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Abstract—Unknown parameter estimation for electrical models
of proton exchange membrane (PEM) electrolyzers is important
for optimal hydrogen production and storage in power systems.
Algorithms for correctly identifying parameters for different
models, including equivalent circuit models (ECM), have been
reported. These are important for analyzing the transient
dynamics of the PEM electrolyzer connected to grid-tied power
electronics sources. However, no method has been reported
to correctly estimate the ECM parameters when subjected
to current ripple from power electronics. Current ripple is
an important issue requiring further investigations since they
are responsible for the accelerated aging of electrolyzers. In
this work, an algorithm has been developed to estimate the
parameters of an ECM for the electrolyzer voltage under input
current ripple. Furthermore, based on the gradient method, this
algorithm allows adapting the parameters with the values of the
proposed electronic components, i.e., resistors, capacitors, and
voltage sources. The proposed algorithm has been validated using
two voltage-current databases obtained from a commercial PEM
electrolyzer system NMH2 1000. Thus, by efficiently estimating
the ECM parameters, the proposed algorithm facilitates the
design and construction of power converters coupled to the
electrolyzer under current ripple constraints.

Keywords—PEM  electrolyzer;  Electrolyzer
Equivalent circuit model; Parameter estimator.

modeling;

I. INTRODUCTION

YDROGEN is considered a key energy vector for energy
Htransition purposes to meet climate-neutral by 2050
[1]. At present, most hydrogen is generated by employing
thermochemical processes (stteam methane reforming, coal
gasification) that may be coupled with carbon capture,
utilization, and storage solutions [2]. Over the last few
years, many countries have adopted a strategy dedicated
to the production and the use of low-carbon hydrogen
obtained through a water electrolysis process fed by renewable
energy sources (RES) [3]. Indeed, the water electrolysis
process has reached commercial maturity as evidenced by
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numerous green hydrogen power plants developed worldwide
[4]. The water electrolysis process consists of splitting pure
water thanks to electricity into pure hydrogen and oxygen.
Consequently, electrolyzers can convert surplus renewable
energy into hydrogen, serving as an energy storage medium.
The electrolysis is performed in different ways according to
the type of electrolyte material employed and the ionic species
they transport [5].

The electrolyzers can be classified into two categories:
low-temperature electrolyzers (LTE) and high-temperature
electrolyzers (HTE). Alkaline, proton exchange membrane
(PEM), and anion exchange membrane (AEM) belong to the
LTE category; while solid oxide (SO) to the HTE category
[6]. Among these four different types of electrolyzers, only
alkaline and PEM electrolyzers run the global market; while
AEM and SO technologies, despite their recent introduction
in the electrolyzer market, are still in-depth research and
development to enhance their performance [7]. On one
hand, alkaline electrolyzers offer the lowest investment cost
and higher lifetime than the other electrolyzer technologies
[8]. On the other hand, their alkaline liquid solution,
mainly based on 25-30% of potassium hydroxide, requests
frequent maintenance and limits their operational flexibility,
ie., 15-100% [5]. On the other side, PEM electrolyzers,
despite their higher costs (use of platinum-group metals for
the catalysts) and specific energy consumption, present an
extended current density (>3 A-cm™2) and larger operational
flexibility (0-100%), making them particularly fit for their
coupling with intermittent RES [9]. Due to its advantages, the
PEM electrolyzer has been considered in this research work.

As pointed out in review papers [10], [11], modeling of
PEM electrolyzer voltage under real operating conditions,
static and dynamic considering intermittent RES, and
operating variables, i.e., temperature and gas pressure,
have become a pertinent research topic. Indeed, a better
understanding of the real behaviors of PEM electrolyzers
allows the development of accurate simulation tools,
emulators, and the design of power converters including
their controls [12]. On the other hand, the characterization
and modeling of PEM electrolyzers supplied by currents
including harmonics (low and high-frequency ripple) from
power electronics have not been yet covered in the literature.
Indeed, relying on the first outcomes reported in [13],
triangular current ripple at 10 kHz from DC-DC converters
has been identified as the most degrading condition, favoring



consequently degradations, i.e., high-frequency resistance rise,
corrosion, and titanium mesh. This aspect is particularly
explored in this work for introducing a new research area to
the current literature.

As reported, PEM electrolyzer models consist of different
unknown parameters, and proper identification of these
parameters is necessary for optimal performance [14].
Furthermore, since the PEM electrolyzer parameters vary
depending on the operating conditions above-mentioned,
algorithms must be developed to calculate these changing
parameters [15]. In [16], the operating parameters of the PEM
electrolyzer have been optimized to decrease the required
input voltage using the Taguchi method. A thermodynamic
model was developed, and the Taguchi method was applied
to calculate the performance of the electrolyzer. The results in
[16] showed the optimal conditions for temperature, membrane
water content, current density, membrane thickness, cathode
pressure, and anode pressure. The authors in [17] have
calculated seven parameters of a PEM electrolyzer voltage
model using the honey badger algorithm. The proposed
method in [17] employs an objective function defined as the
sum of the squared error between the experimental and the
estimated voltage. Finally, the honey badger algorithm has
been validated by comparing the experimental and estimated
I-V curves using the calculated parameters. In [18], a method
for parameter estimation of a PEM electrolyzer model with
eight unknown model parameters has been proposed based
on the modified honey badger algorithm. The precision of
the proposed algorithm in [18] has been validated with
polarization curves.

The equivalent circuit model (ECM) for PEM electrolyzer
voltage has proven its importance in analyzing the
electrolyzer’s dynamic response when connected to
intermittent renewable resources [19], [20]. Algorithms have
been developed to estimate the model parameters, as well as
the parameters of the electrochemical models [21]. In [15],
the authors have developed a multi-innovation least squares
identification algorithm to identify the ECM parameters for
the PEM electrolyzer voltage. The proposed algorithm in [15]
improves the convergence speed of numerical algorithms and
avoids the local optimization problem present in heuristic
algorithms. However, an algorithm to estimate the ECM
parameters subjected to ripple data has not been reported. For
this reason, the main contribution of this paper is to propose
and validate a robust and easy-to-implement algorithm to
estimate the parameters of an ECM considering supply
currents with low and high-frequency ripple. Two sets of
experimental data from a commercial PEM electrolyzer
system, including its power electronics, are used to ensure
the algorithm’s good performance. The comparison between
the simulations using the parameters obtained by the
algorithm and the experimental data has revealed the ECM’s
utility in predicting the electrolyzer’s real voltage response
under current ripple constraints. This innovative algorithm
is important for the investigation of the effects of the
current ripple on the performance of the PEM electrolyzer.
The correct estimation of ECM parameters improves the
understanding of transient dynamics and enhances the design

Fig. 1: PEM electrolyzer system used to obtain the
experimental data.

TABLE I: Specifications of the PEM electrolyzer system
NMH2 1000 from HELIOCENTRIS® Company.

Parameter Value | Unit
Rated electrical power 400 w
Rated stack voltage 8 v
Stack current range 0-50 A
Hydrogen outlet pressure 10.5 bar
Cells number 3 -
Active area section 50 cm?
Hydrogen flow rate range at STP 0-1 slpm

of power converters, ensuring efficient and stable operation
under current ripple conditions.

II. EXPERIMENTAL TEST SETUP AND DATA COLLECTION

For the collection of experimental data, the
commercial PEM electrolyzer system NMH2 1000 from
HELIOCENTRIS® Company was utilized, see Figure 1. The
specifications of this PEM electrolyzer are presented in Table
I. In this PEM electrolyzer, the hydrogen flow rate at standard
temperature (STP) and pressure, 15°C and 1 bar, respectively,
are given in standard liter per minute (slpm). The generated
hydrogen is stored in metal hydride storage tanks to offer
high safety levels. Besides, the PEM electrolyzer stack is
directly fed by pure water featuring low conductivity, i.e.,
less than 2 puSem™1.

Given that the PEM electrolyzer system used in this work
is commercial, it comprises power electronics to feed the
electrolyzer as depicted in Figure 2. The main AC source in
this case is the power grid (230 V/50 Hz) and the DC load
is the PEM electrolyzer. The power electronics part includes
a single-phase diode bridge rectifier, a DC-link capacitor,
and a DC-DC converter. As presented in Table I, the PEM
electrolyzer stack requests a very low DC voltage, i.e., 8 V at
rated power. For this reason, a step-down DC-DC converter is
used.

In this system, the single-phase diode bridge rectifier
generates a low-frequency current ripple, i.e., 100 Hz, while
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Fig. 2: PEM electrolyzer and hydrogen storage system,
including grid-tied power electronics source.
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Fig. 3: Voltage-current oscilloscope screenshot from the first
database, i=2 A.
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the step-down DC-DC converter produces a high-frequency
current ripple, i.e., 10 kHz. To meet the objectives of this work,
two databases from the PEM electrolyzer, i.e., stack current
1] and voltage v, are utilized. Stack current and voltage are
acquired via the use of voltage and current probes, as shown
in Figure 1. These data correspond to two different operating
points, ie=2 A and i,=40 A, where the PEM electrolyzer
system operates autonomously. These two operating points
have not been chosen by the authors. Indeed, the used PEM
electrolyzer can operate automatically, either at a low current
(low hydrogen flow rate) or at a high current (to increase the
hydrogen flow rate).

The obtained experimental results are represented in Figures
3 and 4 related both to the first operating point, =2 A,
and Figure 5 related to the second operating point, =40 A.
In Figure 3, the low-frequency AC component of the current
can be observed, whereas in Figure 4 the high-frequency AC
component can be stressed. For this first operating point, the
current ripple constitutes 200%, i.e., 4 A of the average current
value. Besides, a small AC component in the stack voltage
response can be noticed, i.e., around 0.3 V. Regarding the
second operating point, the current ripple represents 96%, i.e.,
38 A of the average current value. Like in the first operating
point case, a slight AC component can be perceived in the
stack voltage response, approximately 1.26 V.
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Fig. 4: Voltage-current oscilloscope screenshot with zoom
from the first database.
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Fig. 5: Voltage-current oscilloscope screenshot from the
second database, i,=40 A.

By comparing Figures 3 and 5, the voltage ripple for
the second operating point is four times higher than the
first operating point. It means that the current ripple is less
mitigated, consequently affecting the electrolyzer’s voltage
response. In summary, the higher the current amplitude, the
less the current ripple is mitigated by the electrolyzer’s double
layer capacitance phenomenon. Besides, as reported in the
conclusions of the work of [22], a major concern is the
maximum current allowable by the double-layer capacitance,
making it possible to guarantee the mitigation of the current
ripple. For this reason, further research is required to gain a
better understanding of the link between the current ripple and
the degradations of the electrolyzer. The outcomes of these
investigations might be useful to design optimally a power
converter avoiding likely degradations.

III. MATHEMATICAL MODEL AND ALGORITHM

PEM electrolyzers, through ECM, can be modeled
using different electronic components and combinations
of resistance, capacitance, and voltage sources [4], [23].
Furthermore, in an ECM, complex systems can be simplified
using physical properties and losses of these components [24],
[25].
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Fig. 6: Equivalent electronic circuit diagram for PEM
electrolyzer voltage ve = Vpev + Vact + V-

A. ECM for the PEM electrolyzer voltage

This work estimates the parameters of the ECM developed
in the works [26], [27]. In this ECM, the PEM electrolyzer
voltage ve = Vrev + Vact + v describes the reversible voltage
Urev, the activation voltage v,ct, and the ohmic voltage vg in
terms of electrical components, i.e., one DC voltage source,
two capacitors, and three resistors, see Figure 6. Based on the
equivalent electronic circuit of Figure 6, the ECM is presented
as follows:

- A DC voltage source vj,i. This voltage source is used to
model the reversible voltage vyey.

- A resistance Rpem. Usually, this resistance is used to
model the electrolyzer membrane and also the contact
resistances between the electrodes and the membrane.
Thus, the ohmic voltage is calculated as vg = Rmem * %el,
where i) is the input current of the electrolyzer.

- Two resistor-capacitor branches. These branches are used
to model the activation voltage vact = K- (Vact,c, vama)T,
one branch for the activation voltage in the cathode vy, c
and the other branch for the activation voltage in the
anode vact,a. K = (k1, k2) is a constant two-input vector
that depends on the input current. In addition, as reported
in the literature, the activation voltage is responsible for
the dynamics present in the PEM electrolyzer voltage.
The dynamic equations are defined as:

M _ iz _ lv 1)
di Cc el T act,c»

dVact.a 1. 1

Y b *’Uact,aa (2)

= —1 —_
dt c,

where C. and C, are the capacitors for the cathode and
the anode, respectively. 7. and 7, are the electrical time
constants that depend strongly on the operating conditions
at the cathode and the anode, respectively. Furthermore,
the resistances R. (cathode) and R, (anode) from the two
resistor-capacitor branches vary depending on the current
input and can be calculated using (3) and (4), as follows:

Tc
R. = o 3)
Ta
= 4
R c. “)

The differential equations (1) and (2) can be rewritten as a
linear system.

d'Uact,c
dt Vact,c
=A- + B - e, %)
dvact,a Vact,a
dt
where
1 1
JE 0 -
e Ce
A= and B =
0 1 1
Ta Ca

Thus, the ECM for the PEM electrolyzer voltage based on the
equivalent electronic circuit of Figure 6 is expressed as:

. T
Ve = Vini + Rmem el + K- (Uact,m 'Uact,a) . (6)

Once the model is defined for estimation purposes, the array
parameters A and B from (5) and the parameters vi,i, Rmem,
and K = (kq, ko) from (6) are estimated using the gradient
method algorithm.

B. The gradient method algorithm

To apply the algorithm and calculate the parameters using
the gradient method, it is noted that (6) can be expressed as a
product of two vectors, a vector of parameters 6 and a vector
of time-dependent functions ¢(t), as follows:

ve =0 &(t), (7)
where
0 = (Vini, Rmem, k1, k2),
and

(b(t) = (17 Tel, Vact,c) 'Uact,a)T~

Many parameter identification algorithms have been based
on the gradient method because of its easy application, fast
programming, and exponential convergence [28]. For (7), v,
and ¢(t) are known signals and 6 is unknown. The vector
¢(t) is called the regressor vector and the standard linear error
equation is defined as:

e=(0-10) o), (8)

where 6 is a vector of estimated parameters for 6. Therefore,
the gradient algorithm builds an identifier structure using the
signals of the regressor ¢(t) and v, taking into account (8). A
differential equation defines the gradient algorithm, called the
law of updating. In this work, the standard gradient algorithm
is defined using the law of updating:

6=—g-e-¢(t) with g > 0. 9)

The right-hand side of (9) is proportional to the gradient of
the output error squared, viewed as a function of 6,

0

%) =2¢- .
aé<e)_2 o(t)

(10)



Algorithm to calculate the parameters 6.

1: To collect and save experimental PEM electrolyzer voltage
data resulting from an input current 7). This input current
must also be saved.

2: To define initial values for the resistors R. and R, and
for the capacitors C, and C, to generate A and B of the
system (5).

3: To develop a numerical method for solving the system (5)
using the values obtained for the arrays A and B in the
previous step and the initial value v, (0).

4: To complete the function ¢(t) with the solution obtained
for (5).

5: To estimate the parameters of 6 by applying the gradient
method to (7).

6: To compare the experimental voltage data with the
simulated voltage data using the values obtained for 6 in
the previous step.

7. To validate the model by achieving a relative error of less
than 1%.

This law is considered a steepest descent method. The
parameter g is a fixed gain called the adaptation gain, and
allows the adaptation rate of the parameters to be varied. The
initial condition é(O) is arbitrary, but can be chosen to take
into account any a priori knowledge of the plant parameters.

IV. SIMULATION AND RESULTS

The developed algorithm is applied to estimate the ECM
parameters for the two databases explained in Section II. To
adjust the ECM parameters to the first database, as mentioned
in the algorithm, values of the resistors R, = 0.1205 €2 and
R, = 0.1 © and of the capacitors C. = 0.83 uF and C, =
1.25 pF are used. These values generated 7. = 0.0001 s, 7, =
0.000125 s, and the arrays:

1200
800 ) '

—10000 0
A—< 0 _8000>andB—<

Thus, using these values of A, B, the input current i, from
the first database, and the initial values of the activation
voltage Vact(0) = (Vact,c(0), Vact,a(0)) = (0.255,0.215) V,
the solution of (5) is generated. The fourth—order Runge—Kutta
iterative method with a step h = 1077 is used to generate the
solution of (5). The behavior of the solution given by these
values is shown in Figure 7.

Following the algorithm, the function ¢(t) is completed
using the obtained values of vuct and V,cta. Thus, the
parameter vector 6 is estimated with the gradient method
using g = 20 and applying fourth—order Runge—Kautta iterative
method with a step of h = 1077 to (7) and (9). It is worth
mentioning that the larger the parameter g, the faster the
method’s convergence speed. However, this implies a smaller
step size h and, therefore, greater computational cost. In
this case, for h = 10~7, the value of g = 20 allows the
programmed code to run the simulations; that is, the value
of g is proposed based on the value of h. The result is
0 = (4.7454,0.0477,0.2774,0.0530) (i.e., vin; = 4.7454 V,

Time (ms)

Fig. 7: Behavior of v,¢t,c and v,ct, as solutions generated by
the first input current database, R. = 0.1205 2, R, = 0.1 ,
C. = 0.00083 F, C, = 0.00125 F, and vact c(0) = 0.255 V
and vact,0(0) = 0.215 V.

Ruyem = 0.0477 Q, k1 = 0.2774, and ko = 0.0530). With
these parameters and the statistical tests, relative error E,
mean error F,,, mean squared error Fyrg, and root mean
squared error F'ryis are applied to validate the effectiveness
of the ECM. These tests are defined as:

Ng
100 Vexp,k — Usim,k
E =(=— _EXp,x  TSum,K ; (11)
( Nd ) kZ:l Vexp,k
Ng
1
Em =\ x X — Usim ) 12
(Nd>;71e p,.k — Us 7k| (12)
Ng
1 2
E S = () Vex — Usim ) (13)
M N, ];( Pk x)
Erms = v/ Euss (14)

where N is the data number. vexp, k is the k-th voltage data
measurement and vsim ik iS the k-th voltage data simulation.
The following errors are obtained when compared with the
first voltage database, E. = 0.5494%, E, = 0.02726 V,
Eums = 0.0012 V2, and Frysg = 0.0344 V. Figure 8 shows
the simulation result and allows a comparison of real and
simulated data. Figure 9 shows a zoom between 3 s and 7
ms to appreciate the accuracy of the simulated curve using
the parameters obtained with the proposed algorithm for the
first database. To adjust the ECM parameters to the second
database, values of the resistors R, = 0.024 Q2 and R, =
0.024 © and of the capacitors C. = 12.5 uF and C, = 16.7
pF are proposed. These values generate 7. = 0.0003 s,
To = 0.0004 s, and the arrays:

~3000 0 80
A‘( 0 —2400>a“dB_(60>‘

Thus, using these values of A, B, the input current i, from
the second database, and the initial values vaet c(0) = 0.78
V and vue,2(0) = 0.72 V, the solution of (5) is obtained.
The iterative method considers a step h = 107° to derive
a solution of (5). The behavior of the solution using these
values is shown in Figure 10. After completion of ¢(¢) with
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Fig. 8: Comparison between real and simulation voltage data
generated by the first input current database.
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Fig. 9: Zoom for the comparison between real and simulation
voltage data generated by the first input current database.

the Vact,c and vacq,o Obtained previously, 6 is estimated using
the gradient method with g = 20 and applying fourth—order
Runge—Kutta iterative method with a step of h = 107°.
The result is § = (7.5240,0.17911,0.1639,0.0251) (i.e.,
Vini = 7.5240 V, Rpem = 0.1791 Q, k3 = 0.1639, and
ko = 0.0251). The errors E, = 0.8997%, E,, = 0.0792 V,
Ens = 0.0090 V2, and Eryvs = 0.0952 V are obtained as
a result of the comparison between the simulation performed
with this 6 and the second voltage database. Figure 11 shows
the simulation result and allows a comparison of real and
simulated data. Figure 12 shows a zoom between 20 ms and
30 ms to appreciate the accuracy of the simulated curve using
the parameters obtained with the proposed algorithm for the
second database.

As can be seen, the calculated parameters for the ECM using
the developed algorithm allow obtaining a performance greater
than 99% for both databases. This demonstrates the efficiency
of the proposed algorithm.

— Vacte

— Vacta

Voltage (V)
-
o

0 20 40 60 80
Time (ms)

Fig. 10: Behavior of v,ct,c and vact,a as solutions generated by
the second input current database, R. = 0.024 ), R, = 0.024
Q, C; = 0.0125 F, C, = 0.0167 F, and vac; c(0) = 0.78 V
and vact,o(0) = 0.72 V.
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Fig. 11: Comparison between real and simulation voltage data
generated by the second input current database.

A. Discussion

The algorithm detailed in this work allows for calculating
the parameters of an ECM depending on the values suggested
for the electrical components (resistors and capacitors). The
results of the different statistical tests show the performance of
the algorithm for two databases. Table II presents a comparison
of the proposed algorithm with the multi-innovation least
squares (MILS) algorithm developed in [15], which is the
only one reported to estimate ECM parameters for the PEM
electrolyzer voltage. This comparison takes into account the
two parameters of innovation length (p) with the highest
reported performance in [15], p = 4 and p = 5. As can be seen
in Table II, the amount of data used to validate the algorithm
is double and the relative error obtained for the estimated
parameters in both databases is lower than that reported using
the MILS algorithm. However, the time to obtain the estimated
parameters is considerably longer. Therefore, the proposed
algorithm offers greater accuracy in exchange for a greater
amount of time and iterations.

Different values of the resistors and capacitors allow finding
parameters with non-significant errors for the two databases,
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Fig. 12: Zoom for the comparison between real and simulation
voltage data generated by the second input current database.

TABLE II: Comparison of the proposed algorithm with the
reported MILS algorithm for p = 4,5 in [15].

Algorithm Data points Er Time
MILS (p = 4) 5000 3.07% 10 s
MILS (p = 5) 5000 1.30% 10 s

Proposed (Database 1) 10000 0.5494% 133 s
Proposed (Database 2) 10000 0.8997% | 2209 s

which demonstrates the versatility of the proposed algorithm.
For example, for database 1, using resistor values R. = 0.48
Q and R, = 0.4 Q and capacitor values C. = 416.7 pF and
C, = 625 uF the values 7. = 0.2 s, 7, = 0.25 s, A, and B

are obtained, where
A:< _05 _O4> andB:(?IZGL )
Besides, with the initial values vaetc(0) = 1.22 V
and Vet .(0) = 1.1 V, it is possible to obtain § =
(4.6498,0.0315,0.0946, 0.1221) or vip; = 4.6498 V, Riem =
0.0315 Q, k1 = 0.0946, and ko = 0.1221. With this value
of 0, the errors were E, = 0.4998%, E, = 0.0248 V,
Fnms = 0.0010 V2, and Erms = 0.0311 V. For database
2, one example is given using resistor values R. = 0.0301
Q and R, = 0.024 © and capacitor values C. = 8.3 uF and
C, = 12.5 p FE. Thus, the values 7. = 0.00025 s, 7, = 0.0003
s, A and B are obtained, where
—4000 0 120
A:( 0 —3200) andB:( 80 )

Besides, § = (7.4014,0.0238,—0.0071,0.5827) or vjy =
7.4014 V, Rypem = 0.0238 2, k1 = —0.0071, and ko = 0.5827
are obtained with the initial values v,ec(0) = 1 V and
Vact,a(0) = 1 V. Using these parameters, the errors are
E, = 0.9999%, E, = 0.0881 V, Eyg = 0.0118 V2, and
Erms = 0.1087 V. Furthermore, the proposed algorithm
allows for estimating the ECM parameters for each operating
point of the PEM electrolyzer, which usually works at a
fixed nominal point. However, parameters estimated for one
database may not be able to be efficiently estimated for another

TABLE III: Algorithm performance measurements for the two

databases.
Database Er. for 1_n1t1al Iterations E.r for.ﬁnal Time
iteration iteration
1 11.0248% 43 0.9822% 59 s
1 6.2930% 95 0.9977% 139 s
1 17.8114% 94 0.9981% 136 s
2 105.1289% 2717 0.9999% 3131 s
2 43.5527% 1636 0.9999% 1867 s
2 2.8383% 612 0.9994% 714 s

—— Test 1 of the algorithm for database 1

Test 2 of the algorithm for database 1
—— Test 3 of the algorithm for database 1
=== Test 1 of the algorithm for database 2
=== Test 2 of the algorithm for database 2
=== Test 3 of the algorithm for database 2
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Fig. 13: Relative error behavior for the algorithm iterations

when applied to different initial parameters to estimate the
parameters of the ECM for the two databases.

database, which can be considered a disadvantage of the
proposed algorithm.

To appreciate the proposed algorithm’s performance
measurements of the number of iterations, the convergence
time, and the relative error were taken during its application
using different initial parameter values and g = 40, see
Table III. The initial parameters varied, for the first database,
between 0.1 and 0.2 ms for 7.; between 0.06 and 0.12 ms for
T.; between 0.71 and 1.25 mF for C,; between 1.25 and 3.33
mF for C,; between 4.2 and 5.2 V for Vi,;; between 0.15 and
0.47 Q for Ryem; between 0.13 and 0.27 for k1; between 0.01
and 0.05 for ky. For the second database, between 0.25 and
0.5 ms for 7; between 0.33 and 1 ms for 7,; between 0.62 and
0.83 mF for C,; between 1.25 and 2.5 mF for Cy; between
7 and 8.5 V for Vi,;; between 0.15 and 0.28 Q for Ryem;
between 0.1 and 0.15 for k1 ; between 0.0351 and 0.251 for ks.
The initial values for V,.; generation were constant depending
on the database, for the first one V,¢(0) = (0.255,0.215) V
and for the second one V,¢(0) = (0.78,0.72) V.

As can be seen in Table III and Figure 13, when using
different initial parameter values, the number of iterations and
the convergence rate for a relative error of less than 1% is
much lower for the first database than the second database
using the proposed algorithm. This is due to the complexity
of the signals obtained from the second database. For this
reason, when the program runs for a certain amount of time,
the errors obtained for the simulations of the first database
are smaller than the errors obtained for the simulations of
the second database. Furthermore, based on Table III, the
approximate computation time per iteration is 1.25 seconds
using a code programmed in Python programming language
(Python version: 3.8.10 for 64 bits).



V. CONCLUSION

In this work, an algorithm to estimate the parameters
of an ECM for the PEM electrolyzer voltage is detailed
and validated. The proposed algorithm allows for adjusting

the

parameters based on the values of the electronic

components. Besides, the algorithm is explained in detail to
facilitate the calculation of the ECM parameters. Furthermore,
this innovative algorithm is important for the design and
construction of an emulator modeling the PEM electrolyzer
voltage response under current ripple constraints. This work
will lead to further investigations into the current ripple
(amplitude, frequency, and waveform) that occur in a PEM
electrolyzer. Furthermore, current research work is towards
the online computation of the proposed algorithm for feedback
purposes.
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