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Abstract—A tower footing grounding system plays an essential
role in lightning-related overvoltages. For time-domain analysis,
using an Electromagnetic Transient (EMT) program, one
typically has to resort to a rational approximation of
the harmonic impedance or a frequency-dependent network
equivalent (FDNE) for the grounding system. Although one may
obtain a rational approximation in several ways, a discussion
of the impact of the topology considered for the rational
approximation and the effect of the effective length in this
realization has not been presented in the literature. Thus,
this work focused on these two aspects. First, a comparison
of either approach regarding a minimum-order representation.
Second, comparing the two possible topologies of the rational
approximation order and its relationship with the effective length.
The results indicate that an accurate FDNE is slightly more
robust if the effective length is respected.

Keywords—Grounding, Circuit Synthesis, Lightning Protection,
Electromagnetic Transients.

I. INTRODUCTION

TOWER-footing grounding system plays an important role
in assessing ground potential rise (GPR) during transients

related to lighting phenomena. Typically, the frequency or time
domains can be used for such evaluation. For the former, the
Method of Moments (MoM) [1], [2] is employed, considering
either an equivalent impedance matrix [3]–[6] or using the
Partial Element Equivalent Circuit (PEEC) method [7], [8] as
the Hybrid Electromagnetic Model (HEM) [9], or its modified
version (mHEM) [10]. For the latter, there are two main
possibilities: The finite-difference Time-Domain (FDTD) can
be used to directly derive a ground system immittance [11],
[12] or one may adapt the grounding impedance calculated
using one of the above methods to allow a representation in
an Electromagnetic Transient (EMT) program such as ATP,
EMTP or PSCAD.

To include a grounding system in an EMT program, one
may consider using a frequency-dependent transmission line
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model [13]–[16], obtain an equivalent circuit [17]–[20] or
use a rational approximation of the harmonic impedance
of the grounding system. Some algorithms such as, Vector
Fitting [21]–[23] or Matrix Pencil Method [24]–[27] can be
utilized to obtain this harmonic impedance.

More recently, in the case of a tower footing grounding
system, some works [28], [29] have treated the tower
footing grounding system as a frequency-dependent network
equivalent (FDNE). In this scenario, post-processing passivity
enforcement must be carried out to ensure stable time
responses [30]–[34]. However, these works do not discuss
whether or not this approach leads to a more robust
implementation in terms of numerical stability, realization
order, and even if a reduced-order realization is feasible.

The topic of order reduction is vast and has received
considerable interest in the technical literature; see, for
instance, [35]–[37]. Traditional methods relying on balanced
truncation [38], [39] have been shown to fail to provide
accurate responses in the high-frequency range, demanding
a different approach to achieve minimum order.

The paper is organized as follows. Section II briefly
describes the formulation of the impedance matrices using
mHEM, and the assembly of an equivalent nodal admittance
matrix. Section III-A presents the determination of the
harmonic impedance and its associated rational modeling.
Section III-B shows the evaluation of an FDNE for the
tower footing grounding system and the related rational
approximation, together with a discussion of the pole number
and the associated accuracy. Time responses of the GPR of
the counterpoise configuration considering double-peek and
fast-front currents are depicted in Section IV. The main
conclusions are presented in Section V.

II. FREQUENCY DOMAIN MODELING

Consider, initially, two arbitrarily oriented lossless electrodes
i and k with radius ai, ak, and length Li, Lk, respectively,
and immerse in a lossy medium, with a propagation constant
γ =

√
jωµ (σ + jωε). It is assumed that Li > a and Lk > a

and both are electrically short, i.e. , |γLi| ≪ 1 and |γLk| ≪ 1.

A current I is injected in electrode i, as both Lk and Li

are electrically short, it can then be divided into a transverse
current IT distributed along the electrode, which is injected
in the surrounding medium, and a longitudinal IL along the
electrode. The electrical field at an arbitrary point at the surface
of electrode k is approximately given by (1) and the electric
scalar potential then can approximately be written as (2)



E ≈ jωµ

4π
IL exp (−γ R)

∫
Lk

1

r
cosϕdξ (1)

V ≈ IT
4π (σ + jωε)

exp (−γ R)

Lk

∫
Lk

1

r
dξ (2)

where r is the distance between an arbitrary infinitesimal
element at the center of electrode i to an arbitrary point at
the surface of electrode k, ϕ is the angle between the vectors
associated with Li and Lk, and R is the distance between the
middle point at the center of conductor i to a point at the
surface of conductor k.

These approximations allow the following expressions (3) for
the transverse and longitudinal mutual impedances

ZTik
=

exp (−γ R)

4π (σ + jωε)LiLk
P ik

ZLik
=

jωµ cosϕ exp (−γ R)

4π
P ik

(3)

where P ik is now given by (4). The distances R1, R2, R and
the finite length conductors are depicted in Fig. 1.

P ik =

∫
Lk

ln
R1 +R2 + Li

R1 +R2 − Li
dξ (4)
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Figure 1. Finite Length lossless electrodes in a uniform medium.

A key aspect is the segmentation of the electrodes. A
maximum length of λ/10 was adopted, where λ is the
wavelength of the highest frequency of interest for waves
propagating in soil. In this research, the maximum frequency
of interest is 10 MHz.

To determine the self-elements in these matrices, it is
necessary to evaluate both E and V at the electrode surface.
Conductor losses can easily be included using the well-known
expression with Bessel functions. These expressions are well
known and can be found in [10], [13].

As elements P ik and R are frequency independent,
they are calculated only once, considerably reducing
the computational burden. To further increase numerical
performance, geometrical symmetry is used to reduce the
number of necessary evaluations as proposed in [40].

As the distance from the electrodes is sufficiently larger
than the electrode radius, a simple charge/current image was
considered to avoid a more rigorous solution to represent
the air-soil interface via a series expansion of plane waves
and then obtain a coherent set of reflection and refraction
coefficients [41, sec. 7.6]. Furthermore, in [42], it was shown
that image methods can provide suitable response for buried
conductors if frequencies below 10 MHz are to be considered.

If one considers ZT to be the transverse impedance
considering all the segmented conductors and their associated
images and ZL to be the one related to the longitudinal
impedances, the expression (5) can be written

Yn =
(
mT

A · Z−1
T ·mA +mT

B · Z−1
L ·mB

)
(5)

where Yn is an equivalent nodal admittance matrix for a
system of electrodes. The matrices mA and mB are the
incidence matrices obtained through an oriented graph that
relates the adjacent nodes and segments.

III. RATIONAL APPROXIMATION

A. Tower-footing Grounding System as Harmonic Admittance

In time-domain simulations, the harmonic admittance Yg is
considered instead of the harmonic impedance (Zg = Y −1

g )
since a nodal or modified nodal formulation is used. Thus,
for the sake of argument, consider a simple counterpoise
configuration as depicted in Fig. 2.
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Figure 2. Counterpoise configuration.

To obtain the harmonic impedance Zg , one must first solve (6)
and (7), where V is the voltage vector for each node to be
calculated and In is a vector of injected current.

Yn ·V = In (6)

In = [1/4, 0 · · · , 1/4, 0, · · · , 1/4, 0, · · · , 1/4, 0, · · · ]T (7)

The values In(i) ̸= 0 corresponds to the injected current at
nodes A through D, as shown in Fig. 2.

The ground potential rise (GPR) will be the voltage at node A
(VA). Naturally, in this configuration, VA = VB = VC = VD.
Thus, Zg can be obtained as (8)

Zg =
VA(ω)

1A
(8)

and then the rational approximation is carried out for harmonic
admittance by (9), which is rather straightforward, i.e.,



Yg(s) ≈ Yfit(s) = R0 +

N∑
k=1

Rk

s− pk
(9)

where N is the order of the approximation, Rk, and pk are
real or come in pairs of complex conjugates. As mentioned
above, the pole relocation algorithm known as vector fitting
(VF) is used [22], [43], [44].

As the order N needs to be predefined, one of the goals of
this work is to investigate a minimal order realization for a
grounding system with suitable accuracy. Initial tests with
orders as high as 40 poles indicated that several poles had
very small residues, thus contributing little to the frequency
response.

In this work, a simple approach was considered to determine
the approximation order. An initial estimate of 2 poles and a
maximum of 20 poles was considered. This order was chosen
based on previous experience with the rational approximation
model of frequency-dependent soil parameters [45] indicating
that a fitting order near 20 poles should suffice. The heuristic
adopted here is based on multiple VF runs, varying the
rational approximation order. This order is increased until the
rms-error (erms) obtained through the fitting process reaches
a previously defined tolerance, i.e.,

erms =

√√√√√ Ns∑
m=1

|Yg(sm)− Yfit(sm)|2

Ns
≤ min(|Yg(s)|)

1000
(10)

where Ns is the number of frequency samples used. A
frequency range from 100 Hz to 10 MHz with 250
logarithmically spaced samples were considered. The stop
criterion adopted was similar to the one found in the wide-band
modeling of overhead transmission lines and underground
cables in EMT programs.

Lastly, a final refinement is carried out based on the idea of
the dominant pole [46]–[48]. Thus,

arctan

(
rir
pir

)
≥ ξ (11)

where pir is the real part of the ith pole, rir is the real part
of the ith residue, and ξ is a pre-defined tolerance. Increasing
the value of ξ would lead to lower order model. The set of
poles/residues that do not meet this criterion are disregarded.
Then, the rational model is refitted using this new reduced
set. It was found that with this arrangement a reduction of
almost half the number of poles was obtained. Future work
will compare this approach with other techniques to obtain a
minimal order model.

Table I presents the results for the rational approximation for
low-resistivity soils with shorter electrodes and high-resistivity
soils with longer electrodes. For the scenarios, relatively
low-order realizations were obtained. In all cases, a final model
with 11 poles was utilized, and an accurate approximation was
obtained with deviations at least three orders of magnitude
below the original data.

Table I
FITTING RESULTS CONSIDERING LOW RESISTIVITY AND HIGH

RESISTIVITY SOIL WITH DISTINCT ELECTRODE LENGTHS.

length (m) ρ (Ω·m) order erms × 10−5

30 100 11 3.6925
60 100 11 6.4058
90 1000 11 2.7303
120 1000 11 2.2772

Figure 3 shows the results of the fitting using mHEM, to
represent Yg(s) for the counterpoise in Fig. 2 with L = 90 m
and for a soil resistivity of 1000Ω · m and εr = 10.
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Figure 3. Fitting results considering L = 90 m and ρ = 1000Ω.m.

The above results may lead one to believe that an order as
high as 11 should suffice. However, this is not necessarily
true for every grounding system configuration. A considerably
higher-order realization is found if the effective length ℓeff
is disregarded [17], [18], [49], i.e., shorter counterpoise in
high resistivity soil. The reason for that is twofold. First,
the harmonic admittance Y (ω) presents a higher oscillatory
behavior at higher frequencies for higher resistivity soils, see
for instance [50]–[53]. Second, if the counterpoise length is
shorter than ℓ, higher oscillations are expected as the current
along the counterpoise is forced to be null drastically at the
end of the counterpoise. This rapid decrease in the current will
cause the oscillation at the tail of the harmonic admittance. To
illustrate this, consider the results for a 60 m counterpoise in
a 1000 Ω·m soil as shown in Fig. 4. This fitting required an
order of 28 poles to reach erms = 1.1018× 10−5.

B. Tower-footing Grounding System as FDNE

For an FDNE, the procedure is slightly different. Again,
consider a simple counterpoise configuration as previously
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Figure 4. Fitting results considering L = 60 m and ρ = 1000Ω.m.

evaluated. After calculating Yn and obtaining Zn (Zn =
Y−1

n ), one extracts the following reduced impedance matrix,
which is shown in (12) and can be understood as the driving
point impedance of each leg of the counterpoise.

Zred =


ZAA ZAB ZAC ZAD

ZAB ZBB ZBC ZBD

ZAC ZBC ZCC ZCD

ZAD ZBD ZCD ZDD

 (12)

The next step is to obtain the reduced admittance matrix Yred

(Yred = Z−1
red), which will be used as FDNE, through a

rational approximation, such as in (13),

Yred ≈ Yfit = G0 +

N∑
n=1

Rn

s+ pn
(13)

where G0 is a conductance matrix related to the low-frequency
resistance matrix (RLF and G0 = R−1

LF ), Rn are the residues
matrices and pn the poles.

To ensure simulations with stable time-domain responses, it
is necessary to assess whether there are passivity violations
and enforce the passivity. The former can be evaluated using a
Hamiltonian matrix, obtained from the rational approximation,
and the latter is achieved through perturbation of the residues
matrices as proposed in [30].

The procedure to determine the maximum order was similar
to the one used for the scalar model. Only the eigenvalues of
Yn(s) are used to verify the model accuracy, such as in (14),

erms ≤
min(|λmin(s)|)

1000
(14)

where λmin(s) is the eigenvalue with the smallest amplitude
of the admittance matrix Yn(s).

Table II presents the results for several scenarios considering
shorter electrodes in low-resistivity soil and longer electrodes
in high-resistivity soils.

The rational model’s fitting order increases when compared
with the scalar model. For shorter electrodes, the order
increases by around 50%, while longer electrodes presented an
increase of over 80%. This is because the mutual elements are
not monotonic, presenting some oscillations for frequencies
above 10 kHz. The FDNE approach seems more robust since
the order is less affected by ℓeff , as it happens in the
scalar case (treating the tower-footing grounding system as
a harmonic admittance). Figure 5 depicts the fitting results
for the self and mutual admittances considering the shortest
and longest electrodes in Table II. The self elements presented
higher magnitude throughout the whole frequency range. It can
be noticed that even for L = 30 and ρ = 100Ω·m that some
amplitudes oscillations can be found for frequencies around
100 kHz.

This behavior is even more noticeable for the longest
counterpoises, where these oscillations appear for frequencies
above 50 kHz. The Hamiltonian matrix test indicated no
passivity violations, as it can be observed in Fig. 6, which
depicts the behavior of the real part of the eigenvalues (λ) of
the admittance matrix (Yfit), i.e., λ = eig (Yfit).

Table II
FITTING RESULTS CONSIDERING LOW RESISTIVITY AND HIGH
RESISTIVITY SOIL WITH DISTINCT ELECTRODE LENGTHS FOR

COUNTERPOISE TREATED AS FDNE.

length (m) ρ (Ω·m) order erms × 10−6

30 100 16 1.0197
60 100 17 1.3129
90 1000 22 0.6179
120 1000 20 0.7739

C. Realization Using a Unique Order

From an implementation point of view, it would be interesting
to have a unique order regardless of the tower footing
grounding system considered and its realization. Thus, it is
investigated whether the highest order, N = 22, found in
FDNE rational approximation, would also provide suitable
responses in the other scenarios considered in this work.

The results of the analysis above are presented in Table III,
where it can be observed that, For short counterpoise in
low resistivity soils, the scalar approach (fitting the harmonic
admittance) seems to provide an improved response compared
to the FDNE approach. The FDNE formulation provided
slightly more accurate responses for longer counterpoises in
high-resistivity soils and presented no numerical issues as
passivity violations.
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Figure 5. Fitting results considering distinct counterpoise lengths and soil resistivities.
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Figure 6. Real part of the eigenvalues of fitted FDNE.

IV. TIME RESPONSES

For the evaluation of the time responses, two “types” of the
injected currents are considered, both are based on return
current strokes measured at Mount San Salvatore. One of these
currents has a double peak and is related to the first negative
stroke, while the second has a fast front commonly associated

Table III
FITTING RESULTS CONSIDERING 22 POLES FOR ALL TOPOLOGIES.

length (m) ρ (Ω·m) erms × 10−6 topology
30 100 0.0543 FDNE
30 100 0.0281 scalar
60 100 0.0901 FDNE
60 100 0.0281 scalar
90 100 0.1292 FDNE
90 100 0.0615 scalar

120 100 0.2135 FDNE
120 100 0.04471 scalar
30 1000 1.4360 FDNE
30 1000 1.0482 scalar
60 1000 5.2965 FDNE
60 1000 3.4647 scalar
90 1000 0.6179 FDNE
90 1000 2.3829 scalar

120 1000 0.347 FDNE
120 1000 1.2551 scalar

with subsequent strokes. Fig. 7 represents these two injected
current waveforms.

For the analytical representation of this current, it is considered
a series of Heidler functions, such as (15) proposed in [54],

i(t) =

K∑
k=1

I0k
ηk

[
(t/τ1k)

nk

1 + (t/τ1k)nk

]
exp

(
− t

τ2k

)

ηk = exp

(
−τ1k
τ2k

·
(
nk t2k
τ1k

)1/nk
) (15)

where K, I0k , τ1k, τ2k, nk and ηk are adjustable parameters
of the injected current waveforms.



Fast Front

Double Peek

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Time [μs]

C
ur
re
nt

[k
A
]

Figure 7. Waveform of injected current considered for the transient analysis
of a tower-footing grounding system.

For the frequency domain analysis using the NLT, 1024
samples, with a maximum observation time of 40 µs, is
considered, leading to a time-step of 39.062 ns. A stand-alone
program written in the Wolfram Language in an environment
similar to the matEMTP [55] is used for the time-domain
analysis. In this case, a time-step of 5 ns with a maximum
time of 40µs is considered. This leads to 8000 samples for
the time-domain simulation. The time-step in the EMT-type
of the simulation was chosen to lead a Nyquist frequency of
10 MHz which was the largest frequency of interest in the
rational approximation.
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Figure 8. Ground potential rise considering the double peek current.

The counterpoise considered is the one found in Fig. 2 with
L = 30 m and ρ = 100Ω·m and with L = 120 m and
ρ = 1000Ω·m. The results are presented in Fig. 8 for the
double peak current and in Fig. 9 for the fast current wave.
The GPR calculated through both methodologies is shown to
be almost coincident, regardless of the current excitation. The
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Figure 9. Ground potential rise for fast front current.

results obtained using the scalar formulation were identical to
those of the FDNE.

A computation burden assessment was made, where it was
considered the time to evaluate the 250 samples, obtain the
reduced matrix in the FDNE case or the harmonic admittance,
the rational approximation evaluation, the passivity verification
for the FDNE case and the time spent in the time-step loop
to obtain the time responses.

The total computation time was around 25% faster for
harmonic admittance and around 45% for FDNE, when
comparing these approaches with the NLT. All these timings
were obtained considering an i9 Intel personal computer with
16GB of RAM.

V. CONCLUSIONS

This work compares two approaches for a rational
approximation of a tower footing grounding system aiming for
a time-domain analysis using an EMT program. It shows that,
despite the more straightforward approach, the scalar model
representation of the tower footing ground system can only be
used with a lower order if the effective length is respected.
Suppose a more detailed representation is considered, such
as treating the tower footing grounding system as an FDNE
based on the driving point impedance of each counterpoise
leg. In that case, a higher order is needed for the realization.
However, lower-order variations were found. The last approach
seems more robust for this kind of analysis. With a rational
realization with 22 poles, the harmonic admittance and FDNE
can be fitted with acceptable accuracy, regardless of the
counterpoise length and soil resistivity.



Future work will deal with the analysis of other criteria for
the pole reduction as well as the assessment of the transient
propagation of the electromagnetic field on the ground due to
lightning-related currents, as it will demand only an increase
in the order utilized in the FDNE approach, considering key
points along the counterpoise. Probably, it should consider an
adaptive segmentation scheme, where a coarse segmentation
could be used for conductors away from the region of interest
and a fine segmentation could be used for the ones close to
the region of interest.
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D’Annibale, and J. P. Filho, “Alternative study to reduce backflashovers
using tower-footing grounding systems with multiple inclined rods,”
Electric Power Systems Research, vol. 214, p. 108893, 2023.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0378779622009440

[51] M. Ghomi, F. Faria da Silva, A. A. Shayegani Akmal, and C. Leth Bak,
“Transient overvoltage analysis in the medium voltage substations based
on full-wave modeling of two-layer grounding system,” Electric Power
Systems Research, vol. 211, p. 108139, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0378779622003613
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