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Abstract-- Rational fitting techniques are the basis for 

modeling the physical behaviors of systems with respect to their 
input and output characteristics. Due to its robustness and 
accuracy, Vector Fitting (VF) has been widely used to obtain 
rational models from tabulated frequency domain responses. 
Three types of systems could be approximated: 1) A scalar 
function or scalar fitting (SF) case, 2) A column vector function 
or column fitting (CF) case, and 3) A matrix function or matrix 
fitting (MF) case. A common set of poles is desired for physical 
and implementation reasons. This is a fact in the SF case, and the 
mathematical formulation of VF allows obtaining a rational 
function-based model with a common set of poles in the CF case. 
However, as this is not possible in the MF case, a methodology 
based on the VF iteration is proposed, which ensures a common 
set of poles. The advantages are demonstrated in three test cases: 
1) Multi-phase transmission-line modeling using the Universal 
Line Model (ULM), 2) Multi-block data analysis, and 3) Printed 
Circuit Board (PCB) transmission-line characterization. 
 

Keywords: Frequency-dependent matrices, Multi-block data 
analysis, PCB transmission-line modeling, Rational 
approximation, Universal Line Model, Vector Fitting.  

 

I.  INTRODUCTION 
tate-space models are useful for various reasons, such as 
providing mathematical models that can describe linear as 

well as nonlinear systems. Furthermore, they can handle not 
only Single-Input Single-Output (SISO) systems but also 
Multiple-Input Multiple-Output (MIMO) systems. Indeed, 
state equations are particularly suited for analyzing and 
synthesizing MIMO systems [1, 2]. In this context, the search 
for models that faithfully reproduce the system’s behavior 
with respect to its input and output characteristics is crucial 
[3]. Vector fitting (VF) is a robust macromodeling method to 
derive these desired rational function-based models from 
tabulated frequency domain responses [4]. Different processes 
have been proposed to obtain these rational approximations of 
frequency dependent Matrices �𝑯𝑯�𝑘𝑘�  through VF using a 
common set of poles ( 𝑝𝑝𝑛𝑛). 

Gustavsen and Semlyen [5, 6] proposed a Matrix Fitting 
(MF) procedure in 2002 and 2004 for admittance matrices 
consisting of stacking matrix elements into a single column. 
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This method allows obtaining common poles for the entire 
system. However, depending on the matrix size, the resulting 
column vector can become too large. 

In 2008, Gustavsen and Nordstrom [7] presented an 
improvement to the Universal Line Model based on trace 
fitting. This process allows obtaining the rational 
approximation of the characteristic impedance matrix and the 
propagation function matrices using common poles. 

More recently, Macmillan et al. [8] (2024) proposed fitting 
each column vector using VF, followed by an empirical 
process to compact poles within a defined area. However, this 
proposal risks erroneous results if poles overlap. 

The aim of this paper is to present an iterative matrix fitting 
(IMF) approach as an alternative methodology for obtaining 
rational function-based models using common poles for 
frequency-dependent matrices based on the VF iteration.  

The proposed procedure is demonstrated in (1) Multi-phase 
transmission-line modeling through the Universal Line Model 
(ULM), (2) Multi-block data analysis, and (3) PCB 
transmission-line characterization. 

II.  ITERATIVE MATRIX FITTING (IMF) APPROACH BASED ON 
THE VECTOR FITTING ITERATION 

The proposed IMF approach for the rational approximation 
of frequency-dependent matrices is based on the iterative 
nature of VF. This iterative process allows creating rational 
function-based models of frequency-dependent matrices that 
are not necessarily square, among other advantages.  

Let us begin by considering the case for the rational 
approximation of a scalar function or scalar fitting (SF) case. 
The goal of VF is to obtain an approximation of a data set 
through a rational function model in pole-residue form (1) 
considering a finite number of poles N, which are typically 
defined by the user [4]. These data points can be measured or 
calculated from some frequency-domain samples:  �𝑠𝑠𝑘𝑘 , ℎ�𝑘𝑘� 
where ℎ�𝑘𝑘 = ℎ�(𝑠𝑠𝑘𝑘) for 𝑠𝑠𝑘𝑘 = j𝜔𝜔𝑘𝑘 , 𝑘𝑘 = 1, … ,𝐾𝐾. 

ℎ�𝑘𝑘 ≅ ℎ(𝑠𝑠; 𝐱𝐱) = �
𝑟𝑟𝑛𝑛

𝑠𝑠 − 𝑝𝑝𝑛𝑛
+ 𝑟𝑟0.

𝑁𝑁

𝑛𝑛=1

 (1) 

In (1), 𝐱𝐱 represents a vector with poles, residues, and the 
constant term (𝑝𝑝𝑛𝑛, 𝑟𝑟𝑛𝑛, 𝑟𝑟0) for the rational approximation.  

VF generates this rational function-based model ℎ(𝑠𝑠; 𝐱𝐱) in 
pole-residue form by relocating a set of initial poles 
{𝑞𝑞𝑛𝑛1 ∈ ℂ,𝑛𝑛 = 1, … ,𝑁𝑁} through an iterative process in a least-
squares (LS) sense.  

S 



VF works in two stages: First, it iteratively refines the 
position of the initial poles, (𝑞𝑞𝑛𝑛𝑣𝑣) , where the number of 
iterations (𝑣𝑣 = 1, … ,𝑉𝑉) is also typically defined by the user. 
Second, it calculates the residues ( 𝑟𝑟𝑛𝑛) and the constant term 
(𝑟𝑟0) in a single step. This procedure has proven suitable for a 
Single-Input Single-Output (SISO) state-space modeling [2]. 

In the LS formulation of VF, solved at each iteration (𝑣𝑣), 
multiple (𝑀𝑀)  scalar functions ℎ�𝑖𝑖(𝑠𝑠𝑘𝑘), 𝑖𝑖 = 1, … ,𝑀𝑀  can be 
considered. As long as they share the same poles, these 
responses can be stacked in a column vector as: 𝐡̆𝐡𝑘𝑘 ∈  ℂ𝑀𝑀. 
This leads to the rational approximation case of a column 
vector function or column fitting (CF) case. Using this 
formulation in VF, a set of common poles (2) for this column 
vector can be obtained: �𝑠𝑠𝑘𝑘 , 𝐡̆𝐡𝑘𝑘� for 𝑘𝑘 = 1, … ,𝐾𝐾. 

𝐡̆𝐡𝑘𝑘 ≅ 𝐡𝐡(𝑠𝑠; 𝐱𝐱) = �
𝐫𝐫𝑛𝑛

𝑠𝑠 − 𝑝𝑝𝑛𝑛
+ 𝐫𝐫0

𝑁𝑁

𝑛𝑛=1

. (2) 

In (2) 𝑁𝑁  common poles ( 𝑝𝑝𝑛𝑛)  are used with 𝐫𝐫𝑛𝑛 ∈  ℂ𝑀𝑀 
for 𝑛𝑛 = 1, … ,𝑁𝑁 and 𝐫𝐫0 ∈  ℝ𝑀𝑀. This formulation is suitable 
for Single-Input Multiple-Output (SIMO) state-space 
modeling [2]. According to Gustavsen and Semlyen in [2, 4], 
this feature gave the method its name: Vector Fitting. Tables I 
and II show extracts of the VF algorithm for the two 
aforementioned cases.  

 
TABLE I 

VF ALGORITHM FOR SCALAR FITTING (SF) 

Input: ��𝑠𝑠𝑘𝑘 , ℎ�𝑘𝑘��𝑘𝑘=1
𝐾𝐾

 and {𝑞𝑞𝑛𝑛1}𝑛𝑛=1𝑁𝑁 ; 
1: for 𝑣𝑣 = 1, … ,𝑉𝑉 do  
2:    pole relocation, 𝑞𝑞𝑛𝑛𝑣𝑣, using ℎ�𝑘𝑘;  
3: end for  
4: set 𝑝𝑝𝑛𝑛 = 𝑞𝑞𝑛𝑛𝑉𝑉;   
5: compute 𝑟𝑟𝑛𝑛 and 𝑟𝑟0; 
Output: model ℎ(𝑠𝑠;𝐱𝐱) 

 
TABLE II 

VF ALGORITHM FOR COLUMN FITTING (CF) 

Input: ��𝑠𝑠𝑘𝑘 , 𝐡̆𝐡𝑘𝑘��𝑘𝑘=1
𝐾𝐾

 and {𝑞𝑞𝑛𝑛1}𝑛𝑛=1𝑁𝑁 ; 
1: for 𝑣𝑣 = 1, … ,𝑉𝑉 do  
2:    pole relocation, 𝑞𝑞𝑛𝑛𝑣𝑣, using 𝐡̆𝐡𝑘𝑘;  
3: end for  
4: set 𝑝𝑝𝑛𝑛 = 𝑞𝑞𝑛𝑛𝑉𝑉;   
5: compute 𝐫𝐫𝑛𝑛 and 𝐫𝐫0; 
Output: model 𝐡𝐡(𝑠𝑠; 𝐱𝐱) 

 
However, in most cases, it is necessary to model Multiple-

Input Multiple-Output (MIMO) systems. Then, we can 
consider multiple (𝑃𝑃)  vector functions 𝐡̆𝐡𝑖𝑖(𝑠𝑠𝑘𝑘) , 𝑖𝑖 = 1, …𝑃𝑃 
collected in a matrix as,  

𝐇𝐇�𝑘𝑘 = �𝐡̆𝐡1(𝑠𝑠𝑘𝑘), 𝐡̆𝐡2(𝑠𝑠𝑘𝑘), … , 𝐡̆𝐡𝑃𝑃(𝑠𝑠𝑘𝑘)�. (3) 

We have now the rational approximation of a matrix 
function or matrix fitting (MF) case. The challenge here is to 
find a set of common poles for approximating (4) this matrix 
function:�𝑠𝑠𝑘𝑘 ,𝐇𝐇�𝑘𝑘� for 𝑘𝑘 = 1, … ,𝐾𝐾, where 𝐇𝐇�𝑘𝑘 ∈  ℂ𝑀𝑀×𝑃𝑃. In (3) 
differing numbers of columns and rows are considered. 

𝐇𝐇�𝑘𝑘 ≅ 𝐇𝐇(𝑠𝑠; 𝐱𝐱) = �
𝐑𝐑𝑛𝑛

𝑠𝑠 − 𝑝𝑝𝑛𝑛
+ 𝐑𝐑0.

𝑁𝑁

𝑛𝑛=1

 (4) 

This case is considered 𝑁𝑁  common poles ( 𝑝𝑝𝑛𝑛)  with 
𝐑𝐑𝑛𝑛 ∈  ℂ𝑀𝑀×𝑃𝑃  for 𝑛𝑛 = 1, … ,𝑁𝑁  and 𝐑𝐑0 ∈  ℝ𝑀𝑀×𝑃𝑃 . Now (4) is 
suitable for Multiple-Input Multiple-Output (MIMO) state-
space modeling [2].  

VF’s most important feature is arguably its robustness in 
repositioning initial poles iteratively. Based on this 
characteristic, we propose an iterative matrix fitting (IMF) 
approach consisting of using each column vector (𝐡̆𝐡𝑘𝑘 ∈  ℂ𝑀𝑀) 
for each VF iteration (𝑣𝑣). In this way, matrices that are not 
necessarily square or immittance matrices where the diagonal 
represents the greatest weight in the array, can be fitted 
through common poles.  

Table III provides an extract of the VF algorithm for the 
proposed IMF approach which can be directly used with the 
available VF algorithm. It can be summarized as follows: 

Input: The matrix to be fitted, the frequency vector and the 
initial poles (𝐇𝐇�𝑘𝑘 ,  𝑠𝑠𝑘𝑘 ,  𝑞𝑞𝑛𝑛1).  

1: The counter (𝑐𝑐) allows the algorithm to iterate through 
the columns of the matrix a predefined number of times, (𝑉𝑉). 

2: The poles are repositioned using one column at a time.  
9: The set of common poles is obtained (𝑝𝑝𝑛𝑛 = 𝑞𝑞𝑛𝑛𝑉𝑉) when 

the number of iterations (𝑉𝑉) is reached.  
10: The matrix of residues (𝐑𝐑) can be calculated and, 
Output: The model is obtained, 𝐇𝐇(𝑠𝑠; 𝐱𝐱). 

TABLE III 
VF ALGORITHM FOR ITERATIVE MATRIX FITTING (IMF) APPROACH 

Input: ��𝑠𝑠𝑘𝑘 ,𝐇𝐇�𝑘𝑘��𝑘𝑘=1
𝐾𝐾  and {{𝑞𝑞𝑛𝑛1}𝑛𝑛=1𝑁𝑁 ;  

1: c = 1; (counter)  
2: for 𝑣𝑣 = 1, … ,𝑉𝑉 do  
3:    pole relocation, 𝑞𝑞𝑛𝑛𝑣𝑣, using 𝐡̆𝐡𝑐𝑐(𝑠𝑠𝑘𝑘); 
4:    𝑐𝑐 = 𝑐𝑐 + 1; 
5:    if 𝑐𝑐 == 𝑃𝑃 + 1 then; 
6:      𝑐𝑐 = 1;  
7:    end if 
8: end for  
9: set 𝑝𝑝𝑛𝑛 = 𝑞𝑞𝑛𝑛𝑉𝑉;   
10: compute 𝐑𝐑𝑛𝑛 and 𝐑𝐑0; 
Output: model 𝐇𝐇(𝑠𝑠;𝐱𝐱) 

III.  TEST CASES 

A.  Case I: Transmission-line modeling (ULM)  
Electromagnetic waves propagating along an n-conductor 

line or cable are modeled in the frequency domain by 
Telegrapher’s Equations (5), where 𝐕𝐕 and 𝐈𝐈 are the voltage 
and the current vectors of length 𝑛𝑛. 𝐙𝐙 = 𝐑𝐑 + j𝜔𝜔𝐋𝐋 and 𝐘𝐘 =
𝐆𝐆 + j𝜔𝜔𝐂𝐂 ∈ ℂ𝑛𝑛×𝑛𝑛.  

𝑑𝑑2𝐕𝐕
𝑑𝑑𝑥𝑥2

= 𝐙𝐙𝐙𝐙𝐙𝐙,
𝑑𝑑2𝐈𝐈
𝑑𝑑𝑥𝑥2

= 𝐘𝐘𝐘𝐘𝐘𝐘. (5) 

At the ends 𝑥𝑥 = 0 and 𝑥𝑥 = 𝐿𝐿 of the line, the following 
equations relate incident current waves to those reflected from 
the opposite end: 

𝐈𝐈0 − 𝐘𝐘𝑐𝑐𝐕𝐕0 = −𝐇𝐇[𝐈𝐈𝐿𝐿 + 𝐘𝐘𝑐𝑐𝐕𝐕𝐿𝐿], (6) 



𝐈𝐈𝐿𝐿 − 𝐘𝐘𝑐𝑐𝐕𝐕𝐿𝐿 = −𝐇𝐇[𝐈𝐈0 + 𝐘𝐘𝑐𝑐𝐕𝐕𝟎𝟎]. (7) 

Where 𝐘𝐘𝑐𝑐 = 𝐙𝐙−1√𝐙𝐙𝐙𝐙 = �(𝐘𝐘𝐘𝐘)−1𝐘𝐘 and 𝐇𝐇 = 𝒆𝒆−√𝐘𝐘𝐘𝐘𝑙𝑙  with 
𝐙𝐙, 𝐘𝐘, 𝐘𝐘𝑐𝑐, 𝐇𝐇, and 𝑙𝑙 being the line series impedance per unit 
length, shunt admittance per unit length, characteristic 
admittance matrix, propagation function matrix, and length, 
respectively. The term 𝐘𝐘𝑐𝑐𝐕𝐕0 in (6) can be defined as a shunt 
current at 𝑥𝑥 = 0: 

𝐈𝐈𝑠𝑠ℎ,0 = 𝐘𝐘𝑐𝑐𝐕𝐕0. (8) 

Moreover, denoting 𝐈𝐈𝐻𝐻 in (6) as, 

𝐈𝐈𝐻𝐻0 = 𝐇𝐇[𝐈𝐈𝐿𝐿 + 𝐘𝐘𝑐𝑐𝐕𝐕𝐿𝐿] = 𝐇𝐇𝐇𝐇𝑓𝑓𝑓𝑓𝑓𝑓,𝐿𝐿 . (9) 

Where 𝐈𝐈𝑓𝑓𝑓𝑓𝑓𝑓  is the reflected current wave from the opposite 
line end, the voltage/current relationship at the ends of a 
transmission line is established. In the application of the ULM 
[9, 10] for the multi-conductor examples, the trace fitting (TF) 
approach is commonly implemented. This concept minimizes 
CPU time and memory requirements [7]. In accordance with 
the TF, 𝐘𝐘𝑐𝑐 is approximated in the phase domain through, 

𝐘𝐘𝑐𝑐 ≅ �
𝐆𝐆𝑚𝑚

𝑠𝑠 − 𝑝𝑝𝑚𝑚
+ 𝐃𝐃

𝑁𝑁𝑦𝑦

𝑚𝑚=1

, (10) 

where D is a constant matrix, Gm is a matrix of residues, and 
Ny is the number of poles. When using modal decomposition 
for 𝐇𝐇, it can be written as:  

𝐇𝐇 = 𝐓𝐓𝐇𝐇𝑚𝑚𝐓𝐓−𝟏𝟏, (11) 

where 𝐓𝐓 is the eigenvector matrix and 𝐇𝐇𝑚𝑚  is a diagonal 
matrix 𝐇𝐇𝑚𝑚 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑒𝑒−𝜆𝜆1𝑙𝑙 , 𝑒𝑒−𝜆𝜆2𝑙𝑙 , … , 𝑒𝑒−𝜆𝜆𝑁𝑁𝑙𝑙� , with 𝜆𝜆 = √𝐘𝐘𝐘𝐘 
being the propagation constant of the conductor line.  

Idempotent decomposition is applied for the synthesis of 𝐇𝐇 
in the phase domain as follows: 

𝐇𝐇 = �𝚪𝚪𝑖𝑖𝑒𝑒−𝜆𝜆𝑖𝑖𝑙𝑙 = �𝚪𝚪𝑖𝑖𝑒𝑒−𝜆𝜆𝑖𝑖
′𝑙𝑙𝑒𝑒−𝑠𝑠𝜏𝜏𝑖𝑖 = �𝐇𝐇�𝑖𝑖𝑒𝑒−𝑠𝑠𝜏𝜏𝑖𝑖 ,

𝑁𝑁ℎ

𝑖𝑖=1

𝑁𝑁ℎ

𝑖𝑖=1

𝑁𝑁ℎ

𝑖𝑖=1

 (12) 

where 𝜏𝜏𝑖𝑖 represents the time delays and 𝚪𝚪𝑖𝑖 is the idempotent 
square matrix derived from multiplying the i-th column of 𝐓𝐓 
with the i-th row of 𝐓𝐓−𝟏𝟏. 

 After identifying the time delay for each mode, 𝐇𝐇�𝑖𝑖  is 
approximated using the TF approach [7] with a common set of 
poles. Ultimately, the multi-delayed rational function-based 
model for 𝐇𝐇 in the phase domain is, 

𝐇𝐇 ≅���
𝐑𝐑𝑖𝑖,𝑘𝑘

𝑠𝑠 − 𝑝𝑝𝑖𝑖 ,𝑘𝑘

𝑁𝑁𝑖𝑖

𝑘𝑘=1

�
𝑁𝑁ℎ

𝑖𝑖=1

𝑒𝑒−𝑠𝑠𝜏𝜏𝑖𝑖 , (13) 

where 𝑁𝑁ℎ  is the number of propagation modes, 𝑁𝑁𝑖𝑖  is the 
number of poles for the i-th mode, and 𝐑𝐑𝑖𝑖,𝑘𝑘 is a matrix of 
residues.  

The test case is then modeled using our own algorithm in 
MATLAB. The source and the three-phase delta transmission 
line configuration for the test case are shown in Fig. 1. The 
line is energized from a balanced three-phase voltage source 
behind an impedance (𝐿𝐿𝑠𝑠) . Moreover, 500 log-spaced 
samples are used for the calculation of 𝐙𝐙 and 𝐘𝐘, 15 poles for 
the rational approximation of 𝐘𝐘𝑐𝑐, and 30 poles for each 𝐇𝐇�𝑖𝑖. 

Simulation of the transmission line is performed first, using 
the TF for the rational approximation of 𝐘𝐘𝑐𝑐 and 𝐇𝐇�𝑖𝑖; and then 
using the IMF approach.  

The results of the rational approximations are shown in 
Figs. 2, 3, 4 and 5, including their calculation of the RMS-
errors. Finally, the voltage source (𝑉𝑉𝑠𝑠), voltage at sending end 
(𝑉𝑉0) and voltage at receiving end (𝑉𝑉𝐿𝐿) of phase A, using 
both TF and IMF are shown in Fig. 6 for open line end.  

The results are practically identical for both methodologies. 

 
 

Fig. 1. Three-phase delta transmission line configuration. 

 
Fig. 2. (a) 𝐘𝐘𝑐𝑐 and its approximation using TF, (b) 𝐘𝐘𝑐𝑐 and its approximation using IMF, and (c) RMS-error of the rational approximations. 



 
Fig. 3. (a) 𝐇𝐇�1 and its approximation using TF, (b) 𝐇𝐇�1 and its approximation using IMF, and (c) RMS-error of the rational approximations. 

 

 
Fig. 4. (a) 𝐇𝐇�2 and its approximation using TF, (b) 𝐇𝐇�2 and its approximation using IMF, and (c) RMS-error of the rational approximations. 

 

 
Fig. 5. (a) 𝐇𝐇�3 and its approximation using TF, (b) 𝐇𝐇�3 and its approximation using IMF, and (c) RMS-error of the rational approximations. 

 

 
Fig. 6. Voltage source (𝑉𝑉𝑠𝑠), voltage at sending end (𝑉𝑉0) and, voltage at receiving end (𝑉𝑉𝐿𝐿) of phase A, using both TF and IMF approaches. 



B.  Case II: Multi-block data analysis 
Wide area measurement systems based on phasor 

measurement units allow recording multiple data such as 
voltage, frequency, and active or reactive power under 
transient conditions and have motivated the development of 
multi-block data analysis techniques [11]. The transient data 
recorded may reveal electromechanical oscillation modes that 
should be identified as they provide valuable information 
about the stability of the electrical system [12]. 

A measurement of an electrical power system (𝑓𝑓(𝑡𝑡)) 
containing 𝑁𝑁 2⁄  oscillatory modes can be approximated by, 

𝑓𝑓(𝑡𝑡) ≅ 𝜀𝜀 + �𝑎𝑎𝑛𝑛𝑒𝑒𝛼𝛼𝑛𝑛𝑡𝑡 cos(𝜔𝜔𝑛𝑛𝑡𝑡 + 𝜃𝜃𝑛𝑛) .
𝑁𝑁 2⁄

𝑛𝑛=1

 (14) 

Where 𝜀𝜀 is a direct component, 𝑎𝑎𝑛𝑛 is the amplitude for 
the nth mode, 𝛼𝛼𝑛𝑛  is the n-th damping factor, 𝜔𝜔𝑛𝑛  is the 
frequency for the n-th mode, and 𝜃𝜃𝑛𝑛  is the corresponding 
phase for each mode. It is also possible to consider multiple 
(𝑀𝑀) measurements, as follows [12]: 

𝐟𝐟(𝑡𝑡) ≅ 𝛆𝛆 + �𝐚𝐚𝑛𝑛𝑒𝑒𝛼𝛼𝑛𝑛𝑡𝑡 cos(𝜔𝜔𝑛𝑛𝑡𝑡 + 𝛉𝛉𝑛𝑛) .
𝑁𝑁 2⁄

𝑛𝑛=1

 (15) 

Where 𝐟𝐟  and 𝛆𝛆 ∈ ℝ𝑀𝑀  and 𝐚𝐚𝑛𝑛  and 𝛉𝛉𝑛𝑛 ∈ ℝ𝑀𝑀  for 𝑛𝑛 =
1, … ,𝑁𝑁. Note that common frequencies and dampings have 
been considered, that is, common poles in the frequency 
domain (FD). Finally, a multi-block data matrix 𝐅𝐅(t𝑘𝑘) for 
𝑘𝑘 = 1, … ,𝐾𝐾  can be considered, consisting of (𝑃𝑃)  column 
vectors containing (𝑀𝑀) measurements, and approximated as 
follows [12]: 

𝐅𝐅(𝑡𝑡) ≅ 𝚬𝚬 + �𝐀𝐀𝑛𝑛𝑒𝑒𝛼𝛼𝑛𝑛𝑡𝑡 cos(𝜔𝜔𝑛𝑛𝑡𝑡 + 𝚯𝚯𝑛𝑛)
𝑁𝑁 2⁄

𝑛𝑛=1

. (16) 

Where 𝐅𝐅(𝑡𝑡)  and 𝚬𝚬 ∈ ℝ𝑀𝑀×𝑃𝑃  and 𝐀𝐀𝑛𝑛  and 𝚯𝚯𝑛𝑛 ∈ ℝ𝑀𝑀×𝑃𝑃 
for 𝑛𝑛 = 1, … ,𝑁𝑁 . Using the Numerical Laplace Transform 
(NLT) is possible to obtain the image of 𝐅𝐅(𝑡𝑡) in FD to 
implement the proposed IMF to estimate oscillatory modes 
from the multi-block transient data [13]. Clearly (14), (15), 
and (16) correspond to scalar fitting (SF), column fitting (CF), 
and matrix fitting (MF), respectively.  

To evaluate the proposed IMF, several transient responses 
are obtained from a simulation of the IEEE 16-generator 5-
area power system using the Power System Toolbox (PST); 
the power system parameters can be found in [12]. 

Fig. 7 shows a single-line diagram of this system formed by 
16 generators, 68 buses, and 86 transmission lines divided into 
5 areas. A contingency case is created by introducing a three-
phase fault at the end of the transmission line 41-42 and 
clearing it after 20 ms. The active power signals, reactive 
power signals, and speed signals from all generators are 
recorded for 25 seconds with a sampling rate of 100 samples 
per second. Fig. 8 shows the oscillatory behavior of these 
signals with their mean values removed. The rational 
approximations for the images of active power, reactive 
power, and speed signals in FD are shown in Fig. 9 including 
the corresponding RMS-error calculations where 𝑁𝑁 = 10 
poles have been used. 

 
Fig. 7.  IEEE 16-generator 5-area power system. 

Table IV shows the modal parameter estimation through 
the IMF approach, based on the multi-block data formed by 
the active power signals, reactive power signals, and speed 
signals. As shown, three dominant oscillation modes were 
identified at 0.2383 Hz, 0.3940 Hz, and 0.6288 Hz. These 
results confirm that the IMF allows estimating modal 
parameters from multi-block data. Finally, to validate these 
results, Koopman Mode Decomposition (KMD) [14] was 
applied to each group of signals, since the method cannot be 
applied to multi-block data matrices, (𝐅𝐅(t𝑘𝑘)). As seen in 
Table V, the KMD method also estimates three dominant 
inter-area modes, which are consistent with the oscillation 
modes presented in Table IV for the IMF. 

 
Fig. 8. (a) Active power signals, (b) Reactive power signals, (c) Speed signals. 



 
Fig. 9. Images in FD and their approximations for (a) Active power signals, (b) Reactive power signals, and (c) Speed signals. 

 
TABLE IV 

 MODAL PARAMETER ESTIMATION USING THE IMF APPROACH. 
Mode 1 Mode 2 Mode 3 

Frequency 
[Hz] Damping Frequency 

[Hz] Damping Frequency 
[Hz] Damping 

0.2383 -0.3391 0.3940 -0.2903 0.6288 -0.4046 
 

TABLE V 
 MODAL PARAMETER ESTIMATION USING THE KMD METHOD. 
Mode 1 Mode 2 Mode 3 

Frequency 
[Hz] Damping Frequency 

[Hz] Damping Frequency 
[Hz] Damping 

0.2308 -0.2653 0.3637 -0.3281 0.6357 -0.3632 

0.2339 -0.2723 0.3627 -0.2852 0.6382 -0.3056 

0.2336 -0.2881 0.3721 -0.2843 0.6368 -0.3352 

 

C.  Case III: PCB transmission-line characterization 
This case involves the analysis of a double differential pair 

PCB transmission-line composed by four-line segments and 
two vias [15], as shown in Fig. 10.  

The test points on the transmission-line are connected at 
points P and Q with a VNA (model-N5247A) to obtain the S-
parameters. The measurement device has been configured 
with a bandwidth of 10 MHz to 20 GHz and 2000 linearly 
spaced samples. Given a system:  𝐇𝐇�𝑘𝑘 ∈  ℂ4×4, 𝑘𝑘 =
1, … ,2000, the transfer function (𝐇𝐇(𝑠𝑠; 𝐱𝐱)) is then calculated 
using 350 poles with SF for each matrix element and 350 
common poles with TF, IMF and CF. 

The results of these rational approximations are shown in 
Figs. 11a, 11b, 12a and 12b, respectively. The RMS-error 
according to each iteration can be seen in Fig. 13a for SF and 
TF and the corresponding RMS-errors for each element of the 
matrix considering these different approaches are shown in 
Fig. 13b. 

SF obtains the lowest errors but does not employ common 
poles. IMF shows comparable error rates utilizing common 
poles and they are even better than CF. TF has the highest 
error rates of the three methodologies. Following, Fig. 14a 
shows the poles calculated for each approach.  

 

Finally, in Fig. 14b, the time domain voltage responses of 
the return loss parameter (S11) are shown for each model 
obtained using SF, TF, IMF and CF by sending a unit pulse 
with a duration of 200 ps, a rise time of 50 ps and a delay of 1 
ns where the response using the Discrete Fourier Transform 
(DFT) has been taken as the reference. 

The models obtained with SF and TF are the least accurate, 
followed by the model obtained with CF, and the most 
accurate is IMF, which practically overlaps the response 
calculated with the DFT. 

It is remarkable that CF uses all columns in each iteration 
while IMF uses only 25% of the data corresponding to one 
column, and although it uses less data it is more accurate. 
These results validate the IMF approach proposed in this 
work. 

 

 
 

Fig. 10. PCB cross section. 

 



 
Fig. 11. 𝐇𝐇�𝑘𝑘 and its approximation with, (a) the SF approach and (b) TF approach. 

 

 
Fig. 12. 𝐇𝐇�𝑘𝑘 and its approximation with, (a) the IMF approach and (b) CF approach. 

 

 
Fig. 13. (a) Iteration count for SF and TF and (b) RMS-errors for each element of the matrix considering SF, TF, IMF and CF. 

 

 
Fig. 14. (a) Calculated poles considering SF, TF, IMF and CF, (b) Time domain responses using SF, TF, IMF and CF approaches. 



IV.  CONCLUSIONS 
An iterative matrix fitting (IMF) approach has been 

introduced as an alternative methodology to obtain rational 
function-based models using common poles of frequency-
dependent matrices, building on the VF iteration. The 
proposed methodology was applied in multi-phase 
transmission-line modeling, data analysis from a multi-block 
matrix, and PCB transmission-line characterization.  

 
The main findings are as follows: 
 
1) When a system shares common poles, it may seem a 

practical solution to approximate a matrix (𝐇𝐇�𝑘𝑘) using 
the common poles calculated from one of their column 
vectors � 𝐡̆𝐡𝑘𝑘�. However, challenges can arise, 
particularly in admittance matrices, where the diagonal 
elements carry the majority of the matrix’s weight. In 
such a case, the TF methodology may be a solution. 
However, the IMF approach has proven to be a better 
option. 
 

2) In the test case of multi-phase transmission-line 
modeling through the Universal Line Model (ULM); 
the results indicate that the trace fitting (TF) process 
and the proposed IMF methodology offer practically 
the same error levels. 

 
3) The combination of the Numerical Laplace Transform 

(NLT) with the VF method is a powerful tool for 
multi-block data analysis, particularly in systems based 
on phasor measurement units. These systems may 
involve non-square matrices and large number of 
measured signals, which prevents stacking the matrix 
elements into a single column vector. The proposed 
methodology overcomes this limitation and allows 
identifying the desired parameters. 

 
4) In the case of PCB transmission-line characterization, 

the IMF approach shows better results compared to the 
approximation using the TF and CF methodologies.  
 

5) Rational function-based models are required to comply 
with some important properties as passivity. This 
property has commonly been forced to be fulfilled at a 
post-processing stage. Compliance with the model 
passivity may be assessed and enforced for all 
methodologies presented (SF, TF, IMF and CF). 
 

6) According to the presented test cases, it is highlighted 
that IMF methodology uses less data in comparison 
with CF and its precision may be equal or better. 
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