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Abstract—This paper presents the implementation of two
proposals designed to enhance computational accuracy and
efficiency in the simulation and modeling of cables within
Cable Constants Programs. The first proposal involves the
optimized application of the numerical method known as the
Double Exponential formula for solving improper integrals
related to ground-return parameters, which are essential for
determining the per-unit-length impedance and admittance.
These parameters are particularly significant when dealing
with specific soil characteristics, such as those found in
marine environments. The second proposal is the use of the
Singular Value Decomposition method for computing eigenvector
matrices required for determining the propagation function and
characteristic admittance, both crucial for transient analysis. Two
case studies, involving Single-Core HVDC Cables and Pipe-Type
Cables, demonstrated promising results. For both cases, the
behavior of the analyzed parameters was compared with
conventional methodologies over a wide frequency spectrum. The
results were presented in graphs and evaluated using quantitative
metrics such as Mean Squared Error and Mean Relative Error.
Findings indicate that both proposals are less sensitive to
irregularities in functions and ill-conditioned matrices, exhibiting
good performance and demonstrating their potential as robust
techniques to be utilized and explored for such applications.

Keywords—Cable  Constants Program, Ground-Return
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I. INTRODUCTION

HE growing demand for energy transmission has driven
T significant advancements in the use of submarine cable
systems beneath the ocean floor. These systems are essential
for applications such as connecting offshore wind farms to
continental grids, supporting offshore petrochemical facilities,
and linking power networks between islands and countries [1],
(2], [3].

Consequently, the accurate determination of the distributed
parameters that model these cables is of paramount
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technical importance [4], [5]. These parameters refer to the
per-unit-length impedance Z and admittance Y matrices,
which are fundamental for obtaining the characteristic
admittance Y, and the propagation H matrices, key elements
in the simulation of electromagnetic transients.

These parameters are obtained through computational
routines implemented in simulation software, commonly
referred to as Line/Cable Data (LCD), Line Constants Program
(LCP), or Cable Constants Program (CCP). The primary
goal of such programs is to compute the impedance and
admittance matrices based on the cable’s characteristics and
the surrounding medium, accounting for effects such as skin,
proximity, and ground return.

The classical method involves constructing these matrices
by summing the individual contributions of these effects, while
considering the structural aspects of the cable (or multiple
cables) and the electrical and magnetic properties of the
propagation medium [6].

In recent years, important advancements have emerged
in this field, introducing more detailed formulations. These
include the consideration of non-homogeneous soils, multiple
propagation media, proximity effects, and ground return
admittance effects [7], [8], [9], [10], [11]. Alternative methods
for calculating these matrices include the finite element
method (FEM) and the method of moments with surface
admittance operator (MoM-So) [12], [13], [14], both based
on a more complete electromagnetic theory. Although highly
accurate, these methodologies involve greater mathematical
complexity and demand careful numerical treatment of the
external medium representation [11].

In this context, the construction of per-unit-length parameter
matrices is highly sensitive and influenced by several factors,
such as the need for inverting large matrices, solving improper
integrals, and handling Bessel functions that can become
unstable at high frequencies [6], [10]. These procedures must
be carefully executed, especially when the goal is to ensure the
accuracy of electromagnetic transient simulations and enhance
the reliability of analyses.

This demands a careful analysis of each situation, avoiding
analytical approximations, firstly, in determining ground-return
parameters in cases where their applicability limits are
exceeded [15]. Such cases often involve cables buried at
significant depths and/or separated by large distances, as
in offshore oil and gas production systems, specific HVDC
transmission scenarios, or high-resistivity environments where
seabed conditions can vary due to uncommon soil types [16].



Moreover, when the calculation of the characteristic
admittance and propagation matrices is required, it becomes
necessary to compute matrices composed of eigenvectors
(transformation matrices) and their associated eigenvalues.

This second process is non-trivial, particularly in systems
that may produce ill-conditioned matrices. In certain cases,
artificial oscillations or coalescence of eigenvalues can occur,
leading to significant inaccuracies in transient simulations [11].
This study proposes procedures to address these two critical
challenges in Cable Constants Programs. Both approaches
primarily aim to enhance simulation accuracy, with improved
system reliability, reduced costs in project design and
maintenance, and other substantial benefits to the industry as
secondary outcomes.

The first proposal concerns the accurate calculation
of ground-return parameters without compromising
computational efficiency. The proposal involves the
development of an algorithm based on the numerical
integration method known as the Double Exponential (DE)
formula to compute the improper integrals related to these
parameters, avoiding the use of analytical approximations.
This procedure is related to the calculation of Z and Y.

The second proposal refers to the accurate calculation of
transformation matrices, eliminating instabilities and unwanted
oscillations. An algorithm is suggested for the explicit
calculation of eigenvalues, along with the use of the
Singular Value Decomposition (SVD) method to identify these
matrices. This procedure is related to the determination of
Y. and H, assuming that the per-unit-length impedance and
admittance have been properly obtained.

The paper is organized as follows: Section II details
the structure of the Cable Constant Program, addressing
the theoretical considerations adopted for calculating
the per-unit-length parameter matrices, as well as the
post-processing required to determine the characteristic
admittance and propagation matrices. Section III presents
the methodology used for the application of the Double
Exponential formula, proposed to compute the integrals
related to the return parameters, with test cases demonstrating
the wvalidity of the formulation. Section IV suggests
an optimized use of the SVD method for -calculating
transformation matrices, also validated through comparative
test cases. Finally, Section V presents the conclusions of this
work.

II. CABLE CONSTANTS PROGRAM
A. Per-Unit-Length Impedance and Admittance

This study takes into account the skin and the ground-return
effects in the cable modeling, as well as a propagation model
with a non-homogeneous soil consisting of two layers, with the
cable placed in the second layer. Additionally, the Single-Core
Coaxial Cable (SC) and Pipe-Type Cable (PT) are analyzed,
as they are commonly used in power line applications [17].

For the determination of impedance and admittance in SC
cables, the following formulations are considered. In these
equations, the indices 7 and o refer to the internal and external
media impedance/admittance, respectively. Specifically, Pi and

Po, the potential coefficient matrices, are related to the
insulation layers and the representation of the external media
shunt admittance, respectively.

Z=17;+7, (D

Y = ju(P; +P,) ! (2)

For PT cables, the following formulations are considered.
In this case, the indices "p" and "c¢" represent the
pipe internal impedance/admittance and the connection
impedance/admittance between the inner and outer surfaces,

respectively.

Z="7i+Zp+ Ze + Zo 3)

Y = jw(Pi + P, + P+ Py) ! (4)

Part of this formulation is based on a classical reference
still used nowadays [6]. This part includes the representation
of the internal impedance and admittance for both types of
cables, accounting for the skin effect and considering multiple
conductive and insulating layers, each with specific electrical
and magnetic characteristics and described geometrically.
Additionally, for PT cables, the influence of the pipe is
included in the calculation of the total impedance and
admittance. The equations for calculating all these parameters
are well known and therefore have been omitted.

The equations adopted in this work differ from those
presented in [6] due to the inclusion of updated considerations
in the representation of the external medium. Generally, the
equation proposed by Pollaczek [18] or its generalizations
are used. Another option is the use of approximate analytical
equations, such as those proposed in [19].

In this work, the formulation based on [10] was adopted.
According to the equations below, for the calculation of Zo and
Po, a double-layer earth is considered, with the cable placed
in the second medium, making the formulation more accurate
by not neglecting the propagation effect due to the influence
of medium 1 along the cable axis and avoiding the use of
analytical approximations. Specifically, for the calculation of
Po, it is considered that displacement currents should not be
neglected.
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In these equations, Zo refers to the ground-return
impedance, while Po represents the ground-return potential
coefficient, necessary for calculating the ground return
admittance Yo. Equations (5) and (6) refer to the mutual
parameters. For the calculation of the self-parameters, simply
set h,, = h, and r = 7.y, Where r.; is the radius of
the outermost layer of the cable. Additionally, the indices m
and n refer to the generic set of two cables, with h,, and
h,, representing the depth of each cable measured from their
respective centers. The r represents the horizontal distance
separating the cable centers, and the distance-related auxiliary
parameters d and D are given by: d = \/(hy — hy)? + 12
and D = /(hy + hp)? + 12

Additionally, the indices 0 and 1 refer to the propagation
media present in the model. In the case studied, "0" refers to
the sea and "1" refers to the seabed. Complementarily, w is
the angular frequency of the system, and o and e represent,
respectively, the electrical conductivity and permittivity of the
medium, and p represents the magnetic permeability of the
medium. The propagation constant of the medium is given

by v = /jwu(o + jwe). Finally, Ky refers to the modified
Bessel function of the second kind with zero order and the

auxiliary parameter u is given by u = /A2 4+ ~2.

B. Characteristic
Function

Admittance  and  Propagation

After calculating the Z and Y matrices, the procedure for
identifying Y. and H involves solving the equations below,
such that Tv and Ti are the eigenvector matrices of the
products Z-Y and Y - Z, respectively, and [ is the cable length
[11]. The square root of these products may yield multiple
solutions. Therefore, a modal transformation is applied in
order to find a coordinate system where Z - Y and Y - Z are
diagonal.

mode
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Zmode = T\71 -7 - Ti (10)
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III. OPTIMIZED DOUBLE EXPONENTIAL FORMULA FOR

CALCULATING GROUND-RETURN PARAMETERS

The Double Exponential formula is a numerical method
originally proposed in [20], designed to find an approximate
solution to an integral, making it a suitable option for
calculating the integrals involved in the return parameters. In
the following equation, zj represents the abscissas, wy the
weights and k defines both the summation limits and each
individual term of the summation.

/_ 11 F2)dz ~
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12)

Additionally, the method employs hyperbolic functions to
determine the abscissas and weights, while also suggesting
a change in the integration interval [21]. Specifically, this
work adopts the Tanh-Sinh quadrature due to its robustness
and efficiency, as one of the method’s key features is its
rapid convergence. After applying the integral transformation,
the transformed function exhibits a double-exponential decay
[22]. The Tanh-Sinh quadrature, originally introduced in [20],
is implemented in this study as outlined in the following
equations. The procedure for applying the method to equations
(5) and (6) is described in the Appendix.

xp = tanh Bwsmh(kh)} (13)

shcosh(kh)
cosh? [Lmsinh(kh)]

(14)

WE =

The interval £ must be chosen to ensure that no relevant
terms are omitted in the integral calculation. The step size
h is associated with the number of subdivisions of the
integration interval and, consequently, with the accuracy of
the calculation. An efficient approach would be to determine
an optimal relationship between these parameters to avoid
unnecessary computational effort.

A. Proposed Methodology

The definition of the parameters k& and h is the key to
achieving both accuracy and efficiency in the solution. In [22],
it is suggested to use the concept of levels to determine the
step size, with h = 2™, where m = [1,2,3,4,...]. Next,
an initial guess for the range of k is defined, and the problem
is solved. In [21], it is stated that there are two sources of
error in the approximation: error from truncation and error
from discretization. These errors become larger if the integrand
decay is too fast or too slow, respectively.

To minimize these errors, it is suggested to find an
expression that relates k and h, starting from the formulation
that both errors must be equal. The goal is to achieve a
balanced solution in terms of the impacts caused by these
errors. In [21], the author proposes k = () log (2F).

Fig. 1 shows a flowchart illustrating the methodology
proposed in this work to apply the method while avoiding
unnecessary computational effort. The approach starts with
the initial concept of levels, prioritizing the increase of the
range k over the increase in levels, as the latter significantly
raises computational cost. By increasing k, the idea is to
converge to the desired solution, advancing the level only if
the problem’s solution does not satisfy the predefined tolerance
10~P, where p represents the desired number of precision
digits. If p increases to exceed an established limit, increasing
the level becomes a better option. In this work, the adopted
limit was lim = 50.
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Fig. 1. Flowchart for Implementing the DE Method.

B. Test Case

To validate the results obtained from applying the proposed
methodology, a program was developed using MATLAB
(Matrix Laboratory). The goal is to analyze the behavior of
the ground-return parameters over a wide frequency range,
representing the main electromagnetic transient phenomena
(10 - 107) Hz. Fig. 2 shows the simulated system, which
consists of two SC HVDC cables buried in the seabed.
Each cable includes a core, inner insulation, lead sheath, and
outer insulation. In this case, the adopted parameters were
hy, = h,, = 1m and » = 1m.

Medium 0 0o, &, Ho

Medium 1 0y, &, H

hm
hn

L 1

r

Fig. 2. Test Case: Two SC HVDC Cables.

Data regarding the characteristics of each medium is
presented in Table I, along with the geometric, electrical, and

magnetic parameters of each cable layer [9]. The symbols
ry — rq represent the radius of each layer related to the
cable’s center, while p, ¢, and p denotes the resistivity,
electrical permittivity, and magnetic permeability of each layer,
respectively.

TABLE 1
SEA/SEABED AND SC CABLE PARAMETERS
Medium o (S/m) e (F/m) | p (H/m)
Sea (0) 5 8leo 1o
Seabed (1) 1.5 40¢g 1o
Outer Radius (mm) p (Qm) e (F/m) | p (H/m)
r; = 33.95 1.7¢e — 8 - 1o
ro = 60.65 - 3.5¢0 1o
r3 = 64.65 2le —8 - o
r4 = 71.05 - 850 MO

As a benchmark for comparison, the closed-form equations
(CF) proposed in [15], derived from [10], were employed.
Although there are applicability limits concerning vertical
distances (A, h, < 1m) and horizontal distances (r <
2m), these limits are not violated in the tested case [15].
Additionally, the Gauss-Laguerre (GL) numerical integration
method was used for comparison purposes to highlight the
advantages of the Double Exponential (DE) method.

Finally, the global adaptive quadrature method available in
the MATLAB function integral (INT) was also employed. The
purpose of this approach is to assess the performance of the
other methods using an external reference, given that they
were obtained through distinct formulations, whereas INT is
a built-in MATLAB function.

Fig. 3 and Fig. 4 illustrate the real and imaginary parts
of the self ground-return parameters for both impedance and
admittance. Similarly, Fig. 5 and Fig. 6 present the real and
imaginary parts of the mutual ground-return parameters. It can
be observed that across the frequency range, the DE method
aligns closely with the CF and INT method. This occurs
because the DE method demonstrates strong convergence
when handling integrands that cannot be expressed as finite
combinations of algebraic functions like polynomials and
exponentials.

Certain functions may exhibit restrictions in their
smoothness, such as irregularities or abrupt changes. The DE
method performs well in handling such functions because
it maps the integration interval into a finite range where
the integrand exhibits a simpler behavior [22]. Moreover,
a similar result between DE and CF is expected since
the closed-form equations were developed considering the
asymptotic approximation of the equations proposed in [10],
which are the same ones adopted in this work.

On the other hand, the GL method converges only when the
function forming the integrand is sufficiently smooth. It can
be stated that the degree of smoothness allows the function
to be approximated by a polynomial. In cases where this is
not possible, the GL method may diverge even when its input
parameters (such as quadrature points, polynomial degree, etc.)
are adjusted [23]. Such cases can arise due to a combination of
factors, including the characteristics of the medium where the



cable is located, the burial depth of the cable, and the distance
between cables. This highlights the importance of selecting
the appropriate numerical integration method depending on
the system being analyzed.
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Fig. 3. Ground-Return Self Impedance for DE, GL, INT and CF methods.
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Fig. 4. Ground-Return Self Admittance for DE, GL, INT and CF methods.
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Fig. 6. Ground-Return Mutual Admittance for DE, GL, INT and CF methods.

Table II presents the elapsed time for simulating the self
and mutual components of impedance and admittance using
each method, as well as the mean squared error (MSE) of

the results obtained from the DE, GL and INT methods when
compared to the CF method. The elapsed time was computed
using the tic and foc functions in MATLAB. In terms of
accuracy, the performance of the DE, INT and CF methods is
similar. Regarding efficiency, the CF method performs better,
although the DE and INT methods also deliver results within
a few seconds.

TABLE II
SIMULATION TIME AND MEAN SQUARED ERROR (MSE)

- DE GL INT CF
Simulation Time (Z) 5.03s 43.81s 0.44s 0.02s
Simulation Time (Y) 7.12s 45.64s 0.53s 0.02s

MSE (Zsei¢) 0.000027 0.000067 0.000029 -
MSE (Zputwal) 0.000007 | 83.389455 | 0.000008 -
MSE (Yserr) 4.3e-11 0.001191 4.3e-11 -
MSE (Yrutual) 0.35e-16 0.002657 0.32e-16 -

Two interesting cases can be observed in Fig. 7 and Fig.
8. For the first case, h,, = h, = 1.2m and r = 3m,
representing parameters that exceed the applicability limits
of the CF method, as suggested in [15]. Specifically, when
calculating the mutual parameters, discrepancies between the
results from the DE/INT and CF methods were observed along
the frequency range.

This also occurs in case 2, where a soil resistivity of 500Q2m
was adopted to analyze less conductive media. In this case,
the results obtained from DE/INT also slightly differ from
those of the CF method, particularly for impedance. This
was expected since there is a relationship between increasing
soil resistivity and the accuracy of the impedance closed-form
equations, including the observation that no clear correlation
was identified between ground-return admittance accuracy and
ground resistivity, as highlighted in [15], except at very high
frequencies.
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Tables IIT and IV detail the simulation elapsed time for each
method and the Mean Relative Error (MRE) of the CF and INT
methods compared to DE, for both particular cases. All results
presented in the tables of this section consider the absolute
values of the quantities when calculating the error.

TABLE III
SIMULATION TIME AND MEAN RELATIVE ERROR (MRE) - CASE 1.
- DE INT CF
Simulation Time (Z,,ytwual) 11.27s 0.44s 0.02s
Simulation Time (Y mutual) 19.01s 0.53s 0.02s
MRE (Z,utwal) - 0.153125 | 0.999214
MRE (Yiuutual) - 0.308870 | 2.255165
TABLE IV
SIMULATION TIME AND MEAN RELATIVE ERROR (MRE) - CASE 2.
- DE INT CF
Simulation Time (Z,,ytual) 15.93s 0.58s 0.02s
Simulation Time (Y utual) 17.09s 0.66s 0.02s
MRE (Z,utual) - 0.063300 | 0.998427
MRE (Youtual) - 0.065215 | 0.680432

IV. OPTIMIZED SVD FOR CALCULATING
TRANSFORMATION MATRICES

For calculating the parameters previously shown in (8) and
(9), it is essential to obtain the transformation matrix Tv with
high accuracy. This process directly depends on the accurate
computation of the Z and Y matrices but extends beyond
that. Calculating eigenvector matrices can be non-trivial in
certain scenarios, such as when the matrix elements depend
on frequency or in the presence of coalescing eigenvalues
[11]. In such cases, inaccuracies arise, leading to H and Y,
matrices with oscillating elements. The ultimate consequence
is inaccurate simulation of transient phenomena.

In this context, implicit calculations that rely on pre-defined
functions may be prone to errors in specific situations
like these. An open solution is proposed, involving
the explicit computation of eigenvalues followed by the
determination of the eigenvector matrix using the Singular
Value Decomposition (SVD) technique.

A. Proposed Methodology

The proposed methodology consists of explicitly calculating
the eigenvalues and eigenvectors to control numerical
approximations and instabilities. First, the general equation
(A—=AI)v =0 is solved, where A = Z-Y, X is the eigenvalue
vector, I is the identity matrix of the same dimension as Z and
Y, and v is the eigenvector matrix that satisfies the general
equation.

Fig. 9 shows a summary of the proposed methodology.
Following the flowchart, for the calculation of X it is
suggested to first generate the coefficients of the characteristic
polynomial and then calculate its roots. Once this is done,
assuming B = A — AL, the SVD function is used to find
the solution B - v = 0. The first column of the eigenvector
matrix, Tv, is given by the last column of the matrix v. Finally,
this process is repeated for each of the previously calculated
eigenvalues, constructing the complete matrix Tv.

r— - - - - T T 1
Generates the coefficients of the |

' characteristic polynomial

L - J

T coeffs = poly(Z-Y);

r— - -7 1

| Computes the roots of the polynomial |

- - J

eingevalues = roots(coeffs);

for k = 1:1:length(eigenvalues)

r - - 1

| Defines B = Z-Y - A(k)-l and applies SVD |

L J
I [U, S, V] = svd(B);

- - - - - - 1

| Defines Tv(:,k) = V(:,end) |

« - - - __ ___ ___ J

Fig. 9. Flowchart for Implementing SVD.

This can be understood by recognizing that the SVD
decomposes the matrix B into the form given by the following
equation, where U and V are orthogonal matrices, and X is a
diagonal matrix whose diagonal values are the singular values
of B, arranged in descending order [24].

B=UxV?T (15)

In summary, the smallest singular value of B indicates a
direction where B -v is minimal. This direction is given by the
last column of V in the SVD, making it the most likely solution
to B - v = 0. This is particularly useful for ill-conditioned or
approximate systems [25].

B. Test Case

The purpose of this section is to validate the feasibility and
reliability of the proposed methodology. Fig. 10 shows the
system to be simulated. In this case, it is a PT cable, selected
for being more sensitive to the ill-conditioning problem of
the matrices involved [11]. Here, the optimized DE method
was also used to compute the ground-return parameters, but
the focus is on the post-processing step, specifically the
computation of matrices Y, and H. Regarding the sea and
seabed parameters, the same data from Table I were used,
with h = 1m. Table V presents the parameters adopted for the
PT cable. Each internal cable has four layers: core, insulation,
sheath, and second insulation (r1—r4). Additionally, (r5—7r7)
represent the armour’s inner and outer radius, as well as the
armour insulation.

Figs. 11 and 12 show the behavior of elements in the
seventh column of matrices H and Y., comparing the
eigenvectors computed using the SVD with those obtained
via a conventional technique based on the QR algorithm, as
implemented in the MATLAB function eig.
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Fig. 10. Test Case: A Pipe-Type Cable.
TABLE V
PT CABLES PARAMETERS
Outer Radius (mm) p (Qm) € (F/m) | p (H/m)
r1 = 9.6 1.7e — 8 - Mo

Io = 17.054 - 3.3160 Mo

r3 = 18.054 22e — 8 - )

rqg = 19.50 - 2.360 Mo

r5 = 48.00 2.86e — 8 Seo 1o

re = 59.00 - - 90u0

r7 = 65.00 - 10e0 Ko
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0. In this case, 300 frequency samples were used. Even if
the number of samples is increased, the conventional solution
remains oscillatory, indicating that the issue is not related to
sampling. According to [25], in dynamic systems, especially
those described by parameter-dependent matrices, there is a
possibility of coalescence, where two or more eigenvalues
approach each other to the point that they eventually become
identical.

In situations like these, conventional methods, such as
QR-based algorithms, may not compute the eigenvectors
correctly, resulting in oscillations in the transient simulation
[26]. In cases involving one parameter-dependent matrices,
such as frequency, eigenvalues are expected to be very close
to each other, but they are not expected to coalesce. In this
particular case, the possibility of near coalescing may occur
[25]. Fig. 13 illustrates the behavior of the seven eigenvalues
versus frequency, with markings indicating points where two
or more eigenvalues have very close absolute values. In these
cases, a tolerance of 107!° was applied. If the tolerance is
reduced further, no markings are displayed on the graph.

Finally, Table VI presents the simulation time and the
results for the Mean Relative Error of the conventional
method compared to the proposed method. It is evident that
adopting the SVD method does not compromise computational
performance, as the simulation is completed within a few
seconds. Furthermore, the total MRE was calculated by
considering the largest individual MRE for each element of
the seventh column of the matrix.

Near-Coalescing Eigenvalues

Fig. 11. Propagation Function for SVD and Conventional methods.
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Fig. 12. Characteristic Admittance for SVD and Conventional methods.

It is noticeable that the conventional method exhibits a more
oscillatory behavior, as it does not aim to provide greater
control over numerical approximations. On the other hand,
the SVD method smooths out these oscillations because, in
constructing the eigenvector matrix, it identifies a direction
where B-v is minimized, making it a likely solution for B-v =

lOI] L
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Fig. 13. Near-coalescing eigenvalues.

This work aimed to propose and implement two distinct
methods for computing the parameters required for simulating

TABLE VI
SIMULATION TIME AND MEAN RELATIVE ERROR (MRE)
- SVD | Conventional
Total Simulation Time 3.92s 3.27s
MRE (H) - 12.574414
MRE (Y:) - 4.955714

V. CONCLUSIONS



electromagnetic transients in submarine cables, namely,
per-unit-length impedance and admittance, as well as
propagation constant and characteristic admittance. The results
demonstrate that both methods are valid alternatives, primarily
due to their performance in terms of accuracy and their low
computational cost.

Regarding the calculation of ground-return parameters,
analytical equations that do not rely on integration can be
very accurate. However, in cases where the applicability limits
are exceeded, it is necessary to identify appropriate methods
for calculating the integrals. The optimized DE method is a
good option, as it can handle integrals with integrands that
contain non-smooth functions. Such cases may arise depending
on the parameters defining the propagation medium or even
the geometric parameters of the cables. Moreover, it is easy
to implement and does not require high computational cost.
Additionally, the proposed DE methodology is independent of
built-in functions and easy to implement, unlike the global
quadrature used for comparison in this study.

Furthermore, SVD can be used instead of methods
that cannot provide accuracy and are limited in terms of
computational cost. The main advantage of this technique is
its robust handling of situations involving particularities such
as the possibility of eigenvalue coalescence, as it allows for
more direct control over numerical approximation errors. The
proposed solution is also easy to implement and is especially
useful for ill-conditioned systems.

VI. APPENDIX

The procedure for applying the Double Exponential formula
to Equations (5) and (6) involves the following steps:

1) Apply the interval transformation A\ = i—ﬂ, which
changes the integration interval from O to co to -1 to 1,
rewriting the integral in the format suggested by (12). This
substitution redefines the integrand in terms of x;

2) Perform the variable substitution dA = —24Z;, based on
the expression suggested in step 1. Define the range of k and
the step size h based on the flowchart presented in Fig. 1;

3) Following Equation (12), let f(x) be defined as the
integrand of Equations (5) and (6), excluding the constant
terms. For each term in the summation, x is determined from
Equation (13) and wy from Equation (14). Once these are
defined, f(xy) is calculated, and the summation is computed.
Note that (13) and (14) yield constant terms for each value of

k with a predefined step size h.
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