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Abstract – Rational function-based approximations are widely 

used to model frequency-dependent effects on power system 
components. In transmission line (TL) modeling, for example, 
series impedance behavior can be synthesized using these models 
for time-domain simulations. Due to its characteristics, the 
rational approximation of this impedance can be carried out with 
only real poles. Two rational fitting techniques are considered 
and compared, ensuring real poles: Vector Fitting-Real Poles 
(VF-RP) and Taku Noda’s (TN) method. A fitting methodology 
based on residue calculation via Non-negative Least Squares 
(NNLS) is presented, which can be implemented in both fitters to 
obtain models that guarantee passivity. The advantages of the 
proposed methodology are demonstrated for (1) synthesizing the 
series impedance of a single-phase transmission line and (2) 
synthesizing the series impedance matrix of a three-phase double-
circuit horizontal transmission line, where the concept of 
common poles is also implemented. The results show that the 
proposed methodology makes it possible to guarantee the 
passivity of the impedance model. 
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I.  INTRODUCTION 
he frequency-dependent effects of power system 
components are synthesized and represented by rational 

function-based models obtained in the frequency domain 
through curve-fitting procedures [1-3]. These models are 
required to comply with a number of constraints associated 
with the behavior of physical systems: (1) stability, (2) 
realness, (3) reciprocity and (4) passivity. Constraints (1), (2) 
and (3) may be enforced by some existing rational fitting 
techniques and (4) is normally assessed and enforced by 
perturbation in a post-processing step [2, 4]. 

An important feature of the use of these models is that they 
can generally be associated with equivalent circuit 
representations [5]. Indeed, they have been used to represent 
an overhead transmission line (TL) directly in the time 
domain, incorporating the frequency dependence of the 
parameters caused by the skin effect and the ground-return 
effect [6-7]. Due to their nature, TL models can be synthesized 
using real poles only. It is possible to use rational fitting 
techniques that ensure rational approximation with real poles 
like Vector Fitting-Real Poles (VF-RP) [8] and Taku Noda’s 
(TN) method [9]. 

 
R. Mendoza-López, E.S. Bañuelos-Cabral, J.A. Gutiérrez-Robles and J.L. 
García-Sánchez are with the University of Guadalajara, México.  
H.K. Høidalen is with Norwegian University of Science and Technology, 
Norway.  
(e-mail of corresponding author: eduardo.banuelos@academicos.udg.mx ). 
Paper submitted to the International Conference on Power Systems Transients 
(IPST2025) in Guadalajara, Mexico, June 8-12, 2025. 

VF-RP is a methodology that slightly modifies the Vector 
Fitting (VF) procedure [10] to ensure a model with real poles 
and residues. It has been used to improve features of the 
Universal Line Model (ULM) [8] and the JMarti model [11], 
as well as for TL modeling in general [12-16]. The TN method 
was presented in [9] to synthesize a rational function-based 
model with real poles from tabulated frequency response data 
for TL impedance modeling. However, it could also be used to 
approximate smooth frequency responses with real poles. Both 
the VF-RP and TN methods deliver real poles and calculate 
the model’s residues by using a single-step Least Squares (LS) 
method. The authors therefore propose applying the Non-
negative Least Squares (NNLS) method, thus enabling passive 
cascade 𝜋𝜋-circuits that will take only energy from an external 
source.  

This paper begins with an overview of the theoretical 
background for including the frequency-dependent effects of 
TL’s modeling via cascaded 𝜋𝜋-circuits. Next, a description of 
the VF-RP and TN method is presented, followed by the 
implementation of NNLS to synthesize a model with positive 
parameters and thus guarantee its passivity. Then, the 
proposed methodology is demonstrated and the VF-RP and 
TN methods are compared in two test cases. Finally, the 
authors present their conclusions. 

II.  CASCADE 𝜋𝜋-CIRCUITS FOR INCORPORATING FREQUENCY-
DEPENDENT EFFECTS IN TL IMPEDANCE MODELING. 

As can be seen in Fig. 1, it is possible to use a cascade of 𝜋𝜋-
circuits with 𝑁𝑁 branches of 𝑅𝑅𝑅𝑅-circuit in parallel to include 
the frequency dependence of the TL parameters [5-6]. These 
𝜋𝜋-circuits are composed of resistors 𝑅𝑅0,𝑅𝑅1, … ,𝑅𝑅𝑁𝑁  and 
inductors 𝐿𝐿0,𝐿𝐿1, … , 𝐿𝐿𝑁𝑁 arranged in series of 𝑅𝑅𝑅𝑅-branches. The 
transversal parameters are composed of a lumped capacitance 
𝐶𝐶 and conductance 𝐺𝐺. These parameters can be expressed as, 

𝑅𝑅0 = 𝑅𝑅0′ �
𝑙𝑙
𝑚𝑚
�,  𝑅𝑅1 = 𝑅𝑅1′ �

𝑙𝑙
𝑚𝑚
�,  … 𝑅𝑅𝑁𝑁 = 𝑅𝑅𝑁𝑁′ �

𝑙𝑙
𝑚𝑚
�.  

𝐿𝐿0 = 𝐿𝐿0′ �
𝑙𝑙
𝑚𝑚
�,  𝐿𝐿1 = 𝐿𝐿1′ �

𝑙𝑙
𝑚𝑚
�,  … 𝐿𝐿𝑁𝑁 = 𝐿𝐿𝑁𝑁′ �

𝑙𝑙
𝑚𝑚
�. (1) 

𝐶𝐶 = 𝐶𝐶′ � 𝑙𝑙
𝑚𝑚
�,  𝐺𝐺 = 𝐺𝐺′ � 𝑙𝑙

𝑚𝑚
�,   

with 𝑙𝑙  being the length of the TL, 𝑚𝑚  the number of 𝜋𝜋-
circuits in cascade, and 𝑅𝑅0′ ,𝑅𝑅1′ , … ,𝑅𝑅𝑁𝑁′ , 𝐿𝐿0′ , 𝐿𝐿1′ , … , 𝐿𝐿𝑁𝑁′ ,𝐶𝐶′  and 
𝐺𝐺′  being the resistances, inductances, capacitance and 
conductance in per unit length (p.u.l.).  

The calculated frequency-domain samples of the series 
impedance:  �𝑠𝑠𝑘𝑘 ,𝑍𝑍�𝑘𝑘�  with 𝑍𝑍�𝑘𝑘 = 𝑍𝑍�(𝑠𝑠𝑘𝑘)  for 𝑠𝑠𝑘𝑘 = j𝜔𝜔𝑘𝑘 , 𝑘𝑘 =
1, … ,𝐾𝐾 can be approximated as, 

𝑍𝑍�𝑘𝑘 ≅ 𝑍𝑍(𝑠𝑠; 𝐱𝐱) = �
𝑠𝑠𝑅𝑅𝑛𝑛′

𝑠𝑠 + (𝑅𝑅𝑛𝑛′ 𝐿𝐿𝑛𝑛′⁄ ) + 𝑅𝑅0′ + 𝑠𝑠𝐿𝐿0′ .
𝑁𝑁

𝑛𝑛=1

 (2) 

T 
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Fig. 1. Representation of a TL by a cascade of 𝜋𝜋-circuits with N branches of 𝑅𝑅𝑅𝑅-circuit in parallel. 

 
In (2), 𝐱𝐱  represents a vector containing the model 

parameters for the rational approximation. 
It is possible to conveniently modify (2) as,  

𝑍̂𝑍𝑘𝑘 =
𝑍𝑍�𝑘𝑘 − 𝑅𝑅0′

𝑠𝑠
≅ �

𝑅𝑅𝑛𝑛′

𝑠𝑠 + (𝑅𝑅𝑛𝑛′ 𝐿𝐿𝑛𝑛′⁄ ) + 𝐿𝐿0′ .
𝑁𝑁

𝑛𝑛=1

 (3) 

With 𝑅𝑅0′ = 𝑅𝑅𝑑𝑑𝑑𝑑′ . This formulation offers advantages during 
the fitting process that are discussed below. 
𝑍𝑍(𝑠𝑠; 𝐱𝐱) in (2) comply with the necessary and sufficient 

conditions that a rational function must satisfy to be the 
impedance function of an RL circuit [17]: 

1) 𝑍𝑍(𝑠𝑠; 𝐱𝐱) is a positive real function. 
2) 𝑍𝑍(𝑠𝑠; 𝐱𝐱) has real poles on the negative real axis. 
3) 𝑍𝑍(𝑠𝑠; 𝐱𝐱) 𝑠𝑠⁄  has positive real residues (3). 
4) 𝑍𝑍(0) is either a positive constant or zero. 
Both VF-RP and TN methods provide simple and stable 

poles, fulfilling almost the entire task. They do not, however, 
guarantee positive residues, which may result in some 
elements of the model being negative when they should be 
positive. 

The constraint of positive residues will be incorporated by 
using Non-negative Least Squares (NNLS) and corroborated 
with the following relationship between poles (𝑝𝑝𝑁𝑁) and zeros 
(𝑧𝑧𝑁𝑁) of the rational approximation [17]:  

0 ≤ 𝑝𝑝1 < 𝑧𝑧1 < 𝑝𝑝2 < 𝑧𝑧2 < ⋯𝑝𝑝𝑁𝑁 < 𝑧𝑧𝑁𝑁 ≤ ∞. (4) 

III.  RATIONAL APPROXIMATION OF SMOOTH FREQUENCY-
DOMAIN RESPONSES WITH REAL POLES 

This section briefly presents the methodology of Vector 
Fitting-Real Poles (VF-RP) [8] and Taku Noda’s method [9], 
both proposed for obtaining rational approximations of smooth 
frequency-domain responses with real poles. 

A.  Vector Fitting-Real Poles (VF-RP) 
The conventional VF process [10] calculates a rational 

function-based model from measured or calculated frequency-
domain samples:  �𝑠𝑠𝑘𝑘 , ℎ�𝑘𝑘�  with ℎ�𝑘𝑘 = ℎ�(𝑠𝑠𝑘𝑘)  for 𝑠𝑠𝑘𝑘 = j𝜔𝜔𝑘𝑘 ,
𝑘𝑘 = 1, … ,𝐾𝐾. 

ℎ�𝑘𝑘 ≅ ℎ(𝑠𝑠; 𝐱𝐱) = �
𝑟𝑟𝑛𝑛

𝑠𝑠 − 𝑝𝑝𝑛𝑛
+ 𝑟𝑟0 + 𝑠𝑠ℎ0,

𝑁𝑁

𝑛𝑛=1

 (5) 

where 𝑟𝑟𝑛𝑛 are the residues, 𝑝𝑝𝑛𝑛 are the poles, 𝑟𝑟0 is a constant 
term, and ℎ0 is a proportional part. 

When smooth frequency responses are considered, such as 
the series impedance 𝑍𝑍�(𝑠𝑠𝑘𝑘) of a TL, the use of VF leads to a 
rational approximation with guaranteed stable poles; however, 
it may yield some complex conjugate poles and residues. 

VF-RP ensures a model with only real poles and residues 
based on the non-dominance property of the complex poles in 
smooth function approximations. In VF-RP, each complex 
pair of poles is replaced with two real poles separated by a 
distance 𝛿𝛿: 

𝑠𝑠 − (𝛾𝛾𝑛𝑛 ± 𝑗𝑗𝛽𝛽𝑛𝑛) → [𝑠𝑠 − (𝜔𝜔𝑛𝑛 + 𝛿𝛿)], [𝑠𝑠 − (𝜔𝜔𝑛𝑛 − 𝛿𝛿)]. (6) 

With 𝜔𝜔𝑛𝑛2 = 𝛾𝛾𝑛𝑛2 + 𝛽𝛽𝑛𝑛
2  and 𝛿𝛿 = 0.01, as recommended in 

[8]. Fig. 2 illustrates how even three or four poles could be 
considered in the replacement to avoid the possible increase in 
RMS error. The rationale for using this pole replacement 
strategy is that complex poles should not be dominant, and 
when they are, their behavior more closely resembles a 
repeated pair of real poles [8]. 

 
Fig. 2. Complex conjugate poles replaced by two, three, or four real poles. 

B.  Taku Noda’s method (TN) 
Based on a common ratio factor, α, this algorithm can 

calculate the pole position along the negative real axis of the 
complex plane in three different ways: A distribution with 
poles towards low frequencies with α > 1, a distribution with 
poles towards high frequencies with α < 1 , and an 
equidistant distribution with α = 1. 

The method can be described as follows. First, the 
logarithmic frequency range of interest is defined by the first 
and last frequency sample as, 

𝜑𝜑1 = 𝑙𝑙𝑙𝑙𝑙𝑙10(𝑓𝑓1) and 𝜑𝜑𝐾𝐾 = 𝑙𝑙𝑙𝑙𝑙𝑙10(𝑓𝑓𝐾𝐾). (7) 

With 𝑘𝑘 = 1, 2, … ,𝐾𝐾. Next, considering 𝑁𝑁 as the number of 
poles for the rational approximation and starting from the 
position of the first pole 𝜑𝜑1, the distance between 𝜑𝜑1 and the 
next pole, ∆𝜑𝜑1, is obtained by, 



if 𝛼𝛼 = 1, ∆𝜑𝜑1 = 𝜑𝜑𝐾𝐾−𝜑𝜑1
𝑁𝑁

, 

if 𝛼𝛼 ≠ 1,  ∆𝜑𝜑1 = (𝜑𝜑𝐾𝐾 − 𝜑𝜑1) � 1−𝛼𝛼
1−𝛼𝛼𝑁𝑁−1

�. 
(8) 

The following distances between poles are then calculated 
using, 

∆𝜑𝜑𝑛𝑛 = ∆𝜑𝜑1𝛼𝛼𝑛𝑛−1, 𝑛𝑛 = 1, 2, … ,𝑁𝑁. (9) 

According to the intervals obtained, the position of the 
poles in logarithmic frequency are, 

𝜑𝜑𝑛𝑛 = 𝜑𝜑1 + �∆𝜑𝜑1𝛼𝛼𝑛𝑛−1
𝑛𝑛−1

𝑛𝑛=1

. (10) 

Finally, the nth pole is given by, 

𝑃𝑃𝑛𝑛 = −2𝜋𝜋10𝜑𝜑𝑛𝑛 .  (11) 

In this work, the equidistant distribution with α = 1 is 
used, as recommended by the author in [9]. 

C.  Residue identification 
After pole identification, using either the VF-RP or TN 

method, the residues for the rational approximation (5) must 
be calculated by solving (5) as a Least Squares (LS) problem, 
𝐀𝐀𝐀𝐀 ≅ 𝐛𝐛, as follows: 

⎣
⎢
⎢
⎢
⎡

1
𝑠𝑠1 − 𝑝𝑝1

⋯
1

𝑠𝑠1 − 𝑝𝑝𝑁𝑁
1 𝑠𝑠

⋮ ⋱ ⋮ ⋮ ⋮
1

𝑠𝑠𝑘𝑘 − 𝑝𝑝1
⋯

1
𝑠𝑠𝑘𝑘 − 𝑝𝑝𝑁𝑁

1 𝑠𝑠⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝑐𝑐1
⋮
𝑐𝑐𝑁𝑁
𝑑𝑑
𝑒𝑒 ⎦
⎥
⎥
⎥
⎤
≅ �

𝐹𝐹(𝑠𝑠1)
⋮

𝐹𝐹(𝑠𝑠𝐾𝐾)
�.  (12) 

This system can be formulated into real quantities as,   

�Re(𝐀𝐀)
Im(𝐀𝐀)� 𝐱𝐱 ≅ �Re(𝐛𝐛)

Im(𝐛𝐛)�.  (13) 

Given an overdetermined system, 𝐀𝐀�𝐱𝐱 ≅ 𝐛̃𝐛 , where the 
objective function to be minimized is, 

𝐦𝐦𝐦𝐦𝐦𝐦
𝐱𝐱
�𝐀𝐀�𝐱𝐱 − 𝐛̃𝐛�

𝟐𝟐
. (14) 

The system’s solution satisfies the normal equations, 

 𝐀𝐀�t𝐀𝐀�𝐱𝐱 ≅ 𝐀𝐀�t𝐛𝐛.�  (15) 

Finally, the unconstrained LS solution is, 

𝐱𝐱 ≅ �𝐀𝐀�t𝐀𝐀��−1𝐀𝐀�t𝐛𝐛.�  (16) 

In the numerical implementation, column scaling is 
commonly used [1-3], with techniques such as QR 
decomposition [1-3] or SVD [9] also being proposed. 

IV.  RESIDUE IDENTIFICATION VIA NNLS 
Given the constraints imposed on the impedance model 

𝑍𝑍(𝑠𝑠; 𝐱𝐱) in Section II, a Constrained LS problem is formulated 
in which the residues must be positives. The problem to be 
solved for calculating the residues thus becomes, 

𝐦𝐦𝐦𝐦𝐦𝐦
𝐱𝐱
�𝐀𝐀�𝐱𝐱 − 𝐛̃𝐛�

𝟐𝟐
 subject to 𝐱𝐱 ≥ 𝟎𝟎. (17) 

This is a Non-negative Least Squares problem (NNLS) 
[18]. The algorithm implemented to solve this problem is 
described in [18-19] and presented in Table I, where the 
algorithm steps are divided into sections A, B, and C. The 
NNLS algorithm is available in MATLAB as lsqnonneg. 

Assuming a proper function in (5), there are 𝑁𝑁 inequality 
constraints according to (17). The nth constraint is active if the 
nth solution is negative or zero if solved by (16); otherwise, 
the constraint is considered non-active. 

NNLS is an active set algorithm based on the premise that, 
given a known active set 𝑄𝑄 (A.1), the solution to the LS 
problem is reduced to solving an unconstrained LS problem 
involving only the non-active variables, 𝑃𝑃  (A.2). The 
variables in the active set are constrained to zero. To find the 
solution, a stepwise manner LS algorithm is applied, 
beginning with a vector that satisfies the constraints (A.3). 
Based on the calculation of a gradient vector (A.4), the 
variables are identified in each step of the algorithm and 
moved from the active set 𝑄𝑄 to the non-active set 𝑃𝑃. 

After a finite number of iterations [18], the complete active 
set is found, and the solution is calculated by solving the LS 
problem of the unconstrained subset of variables. The optimal 
solution has been found when, 

𝑤𝑤𝑚𝑚 = 0, 𝑚𝑚 ∈ 𝑃𝑃 and 𝑤𝑤𝑚𝑚 < 0, 𝑚𝑚 ∈ 𝑄𝑄   (18) 

V.  TEST CASES 
In this section, two overhead line configurations are used to 

test the proposed methodology: 
1) Single-phase transmission line. 
2) Three-phase double-circuit horizontal transmission line. 

 
 

TABLE I 
NON-NEGATIVE LEAST SQUARES ALGORITHM 

Input: 𝐀𝐀� ∈ ℝ2𝐾𝐾×𝑁𝑁 and 𝐛̃𝐛 ∈ ℝ2𝐾𝐾 
Output: 𝐱𝐱 ∈ ℝ𝑁𝑁 subject to 𝐱𝐱 ≥ 𝟎𝟎 
 
A. Initialization 

     A.1: 𝑄𝑄 = {1,2, … ,𝑁𝑁} 
     A.2: 𝑃𝑃 = ∅  
     A.3: 𝐱𝐱 = 0 
     A.4: 𝐰𝐰 =  𝐀𝐀�t(𝐛̃𝐛 − 𝐀𝐀�𝐱𝐱) 

B. Main loop 

     B.1: Proceed if 𝑄𝑄 ≠ ∅ ∧ �max
𝑛𝑛∈𝑄𝑄

(𝑤𝑤𝑛𝑛) > 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� 

     B.2: 𝑚𝑚 = max
𝑛𝑛∈𝑄𝑄

(𝑤𝑤𝑛𝑛) 

     B.3: Include the index 𝑚𝑚 in P and remove it from Q 
     B.4: 𝐬𝐬𝑃𝑃 ≅ �(𝐀𝐀�𝑃𝑃)t𝐀𝐀�𝑃𝑃�

−𝟏𝟏(𝐀𝐀�𝑃𝑃)t𝐛̃𝐛 
      C. Inner loop 

           C.1: Proceed if min(𝐬𝐬𝑃𝑃) ≤ 0 
           C.2: 𝛼𝛼 = −min

𝑛𝑛∈𝑃𝑃
[𝑥𝑥𝑛𝑛 (𝑥𝑥𝑛𝑛 − 𝑠𝑠𝑛𝑛)⁄ ]  

           C.3: 𝐱𝐱: = 𝐱𝐱 + 𝛼𝛼(𝐬𝐬 − 𝐱𝐱)   
           C.4: Update Q and P 
           C.5: 𝐬𝐬𝑃𝑃 ≅ �(𝐀𝐀�𝑃𝑃)t𝐀𝐀�𝑃𝑃�

−𝟏𝟏(𝐀𝐀�𝑃𝑃)t𝐛̃𝐛 
           C.6: 𝐬𝐬𝑄𝑄 = 0 
         End C 
      B.5: 𝐱𝐱 = 𝐬𝐬  
      B.6: 𝐰𝐰 =  𝐀𝐀�t(𝐛̃𝐛 − 𝐀𝐀�𝐱𝐱) 
    End B 
 

 



A.  Single-phase transmission line. 
The line configuration is shown in Fig. 3a. This example 

was presented in [7] together with the methodology presented 
in Section II; where some elements such as negative 
resistances and inductances were reported. 

The behavior of the series impedance �𝑍𝑍�𝑘𝑘� with 𝐾𝐾 = 500 
samples is shown in Fig. 3b, and Fig. 4a shows the rational 
approximation results for 𝑍̂𝑍𝑘𝑘 (3) using the TN and VF-RP 
methods with 𝑁𝑁 = 30 poles. It can be observed that 𝑍̂𝑍𝑘𝑘 has 
a smoother behavior than 𝑍𝑍�𝑘𝑘, whose rational approximation 
results, shown in Fig. 4b, demonstrate that the fitting deviation 
calculated using the absolute error is better with VF-RP.  

The zero-pole diagram for the rational approximations of 
𝑍̂𝑍𝑘𝑘  using TN and VF-RP are shown in Figs. 5a and 5b, 
respectively. In this case, the VF-RP method satisfies the 
alternation condition in (4); the TN method does not. Fig. 6 
shows the same results as Fig. 4 but using NNLS for residue 
calculation.  

The zero-pole diagram in Fig. 7a reveals that 2 of the 30 
poles have been eliminated in the TN method, that is, their 
residues are zero and those poles can therefore be disregarded. 
Despite the elimination of these poles, the precision of the 
fitting remains quite similar, with the advantage that positive 
elements are obtained for the model. In the case of VF-RP 
using NNLS it remains the same, as seen in Fig. 7b. 

              
Fig. 3. (a) Single-phase transmission line configuration, (b) Behavior of the series impedance �𝑍𝑍�𝑘𝑘� of the single-phase transmission line. 

 

 
Fig. 4. (a) Rational approximation results for 𝑍̂𝑍𝑘𝑘 with TN and VF-RP method, (b) Rational approximation results for 𝑍𝑍�𝑘𝑘 with TN and VF-RP method. 

 

 
Fig. 5. (a) Zero-pole diagram for the rational approximation of 𝑍̂𝑍𝑘𝑘 with TN, (b) Zero-pole diagram for the rational approximation of 𝑍̂𝑍𝑘𝑘 with VF-RP.



 
Fig. 6. (a) Rational approximation results for 𝑍̂𝑍𝑘𝑘 with TN and VF-RP method using NNLS, (b) Rational approximation results for 𝑍𝑍�𝑘𝑘 with TN and VF-RP 

method using NNLS. 
 

 
Fig. 7. (a) Zero-pole diagram for the rational approximation of 𝑍̂𝑍𝑘𝑘 with TN using NNLS, (b) Zero-pole diagram for the rational approximation of 𝑍̂𝑍𝑘𝑘 with VF-

RP using NNLS. 
 

Next, Figs. 8 and 9 show the same results but using 𝑁𝑁 =
70 poles; residue calculation using NNLS eliminates 37 and 
35 poles for TN and VF-RP, respectively. This indicates that 
the rational approximation should be carried out using 
approximately 35 poles. This approach ensures that all the 
elements of the model 𝑍𝑍(𝑠𝑠; 𝐱𝐱) in (2) are positive, thereby 
guaranteeing model passivity. The zero-pole diagram for TN 
method and VF-RP are shown in Fig. 9a and 9b, respectively. 
Fig. 9b also shows the poles to which the conventional VF 
algorithm converges, with some real and others complex. 
Based on this result, VF-RP is applied where each pair of 
complex conjugate poles is replaced by two real poles. 

Finally, the energization of open-circuited line is tested 
using the ATPDraw and ATP-EMTP. The line is energized 
from a 1 p.u. voltage source behind an impedance of 𝑅𝑅𝑠𝑠 =
0.5 Ω and 𝐿𝐿𝑠𝑠 = 0.03 H and with ∆𝑡𝑡 = 0.5 μs.  

Fig. 10 presents the voltage at the receiving end using: 1) 
The JMarti-ATP model, 2) a cascade of 10 𝜋𝜋-circuits with 33 
branches for TN-NNLS, and 3) a cascade of 10 𝜋𝜋-circuits with 
35 branches for VF-RP-NNLS.  

These results show that simulations using the cascades of 
𝜋𝜋-circuits are very accurate and they are carried out using only 
positive 𝑅𝑅, 𝐿𝐿, and 𝐶𝐶 elements. 

 

 
Fig. 8. (a) Rational approximation results for 𝑍̂𝑍𝑘𝑘 with TN and VF-RP method using NNLS and 𝑁𝑁 = 70, (b) Rational approximation results for 𝑍𝑍�𝑘𝑘 with TN 

and VF-RP method using NNLS and 𝑁𝑁 = 70. 



 
Fig. 9. (a) Zero-pole diagram for the rational approximation of 𝑍̂𝑍𝑘𝑘 with TN using NNLS and 𝑁𝑁 = 70, (b) Zero-pole diagram for the rational approximation of 

𝑍̂𝑍𝑘𝑘 with VF-RP using NNLS and 𝑁𝑁 = 70. 
 

 
Fig. 10. Voltage at receiving end for the single-phase transmission line configuration using: 1) The JMarti-ATP model, 2) a cascade of 10 𝜋𝜋-circuits with 33 

branches for TN-NNLS and 3) a cascade of 10 𝜋𝜋-circuits with 35 branches for VF-RP-NNLS. 
 

 

B.  Three-phase double-circuit horizontal transmission 
line. 

The line configuration is shown in Fig. 11a. This example 
was presented in [8] together with the VF-RP methodology to 
improve the computational efficiency of the Universal Line 
Model. 

The behavior of the series impedance matrix �𝒁𝒁�𝑘𝑘� with 
𝐾𝐾 = 500 samples is shown in Fig. 11b and in Fig. 12a the 
corresponding for 𝒁𝒁�𝑘𝑘. In Fig. 12b is shown the trace fitting of 
𝒁𝒁�𝑘𝑘 with TN and VF-RP method using NNLS and 𝑁𝑁 = 50. 

This enables the use of common poles [20] for each matrix 
element. The trace of 𝒁𝒁�𝑘𝑘 clearly exhibits smooth behavior, 
and the fitting deviation calculated using absolute error is 
lower with VF-RP. 

Figure 13a and 13b depict the zero-pole diagrams for the 
rational approximations of the trace of 𝒁𝒁�𝑘𝑘 using TN, VF-RP, 
and NNLS. 

Both TN method and VF-RP methods satisfy the 
alternation condition established in (4). Residue calculation 
using NNLS eliminates 19 poles for the TN method and 14 for 
the VF-RP method. 

Finally, Figs. 14a and 14b show the rational approximation 
results for the TN and VF-RP methods using NNLS and 
common poles for 𝒁𝒁�𝑘𝑘 and 𝒁𝒁�𝑘𝑘, respectively. 

After pole identification based on the trace, each set of 
residues must be calculated for each element of the matrix 𝒁𝒁�𝑘𝑘. 
NNLS is employed once more, and some residues may be 
eliminated due to their zero values, leading to the removal of 
corresponding poles.  

Finally, Table II and Table III list the number of removed 
poles for each element of the matrix (𝒁𝒁�𝑘𝑘) of the 31 and 36 
that remained in the case of TN and VF-RP methods, 
respectively. 

  
TABLE II 

NUMBER OF REMOVED POLES FOR EACH ELEMENT OF THE MATRIX (𝒁𝒁�𝑘𝑘) FOR 
TN-NNLS 

2 3 3 3 3 3 
3 2 3 3 3 3 
3 3 2 3 3 3 
3 3 3 2 3 3 
3 3 3 3 2 3 
3 3 3 3 3 2 

 
TABLE III 

NUMBER OF REMOVED POLES FOR EACH ELEMENT OF THE MATRIX (𝒁𝒁�𝑘𝑘) FOR 
VF-RP-NNLS 

1 0 1 1 1 1 
0 1 0 2 1 1 
1 0 1 1 2 2 
1 2 1 1 1 0 
1 1 2 1 1 1 
1 1 2 0 1 1 



             
Fig. 11. (a) Three-phase double-circuit horizontal transmission line configuration, (b) Behavior of the series impedance matrix for 𝒁𝒁�𝑘𝑘. 

 
Fig. 12. (a) Behavior of the series impedance matrix for 𝒁𝒁�𝑘𝑘, (b) Rational approximation results for the trace of 𝒁𝒁�𝑘𝑘 with TN and VF-RP method using NNLS 

and with 𝑁𝑁 = 50. 

 
Fig. 13. (a) Zero-pole diagram for the rational approximation for the trace of 𝒁𝒁�𝑘𝑘 with TN using NNLS and 𝑁𝑁 = 50, (b) Zero-pole diagram for the rational 

approximation for the trace of 𝒁𝒁�𝑘𝑘 with VF-RP using NNLS and with 𝑁𝑁 = 50. 

 
Fig. 14. (a) Rational approximation results for 𝒁𝒁�𝑘𝑘 with TN and VF-RP method using NNLS and common poles, (b) rational approximation results for 𝒁𝒁�𝑘𝑘 with 

TN and VF-RP method using NNLS and common poles. 



VI.  DISCUSSION 
The presented methodology for obtaining a passive model 

of the transmission line impedance (𝑍𝑍�𝑘𝑘) is based on a correct 
problem statement, which means, the correct use of the 
rational fitting techniques. Please consider that the series 
impedance can be approximated as 

𝑍𝑍�𝑘𝑘 ≅ �
𝑠𝑠𝑅𝑅𝑛𝑛′

𝑠𝑠 + (𝑅𝑅𝑛𝑛′ 𝐿𝐿𝑛𝑛′⁄ ) + 𝑅𝑅0′ + 𝑠𝑠𝐿𝐿0′ .
𝑁𝑁

𝑛𝑛=1

 (19) 

It is possible to modify (19) to 

𝑍𝑍�𝑘𝑘 ≅ �
−�𝑅𝑅𝑛𝑛

′ 2

𝐿𝐿𝑛𝑛′
�

𝑠𝑠 + (𝑅𝑅𝑛𝑛′ 𝐿𝐿𝑛𝑛′⁄ ) + (𝑅𝑅0′ + 𝑅𝑅1′ + 𝑅𝑅2′ …𝑅𝑅𝑁𝑁′ ) + 𝑠𝑠𝐿𝐿0′ .
𝑁𝑁

𝑛𝑛=1

 (20) 

Please note that VF (5) can be directly used to carry out the 
rational approximation of 𝑍𝑍�𝑘𝑘 given the model in (20) where 
the residues must be negative. 

Instead, (19) can easily be modified to 

𝑍̂𝑍𝑘𝑘 =
𝑍𝑍�𝑘𝑘
𝑠𝑠
≅ �

𝑅𝑅𝑛𝑛′

𝑠𝑠 + (𝑅𝑅𝑛𝑛′ 𝐿𝐿𝑛𝑛′⁄ ) +
𝑅𝑅0′

𝑠𝑠
+ 𝐿𝐿0′ .

𝑁𝑁

𝑛𝑛=1

 (21) 

Although the second term on the right in (21) is not 
considered in VF, since it is a known parameter (21) can be 
modified to 

𝑍̂𝑍𝑘𝑘 =
𝑍𝑍�𝑘𝑘 − 𝑅𝑅0′

𝑠𝑠
≅ �

𝑅𝑅𝑛𝑛′

𝑠𝑠 + (𝑅𝑅𝑛𝑛′ 𝐿𝐿𝑛𝑛′⁄ ) + 𝐿𝐿0′ .
𝑁𝑁

𝑛𝑛=1

 (22) 

In this case, division by s also allows obtaining a function 
with smooth behavior (𝑍̂𝑍𝑘𝑘) and being fitted with real poles 
and implementing NNLS to calculate positive residues. 

VII.  CONCLUSIONS 
This paper presented the implementation of the NNLS 

method to synthesize a rational function-based model with 
positive parameters (resistors, inductances, and capacitances) 
and thus guarantee its passivity. The main findings are: 

 
1) Both the VF-RP and TN methods achieve acceptable 

fitting deviations for the series impedance 
approximation of a TL using real poles. However, they 
do not guarantee that residue calculations are positive, 
nor do they guarantee positive elements as a result. 

2) The fitting deviations for the rational approximations 
presented using VF-RP were better than those obtained 
using the TN method. 

3) The NNLS method can be used in both VF-RP and TN 
fitting techniques.  

4) In the case of the TN method, more pole-residue pairs 
are eliminated compared to VF-RP when NNLS is 
implemented to obtain positive residues. 

5) In matrix fitting, the trace concept can be also used to 
obtain common poles for the rational approximation 
using this methodology. 
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