4.53 6.04 x 102

TRRMSE of PRFWC over original.

TABLE V
RRMSE VALUES FOR TIME-DOMAIN SIMULATIONS ACROSS ALL
SCENARIOS IN CASE B, USING A REDUCED TIME-STEP FOR THE ORIGINAL

SIMULATION

fe PRFWC Original™* .
(kHz) (%) %) Ratio

10 5.03x 1072 6.20x 1072 8.12x 101

30 350 x 1072 2.01 x 102 1.74

50 8.56 x 1072 1.22x10~1 7.02x 101

70 230 x 1071 1.77 x 10t 1.30

90 274 x 1071 348 x 107! 7.87x 101

*With h reduced from 1 ps to 250 ns.
TRRMSE of PRFWC over original with » = 250 ns.

TABLE VI
NMAE VALUES FOR TIME-DOMAIN SIMULATIONS ACROSS ALL
SCENARIOS IN CASE B

fe PRFWC  Original

(KHz) (%) (%) Ratio'
10 9.14 14.68  6.23 x 10~1!
30 3.07 11.80  2.60 x 101!
50 4.69 62.41  7.51 x 10~2
70 5.50 128.54  4.28 x 10—2
90 14.10  124.96 1.13x 10~!

TNMAE of PRFWC over original.

the PRFWC and the original magnitude frequency response
in Fig. match well around 10kHz, the time-domain re-
sponse in Fig. [I2] shows a noticeable deviation from the ref-
erence between 0.1 ms and 0.3 ms. In contrast, Fig. [[3] shows
a significant distortion of the original waveform, particularly
between 0.2ms and 0.3 ms, while the PRFWC signal closely

matches the reference. This discrepancy is caused by the
frequency warping shifting the original resonance peak with
the highest frequency in Fig. [I0] to a value lower than the
excitation frequency.
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Fig. 12. Time-domain responses of the reference, original, and PRFWC
waveforms (top), along with their absolute error (bottom) with fo = 10 kHz,
Case B.
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C. Discussion

The numerical results show that frequency warping can
significantly affect EMT solutions, even when h satisfies (),
particularly for the frequency responses with resonance peaks.
The oscillation of the absolute error arises from the amplitude
error, which is more pronounced at peak values and less severe
near zero values.

PRFWC consistently reduced the frequency warping, en-
hancing accuracy by two orders of magnitude in all scenarios.
The uncompensated waveform required a much smaller A,
with a 1:4 ratio compared to the h used for the PRFWC, to
achieve comparable results to those obtained with the proposed
method. Consequently, the uncompensated simulation needed
at least four times as many numerical model evaluations as
those obtained with PRFWC. Notably, this improvement incurs
negligible computational overhead, as the scaling factors are
computed only once per pole and residue.

V. CONCLUSIONS

This paper examined the numerical error known as fre-
quency warping in electromagnetic transient simulations of
frequency-dependent equivalents. The Pole-Residue Frequency
Warping Compensation (PRFWC) method effectively im-
proves the accuracy of rational approximations based on the
pole-residue formulation. With its negligible computational
overhead, the PRFWC provides a more efficient alternative
to reducing the time-step size to improve simulation accuracy.
Its simple implementation, high computational efficiency, and
enhanced accuracy make it well-suited for integration in data-
driven curve-fitting techniques as a post-processing routine.
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