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Abstract—Electric power systems are continuously evolving
to meet the growing demand. International agreements aim to
increase the share of sustainable energy sources, which enhances
the relevance of inverter-based resources (IBRs) interconnection
lines. However, in power grids with IBRs, protection systems
face challenges due to the behavior of voltages and currents.
While phasor-based fault location is widely used, it is significantly
impacted by fault resistance. Thus, the present article proposes
an approach that combines apparent impedance techniques
with machine learning (ML), using data exclusively from
the substation, to accurately estimate fault locations in IBRs
interconnection lines. Initially, a ML-based approach estimates
the fault resistance and applies a compensation factor to estimate
the fault current. The approach proved promising, reducing
average errors in the fault location task to less than 1% without
requiring new meters in the system, communication structures
between transmission line terminals, or meters with higher
sampling frequencies.

Keywords—Fault location, Impedance-based fault location,
Inverter-based Resources, Machine learning.

I. INTRODUCTION

In recent years, increasing electricity demand, declining
availability of mineral coal, and the implementation of public
policies promoting sustainable energy have led to greater
reliance on renewable sources, such as solar and wind
power, both based on Inverter-Based Resources (IBRs) [1].
Simultaneously, regulatory changes have heightened the need
for more efficient maintenance strategies and faster power
restoration. Service quality indicators, which assess outage
frequency and average interruption duration, have become
a primary focus for electric utilities. In this context, Fault
Location (FL) methods are essential tools, as the accurate
identification of fault distance and location enables technical
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teams to quickly pinpoint the fault location, reduce power
outage duration, and ultimately improve power quality
indicators [2].

FL methods have undergone significant transformations.
The precursors were based on monitoring voltages and
currents to estimate the apparent impedance [2]. However,
these methods are affected by fault resistance. With
advancements and the availability of high sampling rates,
traveling wave-based methods were proposed [3]. The main
advantage of these methods is to achieve lower errors and
be less influenced by fault resistance [4]. Due to this
characteristic, they could be applied to short lines if the
required high sampling rates are met [5]. With advancements
in cloud processing and data storage capabilities, Machine
Learning (ML)-based methods have become increasingly
important, reducing the need for high sampling rate meters [6].

Considering the increasing demand for renewable energy
sources, interconnection lines with wind farms have gained
ground in recent years. A major difficulty lies in ensuring
that the FL process remains reliable despite variations in fault
resistance, preventing inaccuracies to the estimations made
by FL placed on the grid side [4]. Therefore, enhancing FL
methods through fault resistance estimation can reduce errors,
increasing the overall efficiency of fault management.

The authors in [7] present a multi-method approach for
FL in interconnection lines with wind farms. The proposed
approach selects the best method based on the fundamental
frequency component, depending on the type of fault. Based
on [8], a modification of the Takagi zero-sequence method
was proposed, considering new loop quantities applied to
this method and enabling lower errors for phase-phase-ground
faults. Although the method minimizes errors by selecting the
best approach for each fault, higher errors are obtained when
the fault resistance is high.

Conversely, traveling wave-based methods, as discussed
in [9], are also used for FL in wind farm interconnection lines,
classified into single-ended and double-ended approaches.
However, frequencies in the MHz order are required and
communication channel shortcomings persist.

Given the limitations imposed on classical methods and
the constraints of traveling wave-based ones, the authors
in [10] introduced an approach that combines fundamental
component-based methods with ML techniques for FL in
IBR-based systems. They used voltage and current phasors,
symmetrical components, and distance estimation of existing
methods based on the approach proposed in [7]. Although it



reduces the FL error, the method relies solely on using ML,
which requires prior training.

In this context, acknowledging that FL in systems with IBRs
still demands further analysis and error reduction solutions,
this work contributes to the state-of-the-art by presenting the
following advancements:

e Developing a methodology for compensating fault
resistance, which enables the reduction of errors in FL
based on fundamental frequency components;

o Performing a comparative evaluation with existing
phasor-based methods, aimed at highlighting the
superiority of the proposed methodology in reducing FL;

o A fault resistance estimation method that can be used
to predict the nature of the fault, enabling enhanced
awareness for the maintenance team.

The structure of this article is organized as follows.
Section II reviews the state-of-the-art classical FL methods
based on the fundamental component. Section III presents the
test system that represents typical wind farm interconnection
topologies. Section IV presents the proposed methodology for
FL in IBR interconnection lines through a fault resistance
compensation factor. Section V presents the results and
discussion. Finally, Section VI provides the conclusions of this
article.

II. STATE-OF-THE-ART FOR FAULT LOCATION

Phasor-based methods were selected in this section as they
require low sampling frequencies and are usually embedded
in commercial devices. Furthermore, only methods that rely
on measurements from a single Transmission Line (TL)
terminal were considered as the proposed solution follows this
approach. Furthermore, it is an approach that does not require
communication infrastructure between the line terminals.
Finally, priority was given to methods that adequately operate
on all types of faults.

A. Impedance-based Method (IMPE)

This method is a precursor of phasor-based fault location
methods [2], and its operation is based on the indirect
measurement of the fault distance based on calculating the
positive sequence impedance between the measurement and
fault points. The fault location estimation in p.u. (m) is
characterized by:
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where 71 is the voltage loop and Tl) the current loop as
described in [7], and Z7, is the positive sequence impedance
of the TL.

The IMPE method is based on a fundamental equation
that governs phasor-based fault location algorithms with
measurements taken at only one TL end. However, this
approach has significant limitations as parameters such as
fault resistance, load current, TL capacitive effect, and system
homogeneity directly impact its performance [2].

B. Reactance-based Method (REAC)

The algorithm is similar to IMPE. However, REAC
minimizes the influence of fault resistance in the FL estimation
by considering only the reactive component of the estimated
impedance between the measurement and fault points. The
accuracy of this method depends on the equivalence between
the source angle and the fault current angle [11]. The following
equation characterizes the distance estimated by REAC in p.u.:

Imag [%}

m= Imag|Z11] @

It is important to note that aspects such as the system’s
non-homogeneity and the capacitive effect of the TL still
impact the estimations.

Although the REAC improves the IMPE method, its
accuracy in estimating the fault location is significantly
affected when the fault currents from both TL terminals are not
in phase. This phase mismatch can occur due to the presence of
the system load during the fault or due to the non-homogeneity
of the system. In these cases, an additional reactance besides
the faulted line section is measured, impacting the fault
position estimation. Furthermore, the TL capacitive effect also
impacts these estimations [11].

C. Takagi Method (TAKS)

The TAKS method was proposed by [12] to improve the
REAC, considering incremental currents in its decision process
to reduce the effects of the load current on the fault location.
The method requires both pre-fault and fault information to
calculate incremental currents. This information is readily
available on most commercial relays. The estimated fault
location, in p.u., can be defined by:
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where AT;} is the incremental current determined by
subtracting the fault samples from the pre-fault ones [12].
However, although the TAKS method represents an
improvement of the REAC method by minimizing the
influence of the system’s load current on the fault distance
estimation, the non-homogeneity of transmission systems, load
variations before and during faults, and the TL capacitive
effects still have a direct impact on its performance [12].

III. TEST POWER SYSTEM SETUP

The single-line diagram of the test system under
consideration is shown in Fig. 1. The test system comprises
a source with positive-sequence impedance Z; = 0.112 +
j6.3998 [Q] and zero-sequence impedance Z; = 0.435 +
j18.3991 [Q?], along with a voltage level of 69 kV. The A-B
line has impedances Z; = 0.159 + j0.5003 [©/km] and Z, =
0.516 4 j1.5 [Q2/km], and capacitances C; = 304.89 [MQ - m]
and Cp = 449.59 [M - m], with a length of 60 km [7]. The
3, 4, and 5 km overhead lines were modelled using the 7
circuit without considering zero-sequence mutual coupling,



as they are directed to geographically distinct locations and
have short lengths. The impedances of these lines are Z; =
0.1098+50.3751 [2/km] and Zy = 0.2842+ 51.8597 [{2/km].
The transformer is of type Yndl, rated at 5.2 MVA with 10%
impedance. The wind turbine has a rated power of 4.2 MVA,
utilizes a Full-Converter topology, and its control settings are
adjusted as described in [13].
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D
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Fig. 1. Test system single-line diagram.

This system was chosen to represent the topology of
interconnection lines in wind farms, that is, using uniform
single-span TLs and transformers connected in a grounded
star configuration on the grid side [10]. The sub-transmission
line connects bus A to bus B. At bus A, a source is connected
as a Thévenin equivalent representing the grid. At bus B, the
collector lines of the wind farm are considered. Intelligent
Electronic Devices (IEDs) were allocated at busbars A and B
to acquire three-phase voltage and current signals, originating
from bus A (IED;) and bus B (IED2). The study initially
used only data from IED; to evaluate the performance of the
FL method from the Transmission System Operator’s point
of view. Subsequently, a preliminary analysis was conducted
using only data from IED,, which is the measurement point
with the highest influence from the atypical fault currents of
IBR. The analysis aimed to assess the ability to compensate for
the influence of fault resistance, initially testing all methods
with data from IED; and subsequently with data from IED,.

This power system was modelled and simulated using
the PSCAD/EMTDC software with a sampling rate of 512
samples per cycle and considering fault parameters such
as resistance, inception angle, type, and distance. A total
of 17,850 simulated scenarios were used for training and
validation, while 9,750 simulated scenarios were used for
testing purposes. For training, the fault resistances considered
were 0, 10, 25, and 50 2, while for testing, the values were
2, 8, 15, and 40 Q. The fault inception angles for training
were 0°, 45°, and 90°, and for testing, 35°, 55° and 85°.
The fault types included phase-ground (PG), phase-phase (PP),
phase-phase-ground (PPG), and phase-phase-phase (PPP).
Fault distances were selected every 500 meters for training
and every 1,200 meters for testing.

IV. IMPROVED FL METHOD

The proposed routine is illustrated in Fig. 2. Each step of
the method is detailed in the following subsections.

Data acquisition Fault Estimate Estimate the Estimate
Begin and fault [ PO e fault [ influence of [ fault End
classification

detection resistance fault resistance] distance

Fig. 2. Flowchart of the proposed approach.

A. Data acquisition and fault detection

The voltage and current signals for each phase are acquired
at the substation and stored in a rotating buffer of three
cycles. Due to the existence of fault detection methods already
described in the literature, with accuracy rates greater than
99.9%, this step has not been detailed in this article [14]. After
the fault is detected, the algorithm waits for two more cycles
and locks the rotating buffer. Subsequently, the phasors of the
first and third cycles are obtained.

B. Fault classification

Fault classification algorithms are well established in the
literature. In [15], a methodology that utilizes voltages and
currents from a single terminal, considering the grid side,
classifies faults within a quarter cycle, achieving over 99%
accuracy. In [16], a proposed method performs classification
with more than 99.5% accuracy, considering measurements on
the IBR side. In this article, it is assumed that the classification
step was executed correctly.

C. Fault resistance estimation

Estimating fault resistance is challenging, and some authors
have proposed methods for this estimation [17], [18]. In
this context, as an additional contribution of this article, the
potential of ML methods has been investigated for the task
of estimating fault resistance. For this purpose, the Waikato
Environment for Knowledge Analysis (WEKA) software [19]
was utilized, which already encompasses a robust collection
of ML methods and several features that aided the conducted
investigations. The software provides five main categories
of regression/classification methods: Functions, Lazy, Meta,
Rules, and Trees [19]. For the preliminary analysis, 26
methods from these categories were pre-selected based on their
descriptions in WEKA and are presented below:

o Functions Class: Gaussian Processes (GP), Linear
Regression, Multilayer Perceptron, Simple Linear
Regression, SMOreg;

o Lazy Class: IBk (KNN), KStar (K*), LWL;

e Meta Class: Additive Regression, Bagging (BAG),
Multi Scheme, Random Committee (RC), Randomizable
Filtered Classifier, Random Sub Space (RSS), Regression
By Discretization, Stacking, Vote, Weighted Instances
Handler Wrapper;

e Rules Class: Decision Table, M5 Rules (M5R), Zero R;

o Trees Class: Decision Stump, M5P, Random Forest (RF),
Random Tree, REP Tree (REPT).

It is noteworthy, since this is an investigation of potential,
the default parameter settings of the ML methods in WEKA



were considered, as optimizing these parameters for each of
the evaluated methods is not within the scope of this work.

The application of WEKA consisted of three main steps to
determine the most suitable ML method. The steps undertaken
are described as follows:

e Selection of the ML method — For each method
described above, the training and validation set was
selected with the voltage and current phasors for each
phase, obtained in the second cycle after the fault;

e Training and validation — The training and validation
process used cross-validation with 5 folds;

o Testing — Once the method was trained and validated, a
separate subset, referred to as the test set, was loaded.
The result obtained from WEKA was the Mean Absolute
Error (MAE), MAE = 3" | |Ry — Ry|/n where Ry is
the actual fault resistance, R ¢ is the estimated resistance,
and n is the number of instances. This metric is widely
used in fault location problems [10].

Table I compares each fault type’s top ten ML methods.
The analysis shows that RSS had the best performance with a
MAE of 4.58 €2, followed by RF at 4.67 2. Given the minimal
difference and RF’s superior performance for single-phase
faults, subsequent stages will utilize the RF method with
WEKA’s default parameters.

TABLE I
EVALUATION OF MAES FROM THE TEN BEST ML METHODS FOR
ESTIMATING FAULT RESISTANCE, DIVIDED BY FAULT TYPE.

Fault Type
Ref Method PG PPG PP PPP
MAE [©2] MAEI[Q2] MAE[Q] MAEI[Q]
[20] GP 4.06 5.55 7.88 11.04
[21]  KNN 6.12 6.52 6.01 8.66
[22] K* 493 5.46 6.02 6.03
[23] BAG 5.82 6.18 7.44 6.29
[24] RC 4.15 493 5.71 5.55
[25]  RSS 3.99 3.98 4.85 5.50
[26] MSR 5.89 6.44 7.94 8.40
[27]  MS5P 5.78 6.55 7.26 9.12
[28] RF 3.93 4.11 5.30 5.33
[29]  REPT 6.20 6.51 791 8.21

D. Estimate the influence of fault current

The methods presented are affected by fault resistance. Even
methodologies aimed at minimizing this influence, whether
through the imaginary part or compensation factors, face issues
due to current variations caused by the resistance, which can
lead to errors.

When a fault occurs in the line between buses A and B, as
shown in Fig. 3.

The impedance seen from bus A can be calculated according
to (4):

v, I
¢ =Zpa+ = x Rp, )
I I,

Z —

app —

%
where VI is the voltage at bus A during the fault, I; is
the current from bus A, I is the current through the fault

ZsA A ZLA ZL8 B ZsB

Fig. 3. Example of a fault configuration between two buses.

resistance Ry, and Zp 4 is the line impedance between bus A
and the fault point. N

During the fault, the total fault current I; is a function of
the current flowing through the fault and the current flowing
towards the load, as shown in (5):

H
I :IF+Iprea (5)

where I is the current flowing through the fault resistance
and I, is the current flowing to the load before the fault.

Finally, only the fault current can be obtained as a part of
I;, as shown in (6):

_>
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where k = ke’” is a complex factor for pure fault current
distribution.

According to [30], the distribution factor k does not depend
on the magnitudes or phases of the voltages at the line
terminals but only on the grid topology. According to the
authors, this factor is calculated as shown in (7):

Zip+ Zsp) X Zap + (Zsa+ Zsp) X Z1p
Zsp, X Zap+ (Zra+ Z1B)(Zsa+ ZsB)
where Zs;, = Zsa + Zsp + Zpa + Zpp. Thus, according
to (4) to (7), the apparent impedance seen from point A can
be written as shown in (8):
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The signals locally available at one, end of the line, in
this case considering end A, are 71, I, and I,.. Thus, it
is possible to calculate the i;)parent irﬂ)edance Z 4 and also
determine the current ratio (I; —Ip.)/ I; . Moreover, as shown
in [30], it can be assumed that the phase angle + is usually less
than 10° and the fault resistance has been previously estimated.
In this way, a compensation factor can be defined as shown
in (9):

—

AL
—.
kx Il
Finally, the behavior of the four types of faults was
analyzed, and the compensation values were determined
through the process of minimizing quadratic errors so that the

factor k remained constant for each type of fault, as shown in
Table II.

p= 9



TABLE II
COMPENSATION FACTOR (3 VALUES.

Fault type Compensation factor
— L= — L=
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- = — —
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E. Fault distance estimation

Based on the apparent impedance method shown in [2],
it is possible to find a dependency with fault resistance, as
presented in (10):

Vi —R,I
o VimRiI
Zi I

From the propositions presented in [11], it is suggested
to use the imaginary part of the impedance to minimize the
influence of fault resistance. The logic is that fault resistance
primarily affects the real part of the impedance, while the
imaginary part, related to reactance, remains less affected.

On the other hand, the authors in [12] present an alternative
approach to minimize errors in locating faults, considering
the current variation. The proposed methodology employs the
estimation of fault resistance, P:f, as a compensation factor
using the presented ML algorithms. Specifically, RAf was
estimated using the Random Forest algorithm, following the
detailed process outlined in previous sections and configured
according to the parameters established in [19].

In (11), the proposed equation is presented to estimate
the fault distance per unit length. To reduce the influence of
fault resistance, the term ﬂRf is included, which represents
the estimated contribution of fault resistance adjusted by a
correction factor, 8. The application of the imaginary part
further mitigates the impact of fault resistance.

(10)
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V. EVALUATING THE PROPOSED METHODOLOGY AGAINST
TRADITIONAL METHODS

This section presents the metrics used for the method
comparison, followed by general comparisons by fault type.
The influence of fault resistance on the methods is then
analyzed. Finally, a general comparison of the results is
provided.

A. Performance evaluation metrics

In distance-based fault locators, it is common to adopt the
Mean Relative Error (MRE) [5]. This metric accounts for
the difference between the actual distance and the estimated

distance of the fault relative to the line length. In this study,
the MRE was evaluated using (12), considering a set of n cases
and the total length of the monitored line.

n (12=D|
MRE[%]=Z< -

i=1

7) x 100, (12)
n

where D represents the actual fault distance, D is the estimated

distance, and L is the length of the monitored line.

B. Comparison of methods by fault type

An analysis based on the fault types was conducted.
Tables III to VI present the results for each fault type as
a function of fault resistance, considering both classical and
proposed methods.

Table III shows the results for PG faults. Considering
the lowest fault resistance, there is no significant difference
between the proposed and classical methods. However, as the
resistance increases, a greater advantage of using the proposed
methods compared to the other approaches can be observed.
For faults with a resistance of 15 €2, the MRE is 17.39% for
the impedance-based method, 2.97% for the reactance method,
0.95% for the TAKS method, and remains at 0.50% for the
proposed method. For a fault resistance of 40 €2, the MRE of
the TAKS method reached 2.42%, while that of the proposed
method was 0.95%. This result highlights the superiority of the
proposed method over classical ones, particularly in scenarios
with high fault resistance.

TABLE III
COMPARISON OF MRE FOR DIFFERENT FAULT RESISTANCES AND
METHODS ANALYZED IN PG FAULTS.

Method
Resistance IMPE REAC TAKS Proposed
] MRE [%] MRE [%] MRE [%] MRE [%]
2Q 3.05 0.68 0.56 0.55
8 Q 9.42 1.59 0.54 0.28
15Q 17.39 2.97 0.95 0.50
30 Q2 35.78 6.28 1.73 0.85
40 Q 48.87 8.57 2.42 0.95

The results for PPG faults are presented in Table IV. The
reactance method outperformed the TAKS method for this
fault type, achieving an MRE of 0.56% compared to 0.66%.
Similar to what was observed for PG faults, the proposed
method showed a smaller reduction in errors in scenarios with
lower impedances. However, for higher fault resistances, such
as 40 €, while the TAKS method achieved an MRE of 5.92%
and the reactance method 2.78%, the proposed method reduced
the MRE to 1.08%, leading to a 61.15% reduction in location
errors. In absolute terms, this improvement corresponds to a
decrease in the search area from 1,668 meters to 648 meters.

The results for PP faults are presented in Table V.
As previously observed, all analyzed methods exhibited
reduced errors for fault resistances of 2 (). However, as
the resistance increases, the proposed method demonstrates
superior performance. For resistances of 8 (2 and 15 (2, the
error reduction was 15.21% and 63.63%, respectively. In faults



TABLE IV
COMPARISON OF MRE FOR DIFFERENT FAULT RESISTANCES AND
METHODS ANALYZED IN PPG FAULTS.

Method
Resistance IMPE REAC TAKS Proposed
[Q] MRE [%] MRE [%] MRE[%] MRE [%]
2Q 2.89 0.56 0.66 0.56
8 Q 8.70 0.54 1.80 0.66
15Q 16.52 0.67 2.71 0.74
30 Q2 34.73 1.71 4.63 0.81
40 Q 47.84 2.78 5.92 1.08

with a resistance of 30 €2, the TAKS method presented an MRE
of 1.46%, whereas the proposed method reduced this value to
0.39%. In the case of 40 €2, the TAKS method achieved an
MRE of 1.95%, while the proposed method obtained 0.51%,
resulting in a 73.84% improvement in fault location accuracy.
In absolute terms, while the TAKS method presents an average
error of approximately 1,200 meters, the proposed method
reduces this error to only 300 meters. These results confirm
the advantage of the proposed method for fault location in
scenarios with higher fault resistances.

TABLE V
COMPARISON OF MRE FOR DIFFERENT FAULT RESISTANCES AND
METHODS ANALYZED IN PP FAULTS.

Method
Resistance IMPE REAC TAKS Proposed
[€2] MRE [%] MRE[%] MRE [%] MRE [%]
2Q 1.81 0.72 0.74 0.72
8 Q 4.94 0.58 0.46 0.39
15 Q 8.70 0.86 0.66 0.24
30 Q 17.13 1.55 1.46 0.39
40 Q 23.05 2.11 1.95 0.51

The results for the PPP faults are presented in Table VI.
Although the impedance method exhibited a lower error
compared to the proposed method for faults of 2 €2, for faults
of 15 Q the proposed method achieved 0.44%, surpassing
the reactance and TAKS methods, which obtained 1.36% and
2.38%, respectively. As previously analyzed, for faults of 40 €2,
the proposed method reduced the mean error by 65.14%,
reaching an MRE of 0.99%.

TABLE VI
COMPARISON OF MRE FOR DIFFERENT FAULT RESISTANCES AND
METHODS ANALYZED IN PPP FAULTS.

Method
Resistance IMPE REAC TAKS Proposed
[€] MRE [%] MRE [%] MRE[%] MRE [%]
2 0.41 0.90 1.16 0.75
8 2.11 1.04 1.65 0.53
15 4.08 1.36 2.38 0.44
30 8.23 227 4.20 0.68
40 11.16 2.84 5.36 0.99

An analysis of the maximum observed errors was
conducted. Table VII presents the highest MRE obtained for
each type of fault, while Fig. 4 illustrates this variation,

providing a comparative view of each method’s performance.
For PG faults, the proposed method reduced the maximum
error by 63.62%, achieving an MRE of 3.54%. For PPG faults,
the reduction was 14.47%, with an MRE of 3.96%. In PP
faults, the method reduced by 54.74%, resulting in a maximum
MRE of 1.48%. Finally, for PPP faults, the maximum error
reduction was 69.55%, reaching an MRE of 1.76%.

TABLE VII
COMPARISON OF MAXIMUM MRE FOR DIFFERENT FAULT TYPE.

Method
Fault Type IMPE REAC TAKS Proposed
MRE [%] MRE [%] MRE [%] MRE [%]

PG 72.21 10.71 9.73 3.54
PPG 50.36 4.63 12.99 3.96
PP 24.84 3.27 3.64 1.48
PPP 13.95 5.78 10.13 1.76
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Fig. 4. Comparison of methods by fault types.

C. Comparison based on fault resistance

Phasor measurement-based methods, using data from a
single terminal, usually encounter difficulties in fault location
when the fault resistance is high. In Fig. 5, the influence of
fault resistance was evaluated for both the reviewed methods
and the proposed one.
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Fig. 5. Comparison of methods under different fault resistances.

Considering the fault scenarios evaluated in the test system,
the fault resistance varied from 2 to 40 ). For the case of



2 2, the impedance method exhibited an MRE close to 2%,
while the reactance, TAKS, and proposed methods achieved
MREs near 0.5%. For faults with 5 €2, the impedance method
recorded MREs exceeding 5%, whereas the reactance and
TAKS methods had values close to 1%, and the proposed
method maintained an MRE below 0.5%.

The results for fault resistances above 15 €2 confirmed
the effectiveness of the proposed method. Reviewed methods
exhibited MREs greater than 2%, whereas the proposed
method remained below 0.5%. For 40 €), the REAC method
showed an MRE exceeding 4%, and the TAKS surpassed 3%,
while the proposed method remained below 1%.

In addition to the MRE, an analysis of the estimated average
errors in meters was conducted, as presented in Table VIII.
For faults with a resistance of 2 €2, the classical methods
resulted in an average error of 500 meters, while the proposed
method reduced this error to 390 meters. For faults of 8 €,
the reactance-based method presented an error of 564 meters,
whereas the proposed method reduced this discrepancy to
282 meters. For resistances of 30 €2, the traditional methods
recorded an average error of 1,770 meters, while the proposed
method reduced this value to 408 meters. For faults of 40 2,
the classical methods resulted in an average error of 2,346
meters, while the proposed method reduced to 528 meters.

TABLE VIII
COMPARISON OF THE ESTIMATED DISTANCE FOR EACH ANALYZED
METHOD AS A FUNCTION OF FAULT RESISTANCE.

Method
Resistance IMPE REAC TAKS Proposed
[€] Error [m]  Error [m] Error [m] Error [m]
2 1,224 426 468 390
8 3,774 564 666 282
15 7,002 882 1014 288
30 14,382 1770 1806 408
40 19,638 24438 2346 528

The proposed method demonstrated a greater ability to
mitigate the influence of fault resistance, ensuring higher
accuracy even under high-resistance conditions. Additionally,
it exhibited lower MRE variation and did not present outliers
exceeding 2%, making it the most robust among the evaluated
methods.

D. Overall results of the proposed fault locator

Overall, the proposed method utilizes only phasor data
collected from a single system terminal, eliminating the need
for multiple measurement points and data synchronization.
As it is based on machine learning algorithms, a prior
system-specific training phase is required, using post-fault
phasor signals obtained through simulations. Minor system
modifications that do not alter topology do not invalidate
training, although they may reduce the accuracy of fault
resistance estimation. In such cases, retraining can improve
the predictive model’s performance. Alternative methods, as
presented in [17], can be employed as substitutes for the
proposed machine learning-based approach in fault resistance
estimation, although they typically offer lower accuracy.

Once trained, the proposed approach exhibits low
computational complexity compared to approaches that require
high sampling rates. As shown in Fig. 6, the overall MRE
was reduced to less than 1%, representing a significant
advancement for fundamental component-based methods using
data from a single terminal. This level of accuracy is typically
achieved only by high-frequency estimators with measurement
equipment operating in the range of hundreds of kilohertz.
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Fig. 6. Comparison of overall MRE obtained for state-of-the-art and proposed
methods

E. Analysis considering 12Dy measurements

Initial studies were conducted for compensation on the IBR
side (/ED>) in single-phase faults, considering the atypical
characteristics of fault currents originating from this type of
generation [10]. The fault resistance estimation process was
replicated using I F Dy measurements with the Random Forest
(RF) method, with an estimated MAE of 4.37 (), using the
same parameters as before.

For this initial analysis, fault resistance values up to 15
were considered. Table IX presents the average and maximum
errors for this range. The best classical method analyzed,
TAKS, showed an average error of 2.67%, while the proposed
method reduced this value to 1.07%, decreasing the average
error from 1,602 meters to 642 meters. The maximum error,
which was 7.71% in the TAKS method, was reduced to 5.95%.
The standard deviation was also reduced from 2.32 in the
TAKS method to 1.58 in the proposed method, indicating less
variation in accuracy.

TABLE IX
ANALYSIS OF THE MEAN AND MAXIMUM ERRORS FOR THE IBR SIDE,
IEDa.
Method
IMPE REAC TAKS Proposed
[MRE] [MRE] [MRE] [MRE]
MRE 7.7481 4.0110 2.6756 1.0766
Maximum  15.9089 21.8486 7.7127 5.9558

Scenarios for 40 ) were also evaluated. In these cases, the
maximum error of the TAKS method reached 52.78%, with
a standard deviation of 11.03, while the proposed method
reduced it to 27.21%, with a standard deviation of 8.06. It was
concluded that the compensation factor is applicable to 1 E D,



measurements and may contribute to future studies aimed at
reducing errors in faults with higher resistance.

VI. CONCLUSIONS

Accurately locating faults in interconnection lines remains
a challenge due to the influence of fault resistance on
impedance-based methods. Conventional FL approaches often
neglect this parameter or struggle with its stochastic nature,
leading to significant errors, particularly in high-resistance
scenarios. To address this issue, this work proposed a
novel FL methodology that integrates ML techniques with
impedance-based methods to estimate and compensate for
fault resistance.

The proposed approach was validated using a test system
representative of wind farm interconnections, considering
a wide range of fault conditions, including variations in
resistance, inception angle, type, and distance. The results
demonstrated that by incorporating fault resistance estimation,
the method significantly improves FL accuracy, reducing
errors by up to 78% for faults with 40 2 compared to
traditional techniques. Additionally, the methodology relies
solely on voltage and current phasor measurements from a
single terminal, eliminating the need for additional meters,
communication infrastructure, or high-sampling-rate devices,
making it practical for real-world deployment.

Beyond fault location, the ability to estimate fault resistance
provides valuable insights into fault characteristics, which can
support protection and maintenance strategies. This study also
highlighted the potential of ML in enhancing FL methods,
paving the way for future research. As the next steps, further
optimizations of ML algorithms should be explored to enhance
accuracy and computational efficiency. Finally, by improving
fault location accuracy in interconnection lines, the proposed
method contributes to more reliable and resilient power
systems, reducing outage durations and supporting integrating
renewable energy into modern power networks.
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