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Abstract—Accurate electromagnetic transient (EMT) simula-
tions require accounting for the frequency-dependent behavior
of system components and equivalents. Rational approximations
derived from curve-fitting techniques such as Vector Fitting (VF)
are commonly employed to represent these equivalents. Complex
Vector Fitting (CVF), a variant developed for modeling baseband
communication systems, eliminates the complex conjugacy sym-
metry constraint found in VF. This work introduces a CVF-based
framework incorporating analytic signals and frequency shifts to
enhance EMT simulations of power systems. Validation with a
transmission line and a distribution network demonstrates that
CVF reduces errors by up to eight orders of magnitude compared
to VF, along with notable passivity differences. Frequency shifts
further enhanced the accuracy of the CVF-based framework by
up to two additional orders of magnitude. Additionally, these
frequency shifts enabled a time-step size increase by a factor of
2.33 to 5.5 for the same target accuracy, thereby reducing compu-
tational effort. These findings establish the proposed framework
as an effective tool for power system analysis.

Keywords—Rational Modeling, Vector Fitting, Complex Vector
Fitting, Power System Transients, Frequency-shifted Simulations

I. INTRODUCTION

High-accuracy modeling of power system components

(lines, cables, transformers, switchgear, generators and loads)

must represent their dynamic behavior across a wide frequency

range. However, detailed modeling of every component in

a large and complex power system is computationally pro-

hibitive for electromagnetic transient (EMT) studies.

A conventional approach that balances accuracy and effi-

ciency divides the system into a study area and an external

area [1]. The latter can be represented by a frequency-

dependent equivalents (FDE), preserving its frequency re-

sponse beyond the grid frequency. Rational approximations

are widely used for representing such equivalents [2].

The pole-relocation algorithm known as Vector Fitting

(VF) [3], [4], [5] is a reliable tool for fitting a rational
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approximation to a tabulated frequency response data set. VF

is also integrated into major EMT simulation software, such

as ATP [6], PSCAD [7] and EMTP [8].

The model built with VF inherently produces real-valued

impulse response, x(t), whose spectra, X(ω), exhibit Hermi-

tian symmetry, satisfying X(−ω) = X∗(ω) [9]. However,

this constraint limits its applicability to physical systems

only, hindering VF from leveraging computationally efficient

baseband (frequency-shifted) simulations.

To address this limitation, [10] proposed Complex Vector

Fitting (CVF) for baseband modeling of photonic systems

described by scattering parameters. In [11], the scope of

CVF was extended to the modeling of electric power system

components represented by admittance parameters along with

strategies aimed at enhancing its computational efficiency.

However, that study focused solely on a single test system,

neglected time-domain simulations, and did not explore the

frequency-shifting capabilities of CVF for EMT applications.

This paper addresses these limitations.

This work advances the findings of [11] through several

contributions. First, it provides further evidence that the en-

hanced flexibility of CVF improves fitting accuracy, even

without frequency shifts. Additionally, it reveals significant

differences in passivity characteristics between the model set

up with VF and CVF, which were previously unidentified.

Lastly, it proposes a novel framework that utilizes frequency

shifting and analytic signals to enhance the efficiency of EMT

simulations.

This paper is structured as follows. Section II introduces

admittance matrix synthesis and passivity conditions. Section

III addresses the analytic signals. Section IV introduces the

proposed framework for efficient EMT simulations. Results

followed by discussions are presented in Section V. Finally,

Section VI presents the main conclusions of this work.

II. FREQUENCY-DOMAIN REALIZATION

Frequency response samples of an unknown N -port ad-

mittance matrix Y(s) ∈ C
N×N can be obtained through

measurements or simulations. The behavior of Y(s) can be

modeled by a rational approximation Y(s) ∈ C
N×N using a

suitable curve-fitting algorithm. For pole-residue formulation,

Y(s) ≈ Y(s) =

Np
∑

i=1

Ri

s− pi
+D, (1)

where s = jw: the complex frequency, ω is the angular

frequency in rad/s, Np: the model order, D ∈ R
N×N : the

constant term matrix, pi: the i-th pole, Ri ∈ C
N×N : the

residue matrix associated with pi.



The pole-residue realization of Y(s) in (1) can be expressed

in a state-space form [12] as

Y(s) = C(sI−A)−1
B+D, (2)

where C ∈ R
N ·Np×N : a matrix containing all residues,

I ∈ N
N ·Np×N ·Np : the identity matrix, A ∈ C

N ·Np×N ·Np :

a diagonal matrix containing all poles, B ∈ C
N ·Np×N : a

selection matrix with ones and zeros.

A. Constraint Relaxation

Y(s) is typically employed to calculate the current (output)

corresponding to a given excitation voltage (input). VF im-

poses the realness constraint to ensure that the output remains

real-valued. Consequently, the complex poles and residues of

the VF-derived model are constrained to appear as complex

conjugate pairs, such that

pi = R(pi) + jI(pi), pi+1 = R(pi)− jI(pi) ∀i, (3)

Ri = R(Ri) + jI(Ri), Ri+1 = R(Ri)− jI(Ri) ∀i, (4)

where pi and pi+1: represent a pair of complex conjugate

poles, Ri ∈ R
N ·Np×N and Ri+1 ∈ R

N ·Np×N : represent a pair

of complex conjugate residues matrix, R(·) and I(·): denote

the real and imaginary parts, respectively.

CVF shares several similarities with the VF approach, such

as the relaxation of the non-triviality constraint to improve

convergence [13] and the use of QR decomposition to enhance

numerical performance [5]. The key distinction of CVF lies in

the relaxation of the realness constraint (3)–(4). This relaxation

enables more flexible modeling by accommodating frequency-

shifted models that lack Hermitian symmetry.

B. Passivity Assessment

Stable time-domain simulations require a rational approx-

imation with stable poles (R(pi) ≤ 0 ∀i) and passive char-

acteristics [2]. The latter ensures that the system does not

generate energy. A system is considered passive if G(s) =
R(Y(s)) ∈ R

N×N is a positive-definite matrix [14]. This

condition implies that G(s) is symmetric and its eigenvalues

λ(s) are positive.

Passivity violations occur in frequency regions where

λ(s) < 0. Such violations can lead to instability in time-

domain simulations, even if the rational approximation con-

sists only of stable poles [14]. It is also worth noting that

passivity violations may occur outside the frequency range of

interest, regardless of the accuracy of the model. The model

can still be considered passive for band-limited signals in such

cases.

Passivity can be assessed both analytically and via brute-

force methods (e.g., frequency sweeping λ(s)). Analytically,

passivity violation regions can be identified by the cross-

over frequencies, computed from the singular values (purely

imaginary eigenvalues) of the Hamiltonian matrix H ∈
C

2N ·Np×2N ·Np [15]. The computation of H depends on

whether the rational approximation exhibits Hermitian sym-

metry, influencing its formulation as follows:

H =

[

A−B(D+D
′)−1

C B(D+D
′)−1

B
′

−C
′(D+D

′)−1
C −A

′ +C
′(D+D

′)−1
B

′

]

,

(5)

where ′ denotes the transpose operator for systems exhibiting

Hermitian symmetry [15] and the complex conjugate trans-

pose operator for systems lacking it [16]. Consequently, CVF

cannot leverage the efficient half-size singularity test used for

passivity assessment in VF [15], as this test is designed for

real-valued systems [10].

III. ANALYTIC SIGNAL

The synthesized FDE using the CVF framework exhibits a

complex impulse response, even for real-valued inputs [17].

While such responses do not occur in the physical sys-

tems [2], they offer the potential for enhancing simulation

efficiency [18].

Simulations utilizing the CVF framework employ analytic

signals [10], which are a class of complex-valued functions

that satisfy the Cauchy-Riemann conditions for differentiabil-

ity [19].

An analytic signal uA(t) provides a complex-valued repre-

sentation of a real-valued signal u(t) and is defined as [20]:

uA(t) = u(t) + jH{u(t)}, (6)

where H{u(t)} = 1
π

∫

∞

−∞

u(τ)
t−τ

dτ : the Hilbert transform of

u(t).
The Hilbert transform is a linear operator that shifts the

phase of each frequency component of u(t) by −90o for

positive frequencies and 90o for negative frequencies. This

transformation ensures that uA(t) retains only the non-negative

frequency components u(t), scaled by a factor of two.

The spectrum of uA(t) can be shifted toward 0Hz by

an arbitrary frequency offset ∆f , resulting in the frequency-

shifted analytic signal:

uA,sh(t) = exp(−j2π∆ft)uA(t). (7)

For example, consider the cosine signal defined as

x(t) = cos(2πfet) =
exp(j2πfet) + exp(−j2πfet)

2
, (8)

where fe is the excitation frequency in Hz.

Eliminating the negative frequency component of (8) and

multiplying by two yields its analytic representation:

xA(t) = 2
exp(j2πfet)

2
= exp (j2πfet). (9)

Applying a frequency shift of ∆f in (9) yields:

xA,sh(t) = exp(−j2π∆ft) exp(j2πfet). (10)

In the case where ∆f = fe, (10) becomes a dc signal.

IV. PROPOSED FRAMEWORK

The proposed framework integrates the CVF with baseband

modeling techniques, commonly used in communication sys-

tems, to enhance the efficiency of EMT simulations within

the context of electric power systems. Its core principle is

constructing rational approximations with frequency shifts ∆f
tailored to the phenomenon under study.

Fig. 1 illustrates the workflow of the proposed framework,

where the voltage e(t) and current i(t) serve as the input and

output real-valued signals, respectively. Their corresponding



analytic representations, eA(t) and iA(t), are defined as (6).

Subsequently, the frequency-shifted analytic signals, eA,sh(t)
and iA,sh(t), are obtained using (7).

Get input frequency response and ∆f

Shift the input frequency response towards 0Hz by ∆f

Build Y(s) using CVF

Compute output in the frequency-shifted domain:
iA,sh(t) = eA,sh(t) ∗ Y(t)

Recover the real-valued output:
i(t) = R{exp(j2π∆ft)iA,sh(t)}

Efficient time-domain EMT simulation

Fig. 1. Proposed framework.

V. RESULTS AND DISCUSSION

Two numerical examples, Case A and Case B, are applied

to validate the proposed framework. Case A focuses on

transmission line modeling, whereas Case B evaluates a distri-

bution network. These cases were selected to facilitate result

reproducibility, as all frequency response data are available at

the official repository of VF [21].

The same conditions of model order, number of iterations,

weighting function and pole initialization strategy were ap-

plied for both VF and CVF for a fair comparison. Numerical

simulations were executed on an Intel i5-1240P processor with

16 GB of RAM, using MATLAB 2018a.

Fig. 2 depicts the circuit-test configuration used to obtain

time-domain responses, adhering to the terminology from the

original data in [21]. Only port 1 is active (ungrounded)

in this setup, while all other ports remain grounded. The

excitation consists of a single real-valued voltage source

e(t) = cos(2πfet) pu, applied at port 1 for both cases,

starting at t = 0 s. For the proposed methodology, EMT

simulations utilize analytic signals and frequency shifts. Con-

sequently, e(t) is replaced by eA,sh(t), as in (10), during

simulations. High-frequency transients are examined by setting

the excitation frequency fe to either 50 kHz or 90 kHz. Three

CVF-based rational models are constructed for each case,

considering frequency shifts of ∆f ∈ {0Hz, 50 kHz, 90 kHz}.

The resulting currents ij(t), for j = 1, . . . , N , illustrated in

Fig. 2 correspond to the outputs and are computed using the

framework described in Fig. 1, employing the trapezoidal rule

for discretization.

Accuracy is evaluated using the relative root mean square

error (RRMSE), a normalized and dimensionless metric. In

i1(t)

i2(t)

iN (t)

1

2

...

N

FDE

t = 0 s

e(t)

+

-

Fig. 2. Test circuit configuration for Case A and Case B.

the frequency domain, the RRMSE of Y(s) is defined as:

Y E =

√

√

√

√

∑N

m=1

∑N

q=1

∑NS

k=1 |Y mq(sk)− Ymq(sk)|2

Ns

∑N
m=1

∑N
q=1

∑NS

k=1 |Y mq(sk)|2
, (11)

where sk: the k-th complex frequency sample, Ns: the number

of frequency response data samples, Ymq(sk) and Y mq(sk):
are the entry m, q of Y(sk) and Y(sk), respectively.

For discrete time-domain analysis, the RRMSE of i(t) is

given by:

iE =

√

√

√

√

∑NT

n=1 |i(nh)− iref (nh)|2

NT

∑NT

n=1 |iref (nh)|
2

, (12)

where t = nh, NT : the total number of simulation steps, h is

the time-step size, iref is the reference current waveform.

In the absence of an analytic solution, iref (t) is generated

by simulating the system with a very small h of 100 ps.

A. Case A – Transmission Line

The first case refers to modeling a 132 kV overhead three-

phase transmission line depicted in Fig. 3. The measurements

were taken at the line input, with the output left open-circuited,

considering N = 3. The fitting was performed using 50 poles.

11.0 m

3.8 m

4.5 m 4.5 m

4.5 m

Not on scale

Fig. 3. Configuration of a 132 kV three-phase transmission line for Case
A. Black and white circles represent the phase and ground conductors,
respectively. The dc resistance per kilometer is 0.121Ω/km for the phase
conductor and 0.359Ω/km for the ground conductor. The total line length is
12 km, with diameters of 21.66mm for the phase conductors and 12.33mm
for the ground conductors. Adapted from [15].

The performance results regarding the accuracy of the

fitting, without frequency shift, are summarized in Table I.

A significant error reduction was achieved with CVF, as

its RRMSE corresponds to approximately eight orders of

magnitude less than the one obtained with VF. The frequency

responses shown in Fig. 4 demonstrate that the eight orders

of magnitude error reduction achieved by CVF are consistent

across the entire frequency range of interest.



TABLE I
FITTING ACCURACY COMPARISON BETWEEN VF AND CVF-DERIVED

RATIONAL MODEL, CASE A

Method RRMSE (%) Ratio1

VF 1.95× 10−2 –

CVF 2.70× 10−10 1.39× 10−8

1CVF RRMSE over VF RRMSE.
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Fig. 4. Magnitude of the frequency response, Case A.

All 50 poles of both VF and CVF are located on the left-

hand side of the s-plane, complying with the stability criterion,

as illustrated in Fig. 5. As expected, the symmetry concerning

the abscissa axis is verified only for the VF.
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Fig. 5. Poles of VF (top) and CVF (bottom) RMs, Case A.

Both rational approximations built with VF and CVF violate

the passivity criterion. The non-passive regions are detailed

in Table II. Notably for the CVF, the passivity violation in

Region 1 occurs outside the frequency fitting range [10Hz;

100 kHz]. Thus, the rational approximation of the CVF model

is considered passive for band-limited signals. For the VF, only

Region 3 lies exclusively outside the fitting range.

Time-domain simulations were performed using three CVF-

derived rational models, considering ∆f as 0Hz, 50 kHz and

TABLE II
PASSIVITY VIOLATIONS REGIONS, CASE A

Method Region Frequency range

VF
1 [0, 395.25] Hz
2 [6.19, 6.23] kHz
3 [258.56,∞] kHz

CVF 1 [0, 2.31] Hz

90 kHz. The output is evaluated as the current at port 1 i1(t)
following the configuration illustrated in Fig. 2. Fig. 6 shows

that CVF can model frequency responses without Hermitian

symmetry.
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Fig. 6. Magnitude of the frequency response using CVF and ∆f = 50 kHz,
Case A.

Table III compares scenarios with and without frequency

shifts for fe = 50 kHz across five different values of h.

Results demonstrate a consistent RRMSE improvement of

approximately one order of magnitude due to the frequency

shift, regardless of h. Table IV extends the analysis to higher-

frequency transients by increasing fe from 50 kHz to 90 kHz.

Across all considered h values, the frequency shift provided

an RRMSE improvement of one to two orders of magnitude.

TABLE III
RRMSE VALUES OF TIME-DOMAIN SIMULATIONS CONSIDERING

DIFFERENT h AND ∆f WITH fe = 50 kHz, CASE A

h ∆f (kHz)
Ratio1

(ns) 0 50

300 3.32× 10−3 6.10× 10−4 1.84× 10−1

400 5.87× 10−3 1.08× 10−3 1.85× 10−1

500 8.98× 10−3 1.67× 10−3 1.87× 10−1

600 1.25× 10−2 2.38× 10−3 1.90× 10−1

700 1.63× 10−2 3.16× 10−3 1.95× 10−1

1Simulation RRMSE with ∆f = 50 kHz relative to the
RRMSE with ∆f = 0Hz.

The complex-valued output of the CVF-derived model is

illustrated in Fig. 7, where the imaginary component of i1(t)
exhibits a 90o phase lag relative to the real component. The

real part corresponds to the output in the regular time-domain,

as depicted in Fig. 1.

Frequency shift allows for a reduction in h while maintain-

ing the target RRMSE. For fe = 50 kHz, Fig. 8 illustrates

that similar results are obtained with ∆f = 50 kHz, using an



TABLE IV
RRMSE VALUES OF TIME-DOMAIN SIMULATIONS CONSIDERING

DIFFERENT h AND ∆f WITH fe = 90 kHz, CASE A

h ∆f (kHz)
Ratio1

(ns) 0 90

140 2.26× 10−3 2.70× 10−4 1.20× 10−1

230 6.12× 10−3 7.15× 10−4 1.17× 10−1

320 1.19× 10−2 1.32× 10−3 1.11× 10−1

410 1.94× 10−2 1.96× 10−3 1.01× 10−1

500 2.78× 10−2 2.44× 10−3 8.78× 10−2

1Simulation RRMSE with ∆f = 90 kHz relative to the
RRMSE with ∆f = 0Hz.
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Fig. 7. Real component, imaginary component, and the magnitude of the
output at port 1, considering i(t) = i1(t), h = 700 ns and ∆f = 50 kHz,
until t = 0.15ms, Case A.

h that is 2.33 times larger than that used without frequency

shift. For fe = 90 kHz, Fig. 9 shows that comparable results

are achieved with ∆f = 90 kHz, using an h that is 3.57 times

the size of the one used without frequency shift.
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Fig. 8. Time-domain responses (top) and its absolute error (bottom) using
fe = 50 kHz, until t = 0.5ms, Case A.
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Fig. 9. Time-domain responses (top) and its absolute error (bottom) using
fe = 90 kHz, until t = 0.5ms, Case A.

B. Case B – Distribution Network

The last case pertains to an FDE of the two-port (N =
6), three-phase distribution system illustrated in Fig. 10. The

fitting process employed 50 poles.
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Fig. 10. One-line diagram of the three-phase distribution system of Case
B, with line lengths indicated in kilometers. Solid lines represent overhead
conductors, while dashed lines denote underground cables. Adapted from [22].

Table V presents the quantitative results for the fitting

performance metrics in Case B. The RRMSE achieved with

CVF was eight orders of magnitude smaller than that obtained

with VF. Fig. 11 demonstrates that the error reduction with

CVF consistently remains eight orders of magnitude lower

than that with VF throughout the entire frequency range.

TABLE V
FITTING ACCURACY COMPARISON BETWEEN VF AND CVF-DERIVED

RATIONAL MODEL, CASE B

Method RRMSE (%) Ratio

VF 4.86× 10−3 –

CVF 1.88× 10−10 3.87× 10−8

1CVF RRMSE over VF RRMSE.
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Fig. 11. Magnitude of the frequency response, Case B.

Fig. 12 shows that all 50 poles satisfy the stability criterion

and only the complex poles obtained with CVF are not

necessarily represented by complex conjugate pairs.
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Fig. 12. Poles of VF (top) and CVF (bottom) rational models, Case B.

The rational approximations obtained using VF and CVF are

non-passive within the fitting range. The passivity violations

occur across nearly the entire frequency range, as shown in

Table VI.

TABLE VI
PASSIVITY VIOLATIONS REGIONS, CASE B

Method Region Frequency range

VF
1 [0, 25.50] kHz
2 [28.13,∞] kHz

CVF
1 [0, 25.62] kHz
2 [28.12, 30.46] MHz
3 [34.71,∞] MHz

Time-domain simulations were conducted using CVF-

derived Y (s), with the current at port 2 i2(t) as the output,

following the configuration depicted in Fig. 2. Table VII shows

a consistent two-order magnitude improvement in RRMSE for

the frequency-shifted scenario with fe = 50 kHz A similar

trend is observed for fe = 90 kHz scenario, as shown in

Table VIII.

TABLE VII
RRMSE VALUES OF TIME-DOMAIN SIMULATIONS CONSIDERING

DIFFERENT h AND ∆f WITH fe = 50 kHz, CASE B

h ∆f (kHz)
Ratio1

(ns) 0 50

100 2.22× 10−4 9.98× 10−6 4.48× 10−2

200 8.89× 10−4 4.00× 10−5 4.47× 10−2

300 2.00× 10−3 8.95× 10−5 4.47× 10−2

400 3.68× 10−3 1.58× 10−4 4.31× 10−2

500 5.51× 10−3 2.44× 10−4 4.43× 10−2

1Simulation RRMSE with ∆f = 50 kHz relative to the
RRMSE with ∆f = 0Hz.

TABLE VIII
RRMSE VALUES OF TIME-DOMAIN SIMULATIONS CONSIDERING

DIFFERENT h AND ∆f WITH fe = 90 kHz, CASE B

h ∆f (kHz)
Ratio1

(ns) 0 90

80 9.66× 10−3 3.47× 10−4 3.60× 10−2

160 3.80× 10−2 1.38× 10−3 3.63× 10−2

240 8.31× 10−2 3.05× 10−3 3.67× 10−2

320 1.40× 10−1 5.28× 10−3 3.77× 10−2

440 2.40× 10−1 9.31× 10−3 3.88× 10−2

1Simulation RRMSE with ∆f = 90 kHz relative to the
RRMSE with ∆f = 0Hz.

Figure 13 shows the CVF-derived complex output at port

2, where its imaginary part lags the real part by 90o. The

focus is on the real component, as it represents the regular

time-domain signal.

0 0.05 0.1 0.15
-0.02

-0.01

0

0.01

0.02

R (i(t))
I (i(t))

|i(t)|

Fig. 13. Real component, imaginary component, and the magnitude of the
output at port 2, considering i(t) = i2(t), h = 500 ns and ∆f = 50 kHz,
until t = 0.15ms, Case B.

Time-domain simulations with frequency shift shown in

Fig. 14, for fe = 50 kHz, exhibited similar accuracy to the

scenario without it, with h increased by a factor of 5. For

fe = 90 kHz, Fig. 15 demonstrates that h in the frequency-

shifted domain can be increased to 5.5 times the value used

in the scenario without frequency shift.

C. Discussion

The output waveforms in Figs. 7 and 13 highlight three key

attributes of the CVF-derived model. First, the model generates
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Fig. 14. Time-domain responses (top) and its absolute error (bottom) using
fe = 50 kHz, until t = 0.5ms, Case B.
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Fig. 15. Time-domain responses (top) and its absolute error (bottom) using
fe = 90 kHz, until t = 0.5ms, Case B.

complex-valued outputs even for real-valued excitations due

to the absence of Hermitian symmetry. Second, the −90o

phase shift between the real and imaginary components arises

directly from the Hilbert transform shown in (6). Third,

the magnitude of the signal |i(t)| can be interpreted as the

amplitude of the time-varying phasor i(t). Remarkably, the

frequency shift preserve the magnitude of the time-varying

phasor, as shown by |iA,sh(t)| = |exp(−j2π∆ft)iA(t)| =
|iA(t)|. This guarantees that the dynamic behavior of i(t) is

fully preserved in the frequency-shifted domain simulation.

The CVF significantly improved fitting accuracy across

the bandwidth of interest, achieving an improvement of up

to eight orders of magnitude improvement over VF, for the

same number of poles, across all cases. This improvement

stems from the added flexibility in the allocation of poles and

residues, which are no longer restricted to complex conjugate

pairs. Consequently, Case A revealed a pronounced difference

in passivity: the CVF-derived model preserved this property,

whereas the VF-derived approximation violated it.

Across all cases, frequency-shifted simulations consistently

outperformed regular time-domain simulations by one to two

orders of magnitude for the same h. This improvement is

attributed to the reduction in the transient maximum frequency

by ∆f , which lowers the Nyquist frequency limit by the same

amount. As a result, for a given target RRMSE, h can be scaled

by a factor of 2.33 to 5.5 without sacrificing accuracy. This

reduction in the number of time-steps required for simulations

leads to lower computational costs and faster simulations.

VI. CONCLUSIONS

Relaxing the realness constraint enabled Complex Vector

Fitting (CVF) to achieve substantial accuracy improvements

over Vector Fitting (VF), reducing fitting errors by up to

eight orders of magnitude in both cases. Noteworthy pas-

sivity differences were observed, with only the CVF-derived

model maintaining passivity in one case. Frequency-shifted

simulations showed considerable performance improvements,

enhancing accuracy (for the same time-step size) or speed

(for a target accuracy) across all tested cases. As a result, the

proposed framework offers a powerful and efficient approach

for simulating power system transients.
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