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Abstract—Analysis and estimation of harmonic and non-

harmonic content in electrical power systems play an important 
role in standards compliance and system safety. This paper 
presents a methodology for accurately estimating harmonic and 
non-harmonic components (subharmonics, interharmonics, 
supraharmonics, and/or exponentials) using the Numerical 
Laplace Transform (NLT) and Vector Fitting (VF). The 
proposed methodology involves adding a magnitude and phase of 
a known harmonic base to the signals being studied to ensure 
that VF converges to this harmonic base. Subsequently, in the 
parameter calculation stage, the added components are 
subtracted to obtain the desired harmonic estimation of the 
signals. Non-harmonic components are those to which VF 
converges but are not part of the aggregated base. The proposed 
methodology is demonstrated in two test cases: 1) synthetic 
signals containing both harmonic and non-harmonic components 
to which successfully have been estimated 1, 50, and 1000 
harmonics and 2) the simulation of an induction motor 
controller. Results show that this methodology can fully 
decompose a signal into harmonic and non-harmonic components 
with a high degree of accuracy. 
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I.  INTRODUCTION 
LONG with its impact on power quality in modern 
electrical power systems, the associated technologies 

with power electronics, renewable energy, and energy 
efficiency are becoming increasingly relevant. Due to its 
implementation, power grid waveforms such as voltages or 
currents may present distortions caused by harmonic and non-
harmonic components (subharmonics, interharmonics, 
supraharmonics, exponentials, and/or DC offset). These 
distortions can negatively affect several aspects of the 
electrical system, including aging of insulating materials, 
capacitor failures in electronic devices, interference in 
communications, and energy measurement errors, among 
others [1-4]. 

For power quality studies, the Discrete Fourier Transform 
(DFT) is a widely used technique implemented through the 
Fast Fourier Transform (FFT). However, it has some 
limitations, such as the picket-fence effect, spectral leakage, 
and sensitivity to frequency deviations.  
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Several alternatives have been proposed, such as the Prony 
method, which, although it offers high resolution, is 
computationally inefficient and sensitive to noise, or the 
Matrix Pencil method (MP) [5] which has shown acceptable 
results in the presence of noise. 

Hence, improving methodologies for analysis and 
estimation of harmonic and non-harmonic components is 
crucial for ensuring effective control and mitigation of power 
quality parameters [6]. 

The Numerical Laplace Transform (NLT) and the Vector 
Fitting (VF) method [7] have already been used to determinate 
some signal parameters, e.g., electromechanical oscillation 
modes [8]. More recently, the Extended Vector Fitting (EVF) 
method was presented to estimate subharmonics, harmonics, 
interharmonics, and supraharmonics from electrical system 
signals [9]. EVF allows approximating a function in the 
frequency domain with known and unknown poles, where the 
known poles correspond to harmonics and the unknown poles 
to non-harmonic components. 

This paper presents an accurate methodology for 
simultaneously estimating the harmonic and non-harmonic 
content of a signal or group of signals using the NLT and the 
conventional VF. This approach requires no modifications to 
the VF method. The proposed methodology is based on the 
addition of a known harmonic base to the signals under study. 
The effect of this addition is then canceled through a 
subtraction process in the Frequency Domain (FD), thus 
forcing the VF to converge to a desired harmonic basis. 
Moreover, an iterative refinement for improving the 
estimation of components is presented. The proposed 
methodology is validated using (1) synthetic test signals and 
(2) the simulation of an induction motor controlled by a space 
vector pulse width modulation (SV-PWM) technique in 
Simulink. 

II.  ESTIMATION OF HARMONIC AND NON-HARMONIC 
COMPONENTS USING NLT AND VF: PROPOSED METHODOLOGY 

The NLT is used to obtain the images in Frequency 
Domain (FD) from the signals in Time Domain (TD) for its 
later rational approximation using VF. An overview of NLT 
theory is presented in [9-12].  

A.  Vector Fitting Iteration 
The goal of VF is to approximate a data set through a 

model based on rational function in pole-residue form (1) with 
a finite number of poles 𝑁𝑁, typically defined by the user [7]. 
These data may consist of measured or calculated frequency-
domain samples, expressed as �𝑠𝑠𝑘𝑘 , ℎ�𝑘𝑘� with ℎ�𝑘𝑘 = ℎ�(𝑠𝑠𝑘𝑘) for 
𝑠𝑠𝑘𝑘 = j𝜔𝜔𝑘𝑘 , 𝑘𝑘 = 1, … ,𝐾𝐾. 

A 



ℎ�𝑘𝑘 ≅ ℎ(𝑠𝑠; 𝐱𝐱) = �
𝑟𝑟𝑛𝑛

𝑠𝑠 − 𝑝𝑝𝑛𝑛
+ 𝑟𝑟0.

𝑁𝑁

𝑛𝑛=1

 (1) 

In (1), 𝐱𝐱  represents a vector with poles, residues, and 
constant term (𝑝𝑝𝑛𝑛, 𝑟𝑟𝑛𝑛, 𝑟𝑟0) used for the rational approximation. 
VF iteratively refines the position of the initial poles, (𝑝𝑝𝑛𝑛𝑣𝑣); 
where the number of iterations, 𝑣𝑣, is also typically defined by 
the user. It then calculates the residues and the constant term 
in one step. For multiple scalar functions ℎ�𝑖𝑖(𝑠𝑠𝑘𝑘), 𝑖𝑖 = 1, …𝑀𝑀 
and assuming they share the same poles, these responses can 
be stacked in a column vector as: 𝐡̆𝐡𝑘𝑘 . Through VF, it is 
possible to obtain a set of common poles (2) for the 
constructed column vector: �𝑠𝑠𝑘𝑘 , 𝐡̆𝐡𝑘𝑘� for 𝑘𝑘 = 1, … ,𝐾𝐾. 

𝐡̆𝐡𝑘𝑘 ≅ 𝐡𝐡(𝑠𝑠; 𝐱𝐱) = �
𝐫𝐫𝑛𝑛

𝑠𝑠 − 𝑝𝑝𝑛𝑛
+ 𝐫𝐫0

𝑁𝑁

𝑛𝑛=1

. (2) 

B.  Proposed Methodology 
Now, consider a power electrical signal defined by 

𝑓𝑓(𝑡𝑡) ≅ 𝜓𝜓 + ��𝐴𝐴𝑛𝑛 cos(𝑛𝑛𝜔𝜔0𝑡𝑡 + 𝜃𝜃𝑛𝑛)
𝑁𝑁ℎ

𝑛𝑛=1

� + 

�� 𝐴𝐴𝑚𝑚 𝑒𝑒𝛼𝛼𝑚𝑚𝑡𝑡cos(𝜔𝜔𝑚𝑚𝑡𝑡 + 𝜃𝜃𝑚𝑚) + �𝐴𝐴𝑙𝑙𝑒𝑒𝛼𝛼𝑙𝑙𝑡𝑡
𝑁𝑁𝑟𝑟

𝑙𝑙=1

𝑁𝑁𝑐𝑐

𝑚𝑚=1

�. 

(3) 

The first bracket in equation (3) represents the harmonic 
components, with a fundamental frequency of 𝜔𝜔0 = 2𝜋𝜋𝑓𝑓0 
and where 𝐴𝐴𝑛𝑛 is the amplitude and 𝜃𝜃𝑛𝑛 is the phase for the 
nth component. Additionally, 𝜓𝜓  in (3) represents the DC 
offset. The second bracket in equation (3) considers the non-
harmonic components. These have a frequency of 𝜔𝜔𝑚𝑚 =
2𝜋𝜋𝑓𝑓𝑚𝑚  and a damping factor of 𝛼𝛼𝑚𝑚 , where 𝐴𝐴𝑚𝑚  is the 
amplitude and 𝜃𝜃𝑚𝑚 is the phase for the mth component. It also 
includes 𝑁𝑁𝑟𝑟  exponential functions of amplitude 𝐴𝐴𝑙𝑙  with a 
damping factor of 𝛼𝛼𝑙𝑙. 

The Laplace Transform of (3) can be expressed as 

𝐹𝐹(𝑠𝑠) = �
𝜓𝜓
𝑠𝑠
� + �

1
2
��

𝐴𝐴𝑛𝑛𝑒𝑒𝑗𝑗𝜃𝜃𝑛𝑛

𝑠𝑠 − 𝑗𝑗𝑗𝑗𝜔𝜔0
+
𝐴𝐴𝑛𝑛𝑒𝑒−𝑗𝑗𝜃𝜃𝑛𝑛

𝑠𝑠 + 𝑗𝑗𝑗𝑗𝜔𝜔0
�

𝑁𝑁ℎ

𝑛𝑛=1

� + 

�
1
2
� �

𝐴𝐴𝑚𝑚𝑒𝑒𝑗𝑗𝜃𝜃𝑚𝑚

𝑠𝑠 − 𝛼𝛼𝑚𝑚 − 𝑗𝑗𝑗𝑗𝑚𝑚
+

𝐴𝐴𝑚𝑚𝑒𝑒−𝑗𝑗𝜃𝜃𝑚𝑚

𝑠𝑠 − 𝛼𝛼𝑚𝑚 + 𝑗𝑗𝑗𝑗𝑚𝑚
� +

𝑁𝑁𝑐𝑐

𝑚𝑚=1

�
𝐴𝐴𝑙𝑙

𝑠𝑠 − 𝛼𝛼𝑙𝑙

𝑁𝑁𝑟𝑟

𝑙𝑙=1

�. 

(4) 

Equation (4) rewritten according to equation (1): 

𝐹𝐹(𝑠𝑠) = �
𝑟𝑟1
𝑠𝑠
� + ���

𝛾𝛾𝑛𝑛 + 𝑗𝑗𝜂𝜂𝑛𝑛
𝑠𝑠 − 𝑗𝑗𝑗𝑗𝜔𝜔𝑜𝑜

+
𝛾𝛾𝑛𝑛 − 𝑗𝑗𝜂𝜂𝑛𝑛
𝑠𝑠 + 𝑗𝑗𝑗𝑗𝜔𝜔𝑜𝑜

�
𝑁𝑁ℎ

𝑛𝑛=1

� + 

�� �
𝛾𝛾𝑚𝑚 + 𝑗𝑗𝜂𝜂𝑚𝑚

𝑠𝑠 − 𝛿𝛿𝑚𝑚 − 𝑗𝑗𝛽𝛽𝑚𝑚
+

𝛾𝛾𝑚𝑚 − 𝑗𝑗𝜂𝜂𝑚𝑚
𝑠𝑠 − 𝛿𝛿𝑚𝑚 + 𝑗𝑗𝛽𝛽𝑚𝑚

�
𝑁𝑁𝑐𝑐

𝑚𝑚=1

+ �
𝑟𝑟𝑙𝑙

𝑠𝑠 − 𝑝𝑝𝑙𝑙

𝑁𝑁𝑟𝑟

𝑙𝑙=1

�. 
(5) 

 
 

Equation (5) represents the rational approximation of VF 
for the signal defined in (3). The challenge here is to find and 
match each parameter of (3) and (5), considering (4), and to 
ensure VF convergence. 

To overcome this challenge, the Extended Vector Fitting 
(EVF) method, presented in [9], calculates a rational function 
by assuming that some poles are known (harmonic 
components) and others are unknown (non-harmonic 
components), resulting in the following expression: 

ℎ�𝑘𝑘 ≅ ℎ(𝑠𝑠;𝒙𝒙) = �
𝑟̆𝑟𝑛𝑛

𝑠𝑠 − 𝑝𝑝�𝑛𝑛
+ �

𝑟𝑟𝑛𝑛
𝑠𝑠 − 𝑝𝑝𝑛𝑛

+ 𝑟𝑟0.
𝑁𝑁2

𝑛𝑛=1

𝑁𝑁1

𝑛𝑛=1

 (6) 

where 𝑟̆𝑟𝑛𝑛 are the residues of the known poles 𝑝𝑝�𝑛𝑛 and 𝑟𝑟𝑛𝑛 
are the residues of the unknown poles, 𝑝𝑝𝑛𝑛 . However, the 
numerical implementation of EVF requires modifying the VF 
algorithm. 

The methodology proposed in this work consists of adding 
the magnitude and phase of a known harmonic base to the 
signals under study to ensure that VF converges to said 
harmonic base. During the parameter calculation stage, the 
added components are subsequently subtracted, yielding the 
desired harmonic estimation of the signals. 

A full-wave rectified sinusoidal signal with a frequency of 
𝑓𝑓0/2 and amplitude 𝐵𝐵 serves as the known harmonic base: 

𝑓𝑓𝑏𝑏(𝑡𝑡) = 𝐵𝐵𝑜𝑜 + �𝐵𝐵𝑛𝑛 cos(𝑛𝑛𝜔𝜔𝑜𝑜𝑡𝑡 + 𝜃𝜃𝑛𝑛)
𝑁𝑁ℎ

𝑛𝑛=1

 

With 𝐵𝐵𝑛𝑛 = � 4𝐵𝐵
𝜋𝜋(1−(2𝑛𝑛)2)

�  ,  𝐵𝐵0 = 2𝐵𝐵
𝜋𝜋

   and 𝜃𝜃𝑛𝑛 = 𝜋𝜋. 
(7) 

This harmonic base contains all harmonics of the 
fundamental frequency 𝑓𝑓0  and their phases of 𝜋𝜋  for all 
components. The behavior of 𝑓𝑓𝑏𝑏(𝑡𝑡)  for 𝑓𝑓0 = 50  Hz and 
𝐵𝐵 = 1  is shown in Fig.1a. Figs. 1b and 1c display the 
amplitude spectrum and phase spectrum, respectively.  

The Laplace Transform of the sum of (3) and (7) is  

𝐹𝐹�(𝑠𝑠) = �
𝜓𝜓 +  𝐵𝐵𝑜𝑜

𝑠𝑠
� + 

�
1
2
��

𝐴𝐴𝑛𝑛𝑒𝑒𝑗𝑗𝜃𝜃𝑛𝑛 + 𝐵𝐵𝑛𝑛𝑒𝑒𝑗𝑗𝜃𝜃𝑛𝑛

𝑠𝑠 − 𝑗𝑗𝑗𝑗𝜔𝜔0
+
𝐴𝐴𝑛𝑛𝑒𝑒−𝑗𝑗𝜃𝜃𝑛𝑛 + 𝐵𝐵𝑛𝑛𝑒𝑒−𝑗𝑗𝜃𝜃𝑛𝑛

𝑠𝑠 + 𝑗𝑗𝑗𝑗𝜔𝜔0
�

𝑁𝑁ℎ

𝑛𝑛=1

� + 

�
1
2
� �

𝐴𝐴𝑚𝑚𝑒𝑒𝑗𝑗𝜃𝜃𝑚𝑚

𝑠𝑠 − 𝛼𝛼𝑚𝑚 − 𝑗𝑗𝑗𝑗𝑚𝑚
+

𝐴𝐴𝑚𝑚𝑒𝑒−𝑗𝑗𝜃𝜃𝑚𝑚

𝑠𝑠 − 𝛼𝛼𝑚𝑚 + 𝑗𝑗𝑗𝑗𝑚𝑚
� +

𝑁𝑁𝑐𝑐

𝑚𝑚=1

�
𝐴𝐴𝑙𝑙

𝑠𝑠 − 𝛼𝛼𝑙𝑙

𝑁𝑁𝑟𝑟

𝑙𝑙=1

� . 

(8) 

The added harmonic base (7) allows VF to numerically 
converge to the harmonics. Finally, the signal parameters are 
calculated from the rational approximation of VF and 
subtracting the added basis considering (5) and (8): 

𝜓𝜓 = 𝑟𝑟1 − 𝐵𝐵𝑜𝑜
𝐴𝐴𝑛𝑛𝑒𝑒𝑗𝑗𝜃𝜃𝑛𝑛 = 2(𝛾𝛾𝑛𝑛 + 𝑗𝑗𝜂𝜂𝑛𝑛) − 𝐵𝐵𝑛𝑛𝑒𝑒𝑗𝑗𝜃𝜃𝑛𝑛

𝐴𝐴𝑚𝑚𝑒𝑒𝑗𝑗𝜃𝜃𝑚𝑚 = 2(𝛾𝛾𝑚𝑚 + 𝑗𝑗𝜂𝜂𝑚𝑚)
𝛼𝛼𝑚𝑚 = 𝛿𝛿𝑚𝑚
𝜔𝜔𝑚𝑚 = 𝛽𝛽𝑚𝑚.

 (9) 



 
Fig.1. (a) Full-wave rectified sinusoidal signal and its approximation by the Fourier series, (b) Amplitude spectrum and (c) Phase spectrum. 

 
An important advantage of this methodology is that by 

using the conventional VF algorithm, it is possible to identify 
the harmonic and non-harmonic components of multiple 
signals using common poles (2). It is possible to calculate the 
harmonic content of multiple signals accurately. 

C.  Implementation and iterative refinement 
The implementation of this methodology together with an 

iterative refinement could be summarized as follows (Fig.2): 
1) Calculate the FD representation of the signal or group 

of signals using the NLT. Experience has shown the 
NLT with the trapezoidal integration rule to be more 
accurate [10-11]. 

2) Define the number of harmonics to be calculated for 
the signal set, 𝑁𝑁ℎ . This value also determines the 
number of synthetic harmonics (7) to be added to the 
signal set. The frequency of the highest order harmonic 
defines the cut-off frequency for the data used in the 
rational approximation. 

3) Transform the components calculated in Equation (7) 
to the FD and add them to the NLT data. While the 
signals under study may or may not present all the 
harmonics of the aggregated base, this aggregated base 
allows forcing VF convergence.  

4) Define the number of poles according to the non-
harmonic components to be calculated from the signal 
group, 𝑁𝑁𝑛𝑛 = 2𝑁𝑁𝑐𝑐 + 𝑁𝑁𝑟𝑟 . The total order for the 
approximation will be the sum: 𝑁𝑁 =  2𝑁𝑁ℎ + 𝑁𝑁𝑛𝑛 + 1. 

5) Use the conventional VF algorithm to calculate the 
rational approximation of the data. At this stage, it is 
possible to implement an iterative refinement to obtain 
better accuracy. This refinement consists on: 1) At 
each iteration it is possible to round each pole 
calculated by VF with respect to the added basis, since 
these components are known to be present in the data, 
and 2) The order 𝑁𝑁𝑛𝑛 can be varied in each iteration, 
since it is not known how many are presented in the 
signals. 

6) Use the relative dominant pole measurement (RDPM) 
[8] to eliminate those poles that have no impact on the 
rational approximation. 

7) Finally, derive the signal parameters from the rational 
approximation of VF according to (9). 

 
Fig.2. Flowchart of the proposed methodology. 

III.  TEST CASES 

A.  Synthetic test signals 
The proposed methodology is first evaluated using the 

following set of synthetic signals: 

𝑓𝑓1(𝑡𝑡) = 1.1 +  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(2𝜋𝜋𝑓𝑓0𝑡𝑡) + 0.2𝑒𝑒−31𝑡𝑡 
+ 0.3𝑒𝑒−30𝑡𝑡 cos(2𝜋𝜋120𝑡𝑡) + 0.2 cos(2𝜋𝜋1275𝑡𝑡) 

𝑓𝑓2(𝑡𝑡) = 0.95 +  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(2𝜋𝜋𝑓𝑓0𝑡𝑡 + 120°) + 0.25𝑒𝑒−30𝑡𝑡  
+ 0.35𝑒𝑒−28𝑡𝑡 cos(2𝜋𝜋120𝑡𝑡) + 0.2 cos(2𝜋𝜋1275𝑡𝑡 + 120°) 

𝑓𝑓3(𝑡𝑡) = 1.2 +  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(2𝜋𝜋𝑓𝑓0𝑡𝑡 − 120°) + 0.28𝑒𝑒−30𝑡𝑡 
+ 0.38𝑒𝑒−32𝑡𝑡 cos(2𝜋𝜋120𝑡𝑡) + 0.2 cos(2𝜋𝜋1275𝑡𝑡 − 120°). 

(10) 

Where 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(2𝜋𝜋𝑓𝑓0𝑡𝑡)  represents a triangular wave of 
frequency, 𝑓𝑓0 . Each signal exhibits a different DC offset 
component, a triangular waveform out of phase by 120° with a 
fundamental frequency of 𝑓𝑓0 = 50  Hz, a different 
exponential function, a damped cosine at 120 Hz, and a cosine 
at 1275 Hz with amplitude of 0.2, also phase-shifted by 120°.  



The harmonic content of the signals is derived from the 
triangular waveforms whose harmonics occur at odd multiples 
of the fundamental frequency. The time step is Δ𝑡𝑡 = 10 µs, 
and the observation time is 𝑇𝑇 = 0.06s. The implementation of 
the proposed methodology to estimate the harmonic content of 
the signals (10) for 1 (fundamental component), 50 and 1000 
harmonics can now be described, along with the non-harmonic 
components. The value 𝑁𝑁 = 5 poles is established, consisting 
of 𝑁𝑁ℎ = 1 harmonic (corresponding to one pair of complex 
conjugate poles), 𝑁𝑁𝑛𝑛 = 2  poles plus 1 additional to 
approximate the test signals using only 1 harmonic 
(fundamental component) and some extra non-harmonic 
components, depending on whether VF converges to complex 
conjugate poles or purely real poles. The cut-off frequency for 
the frequency domain data is set to 100 Hz. 

The behavior of the synthetic test signals and their 
approximations are shown in Fig. 3a. Both steady-state and 
transient-state responses show an acceptable approximation. 
The rational approximations of the NLT data for each signal 
through VF, along with its respective deviations using the 
absolute errors calculation, are shown in Fig. 3b. Additionally, 
Fig. 3c displays the absolute error in the time domain for the 
approximation of 𝑓𝑓1(𝑡𝑡) including both harmonic and non-
harmonic components. The estimated amplitude spectrum, 
including the DC-offset and phase spectrum, are shown in Fig. 
4a and 4b, respectively. The proposed methodology accurately 
calculates the phases of the fundamental component of an 
electrical system. Fig. 4c illustrates the steady-state 
(fundamental and harmonic components) and the transient-
state (non-harmonic components) responses. 

Next, in accordance with the requirements of the IEEE 519 
standard [13], a second approximation using 50 harmonics is 
carried out. The value 𝑁𝑁 = 131  poles is established, 
consisting of 𝑁𝑁ℎ = 50  harmonics, 𝑁𝑁𝑛𝑛 = 30  poles plus 1 
additional pole to approximate the test signals using 100 
complex conjugate poles (harmonics), with the remaining 
poles allocated to the non-harmonic components. The cut-off 
frequency for the frequency domain data is 2500 Hz. Figs. 5 
and 6 present results similar to those in the previous case. In 
this case the TD approximation of the signals is more accurate, 
according to Fig. 5a and the absolute error shown in Fig. 5c. In 
this case, the cut-off frequency includes the frequency of the 
non-harmonic components in (10). Therefore, this estimation 
is more accurate, as shown in Fig. 5b. The amplitude spectrum 
and phase spectrum are shown in Fig. 6a and 6b, respectively, 
and Fig. 6c shows the steady-state and the transient-state 
responses. A clear separation of both responses is observed. 
To further verify the accuracy of the method in the presence of 
noise, the signals are contaminated with zero-mean Gaussian 
noise. A signal-to-noise-ratio (SNR) of 30 dB is used for each 
synthetic signal. The obtained results are shown in Figs. 7 and 
8 where an accurate estimation of the components is observed. 

Finally, the synthetic signals (10) are approximated using 
1000 harmonics, which fall within the range of 
supraharmonics. The value is set at 𝑁𝑁 = 2031 poles; that is, 
𝑁𝑁ℎ = 1000  harmonics, 𝑁𝑁𝑛𝑛 = 30  poles plus 1 additional. 
The cut-off frequency for the frequency domain data is 50,000 
Hz. Figs. 9 and 10 show the same results as for the previous 
cases. This approximation demonstrates a lower error level. 

 
Fig.3. (a) Synthetic test signals and their approximations, (b) NLT data and fitting deviations, (c) Absolute error for the approximation in TD of 𝑓𝑓1(𝑡𝑡). 

 
Fig.4. (a) Amplitude spectrum of the estimated harmonic components, (b) Phase spectrum, (c) Steady-state (SS) and transient-state (TS) responses. 



 
Fig.5. (a) Synthetic test signals and their approximations, (b) NLT data and fitting deviations, (c) Absolute error for the approximation in TD of 𝑓𝑓1(𝑡𝑡). 

 

 
Fig.6. (a) Amplitude spectrum of the estimated harmonic components, (b) Phase spectrum, (c) Steady-state (SS) and transient-state (TS) responses. 

 
Fig.7. (a) Synthetic test signals and their approximations, (b) NLT data and fitting deviations, (c) Absolute error for the approximation in TD of 𝑓𝑓1(𝑡𝑡). 

 

 
Fig.8. (a) Amplitude spectrum of the estimated harmonic components, (b) Phase spectrum, (c) Steady-state (SS) and transient-state (TS) responses. 

 



 
Fig.9. (a) Synthetic test signals and their approximations, (b) NLT data and fitting deviations, (c) Absolute error for the approximation in TD of 𝑓𝑓1(𝑡𝑡). 

 
Fig.10. (a) Amplitude spectrum of the estimated harmonic components, (b) Phase spectrum, (c) Steady-state (SS) and transient-state (TS) responses. 

 

B.  Speed control of an induction motor using a three-phase 
space vector (SV) PWM technique.   
This Simulink example demonstrates the open-loop speed 

control of an induction motor using the constant V/Hz 
principle and the space vector SV-PWM technique with a 
switching frequency of 𝑓𝑓 = 1980 Hz [14]. 

The start-up currents of the stator are analyzed over a time 
window 𝑇𝑇 = 0.4s with a base current of 18.725A and a 
constant speed reference. The time step is Δ𝑡𝑡 = 2 µs. The 
component estimation is performed using 50 harmonics of the 
fundamental frequency 𝑓𝑓0 = 60  Hz. The parameter set is 
𝑁𝑁 = 131; that is, 𝑁𝑁ℎ = 50, 𝑁𝑁𝑛𝑛 = 30 poles, and 1 additional 
pole to approximate the current signals using 50 harmonics 
and the rest for the non-harmonic components. The cut-off 
frequency for the frequency domain data is 3000 Hz. 

The behavior of the stator currents and their 
approximations are shown in Fig. 11a. The rational 
approximations of the NLT data for each current signal, along 
with their respective deviations calculated using absolute 
errors, are shown in Figure 11b. Additionally, Figure 11c 
illustrates the absolute error in the time domain (TD) for the 
approximation of phase A, including harmonics and non-
harmonics. The estimated amplitude and phase spectra are 
shown in Figs. 12a and 12b, respectively; Fig. 12c separately 
displays the steady-state (harmonic components) and the 
transient-state (non-harmonic components) responses. The 
results indicate that harmonic and non-harmonic components 
have been estimated with a high degree of accuracy. 

IV.  DISCUSSION 
The proposed methodology effectively calculates the 

harmonic and non-harmonic components of one or more 
signals by incorporating a known harmonic base. 

To demonstrate the contribution of this base and the effect 
of the proposed iterative refinement, a triangular signal will be 
employed, with an observation time of 𝑇𝑇 = 0.08 s, a time 
step of Δ𝑡𝑡 = 10 µs, and a fundamental frequency of 𝑓𝑓0 = 60 
Hz, whose harmonics are present in odd multiples of the 
fundamental frequency [15].  

Three tests are conducted to calculate 200 harmonics, 
including even and odd harmonics: 1) using VF in the NLT 
data of the signal, 2) using VF in the NLT data of the signal 
with the added harmonic base, and 3) using VF in the NLT 
data of the signal with the added harmonic base and iterative 
refinement (proposed methodology).  

Fig.13a shows the pole diagram obtained from the first test. 
Some poles converge to the odd harmonics but not to the even 
ones, which is to be expected due to the harmonic content of 
the signal. Fig. 13b presents the pole diagram obtained from 
the second test. The poles are closer to the added harmonic 
base but still exhibit inaccuracies. 

Finally, Fig. 13c displays the pole diagram obtained using 
the proposed methodology. The poles align with the 200 
harmonics, forcing VF to converge to the added base. This 
allows accurately calculating the signal components. 

 



 

 
Fig.11 (a) Stator currents and their approximations, (b) NLT data and fitting deviations, (c) Absolute error for the approximation in TD for phase A. 

 
 Fig.12. (a) Amplitude spectrum of the estimated harmonic components, (b) Phase spectrum, (c) Steady-state (SS) and transient-state (TS) responses. 

 

 
Fig.13. Rational approximation using VF in, (a) the NLT data of the signal, (b) the NLT data of the signal + the added base (c) the NLT data of the signal + the 

added base + iterative refinement. 
 

V.  CONCLUSIONS 
A precise methodology is presented for the estimation of 

harmonic components and non-harmonic components 
(subharmonics, interharmonics, and DC offset) in electrical 
systems.  

This methodology combines the NLT and VF methods with 
an approach that allows VF to converge to a harmonic base. 
The main conclusions are as follows:  

 
1) This methodology can simultaneously estimate the 

amplitude and phase of each harmonic component and 

the amplitude, damping, frequency, and phase of each 
non-harmonic component (subharmonic or 
interharmonic) and the DC offset contained in a signal 
or a signal set including noisy signals.  

 
2) Parameter identification achieves high accuracy due to 

the error level achieved by both the NLT and the 
conventional VF methods. 

 
3) This methodology can determine the phases of the 

fundamental component of a multiphase system, even 
in the presence of harmonics and non-harmonics. 



 
4) The examples validate the strong performance of the 

proposed metodology for a wide frequency range. 
 

5) This methodology is applicable in previously 
established frequency bands to carry out studies in 
only ranges of interest. 
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