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Abstract—This work proposes a fast, accurate, and numerically 

efficient algorithm using the partial subconductor division method 

to estimate the frequency-dependent parameters of electrical 

power cables with non-axial cross-section. The computer execution 

time is drastically reduced while maintaining a high numerical 

accuracy by scaling the subconductor dimensions and 

compensating the error introduced by the shape of the 

subconductor. 

Finally, the results are validated through Schelkunoff’s coaxial 

transmission line theory for a concentric cable and with the finite 

element method interfacing boundary layer properties between 

insulator/conductor for a segmental three-phase cable. 
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I.  INTRODUCTION 

ew power cable technologies require continuous 

innovation in design techniques to face the modern 

industry challenges in renewable energy projects. To support 

the growing electrical power demand, each day more wind 

farms are installed offshore and transmit electrical energy to the 

mainland using submarine power cables to connect high-

voltage direct current (HVDC) converters [1-5]. Some of the 

new technologies in power cables are based on segmental, 

sectorial or umbilical geometries, and the pipe trench where 

these are installed combines power cables, optical fiber for 

communications, ground conductors, and linking pilot cables of 

highway bridges. Unfortunately, no well-accepted routine or 

methodology is available in EMTP-type software to estimate 

electrical parameters in per unit length (pul) of the series-

impedance (Z) for these new power cable geometries [6-15]. In 

most EMTP-type software, the studies are typically restricted to 

concentric cables that often already have predefined 

configurations and specific datasets for conductor parameter 

settings [16]. 

Given these constraints, one alternative is to partition the 

original image of the cable into several subconductors with a 

much smaller cross-section, utilizing simple geometrical shapes 

such as squares, circles, or rectangles. When combined with 

modern computer resources, this approach can offer promising 

possibilities [17-28]. This approach also allows to select certain 

parameters of the algorithm, such as the discretization 

resolution, the shape of the subconductor, or include the skin 

and proximity effects in the model. 
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On the other hand, there is specialized software designed 

primarily for solving electromagnetic field problems. One such 

method is the finite element method (FEM), which operates like 

a black box and often requires guidance from experienced users 

[29-35]. Therefore, having alternative methods to estimate 

electrical parameters of non-axial cables can be a promising 

option for EMTP-type software. 

However, the spatial discretization of a cross-section cable, 

e.g. the resolution as a function of the skin-effect depth, and the 

necessary refinements of a subconductors partition (a type of 

optimization process) results in a substantial increase in 

computational burden, which in consequence can make the 

process very long and time-consuming [17-27]. It is probably 

because of this drawback, that the subconductor partition 

algorithms are seldom studied or used to estimate electrical 

parameters of power cables with non-axial cross-section for 

electromagnetic transient or harmonic analysis. 

This paper presents a fast and accurate subconductor 

partition algorithm to estimate the frequency dependent 

impedance of electrical cables. The MATLAB [36] 

implemented algorithm scales the subconductor dimensions 

and compensates the error introduced by the shape of the 

subconductor to reduce the computer execution time as the 

number of subconductors increases [22-26]. 

II.  SUBCONDUCTOR PARTITION FORMULATION 

In subconductor partition algorithms, the voltages Vn and 

currents In are related through the well-known First Telegrapher 

Equation, which describes the voltage and current relation of a 

transmission system through the following square matrix 

system 
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where Nsubc is the number of subconductors [8, 17]; Rnn and Lnn 

in the main diagonal are the self-resistive and self-inductive 

components related to the skin effect; Lnm is the magnetic flux 

coupling between conductors; and all parameters in (1) are 

defined in per unit length (pul) [9-15]. 

III.  SCALING THE SUBCONDUCTOR DIMENSIONS 

The subconductor dimensions are scaled on the assumption 

that processing a spatially reduced cable with fewer 

subconductors is more computationally efficient than handling 

the cable in its original size. This method reduces the 

computational demands and processing time by proportionally 

decreasing the dimensions of the cross-section of a cable while 

maintaining high accuracy. 

As a graphical example, the left-hand side of Fig. 1 shows 

an electrical cable in its original size, and the right-hand side of 

Fig. 1 shows the scaled 2:1 version; both are partitioned in 

square-shape subconductors. When choosing a resolution of 8 

sub/in, the conductor subdivision method requires 10s of 

computer execution time, whereas when using the scaled 

version, it only requires 1s. The root mean square error (RMSE) 

when using the conductor subdivision method with the cable in 

its original size is 0.015Ω for R and approximately 0.008H for 

L, whereas when using the scaled version, the values are 

0.013Ω for R and approximately 0.005H for L. On the other 

hand, the correlation index for the conductor subdivision 

method with the cable in its original size is 0.3 for R and 

approximately 0.6 for L, whereas for the scaled version is nearly 

0.5 for R and 0.75 for L. For the RMSE and correlation index, 

the reference data is taken from an analytical simulation using 

Schelkunoff’s theory [16]. 

 

A.  Geometric scaling of the cross-section of a cable 

In subconductor partition algorithms it is considered that the 

current density is uniformly distributed in each of the 

subconductors [17-20]. The numerical computation of R and L 

for the ith subconductor, applying the corresponding scaling 

factor, is related to the analytical formulas described in [16] 

with the following parameters 
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Fig. 1 Coaxial electrical cable with the a 2:1 scaled version 

 

where i is the conductor material resistivity, Ai is the area of 

the ith subconductor, and the proportional variation of the 

resistance is based on the following scaled relation 

 

𝐴´𝑖  = 𝐴𝑖  𝑆𝑓,   (3) 

where Sf is the scaling factor. 

In addition, the following relation between the cable radius a, 

that in this case is also the fictitious ground-return, and the 

geometric mean distance gmdi of the ith subconductor is 

satisfied proportionally according to [8, 17] 
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where the terms in the right hand-side are related to the scaled 

cable. Preserving equal proportions for the inductances, we 

have [17-23] 
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where Lii is the self-inductance (H/m) of the ith subconductor, 

Lij is the mutual inductance (H/m) between the ith and the jth 

subconductors, and 0 is the vacuum permeability. For the real-

size conductor in the left-hand side of Fig. 1, gmdi is the 

geometric-mean distance of the ith subconductor and gmdij is the 

geometric-mean distance between the ith and the jth 

subconductors. For the scaled-size conductor in the right-hand 

side of Fig. 1, gmdi’ is the geometric-mean distance of the ith 

scaled subconductor and gmdij’ is the geometric-mean distance 

between the ith and the jth scaled subconductors. 

Among the main features of the computer performance of an 

algorithm is the complexity, accuracy, and execution time [36]. 

In typical analyses of electromagnetic transients or harmonic 

induction studies, the matrix system in (1), with frequency-

dependent electrical parameters represented by 

Z()=R()+jL(), has to be solved at least 1,000 times for a 

voltage response observation time of 1ms, sampled at 1s; this 

is related to the expression [36-38] 

𝑁 =
𝑇𝑜𝑏𝑠

∆𝑡
,   (7) 

 

where N is the number of samples, Tobs is the time observation 

window and t is the sampling time-step. 

Table 1 shows the estimated values of R and L with the 

Schelkunoff’s theory [16], the conductor subdivision algorithm 

in [8, 17], and the proposed scaled subconductor partition 

algorithm using 5 frequency samples between 10Hz<f<100kHz 

and a 16 sub/in resolution implemented in MATLAB [36]. 

Fig. 2 shows a qualitative and quantitative accuracy analysis 

of the proposed technique as a function of the subconductor 

resolution; note that Table I shows a particular case of Fig. 2 

when the resolution is 16 sub/in. 



TABLE I 
 

RESISTANCES AND INDUCTANCES OF THE CURRENT LOOP BETWEEN CORE 

AND SHEATH OF THE CONCENTRIC CABLE FOR A RESOLUTION OF 16 SUB/IN 
 

Parameter 
f 

(Hz) 
Schelkunoff 

Conductor 

Subdivision 

Proposed 

algorithm 

R(mΩ/km) 

10 416.1 421.4 420.1 

100 422.2 426.8 425.4 

1k 471.6 469.7 470.5 

10k 644.8 645.4 643.2 

100k 1835.0 1826.0 1833.6 

L(mH/km) 

10 0.1397 0.1392 0.1393 

100 0.1350 0.1359 0.1335 

1k 0.1142 0.1154 0.1150 

10k 0.1065 0.1073 0.1069 

100k 0.1026 0.1043 0.1035 

 

 

 
 

 

Fig. 2 Qualitative and quantitative accuracy analysis of the conductor 

subdivision algorithm in [8, 17] and the proposed scaled subconductor partition 

algorithm as a function of the resolution: a) correlation index and b) RMSE 

[34]. 

 

 
 

Fig. 3 Computer execution time as a function of the subconductor resolution. 

 

 

The results in Fig. 2a are quantitative because the correlation 

factor is an index that represents how much the data vector of 

the proposed scaled subconductor partition algorithm is similar 

to the data vector of the conductor subdivision algorithm in [8, 

17]. In the optimal case the two vectors are orthogonal and their 

inner or dot product equals 0, which means they are identical 

and their correlation index is 1. 

The results in Fig. 2b are qualitative because the RMSE 

yields a number relative to the accuracy of the proposed scaled 

subconductor partition algorithm to the conductor subdivision 

algorithm in [8, 17]. As can be seen, the proposed algorithm has 

an RMSE slightly lower than that of the conductor subdivision 

method for all the resolution range. 

On the other hand, the results in Fig. 3 compare the computer 

execution time for different resolution values of the proposed 

scaled subconductor partition algorithm and the conductor 

subdivision algorithm. As can be noticed, the computer 

execution time is always lower for the proposed algorithm, and 

the difference at high resolutions is higher than one order of 

magnitude. The results in Fig. 3 were obtained using a Windows 

64-bit PC with an Intel® Core™ i-7 3770 CPU @ 3.40GHz and 

16 GB of RAM. 
 

B.  Compensation of the Error Because of the Shape of a 

Subconductor 

Additionally, to scaling the subconductor partition, the shape 

of the subconductor presents an error that has to be 

compensated. Consider Fig. 4a that presents the superposition 

of circular subconductors over square ones with a resolution of 

4 Sub/in across the transversal section of a cable; the error area 

between the two shapes is plotted in Fig. 4b as a function of the 

resolution. The figure shows that the error decreases as the 

resolution increases, indicating that, at high resolutions, it is 

less critical whether to use subconductors with square or 

circular shape. 

a. Square Shape 

To estimate the resistance and inductance of a square shape 

subconductor, the approximate formulation is [16-26, 30] 

𝑅𝑑𝑐𝑖
=

𝜌𝑖

𝐴𝑖
   (8) 

𝐿𝑖𝑖 =
𝜇0

2𝜋
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𝑎
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2𝜋
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𝑎

𝐷𝑖𝑗
)  ,  (10) 

where 𝑎  is the fictitious common return that encloses the 

external radius of the conductor, 𝐷𝑖 = 0.44705𝑙, and 

 

𝐷𝑖𝑗 = 𝑙𝑛 (𝑔𝑚𝑑𝑖𝑗) =
1

𝐴𝑖𝐴𝑗
∫

 

𝐴𝑖
∫

 

𝐴𝑗
𝑙𝑛 (𝜏) 𝑑𝐴𝑖𝑑𝐴𝑗 (11) 

where 𝐴𝑖 is the area of each subconductor in square inches, and 

𝑙 is the length of a square subconductor, as shown in Fig. 4b. 

 

Since 𝐷𝑖𝑗  is hard to compute, the following expression is used 

 

𝐷𝑖𝑗  = √(𝑥2
2 − 𝑥1

2) + (𝑦2
2 − 𝑦1

2)  ∗ 1.065          (12) 

 

b. Circular Shape 

The self and mutual inductances and the gmd for circular sub 

conductors are equivalent to [21-28] 
 



 
 

Fig. 4. Discretization superposition using circular and square shapes with 4 

Sub/in. a) Discretized image. b) Error of both shapes at six different resolutions. 
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2𝜋
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𝐷𝑖𝑞𝐷𝑗𝑞

𝐷𝑞𝐷𝑖𝑗
)   (14) 

 

where Diq is the mutual gmd between two circles, and for one 

circle is 𝐷𝑖 = 𝑟𝑖𝑒
−µ𝑖/4 with 𝜇

𝑖
= 1. 

To use circular sub conductors instead of square ones in the 

image of Fig. 4a, two types of errors have to be compensated. 

The first one is due to the differences in the area between a 

circular and a square subdivision as a function of the resolution 

(plot in Fig. 4b). This is corrected using the error formula shown 

in Fig. 4b, which represents the error between a square and a 

circle. The second one is due to the use of the approximate 

formula (12) for calculating the gmd of square-shaped 

subconductors [21-28, 31, 33]. 

This error is corrected using Diq and Di instead of (12) when 

circular-shaped subconductors are employed. According to [22-

25], all subconductors inherently introduce this type of error 

except for the case of two adjacent circular subconductors. 

The impact of compensating this error is shown in Fig. 5 for 

a spatial resolution of 20 sub/in for the R and L loop impedances 

formed between the sheath and core of the cable in Fig. 4a; the 

results are obtained from the analytical solution using 

Schelkunoff’s theory, the proposed algorithm with square 

subconductors, and the proposed algorithm with circle 

subconductors compensating the shape error. 

From Fig. 5a, the correction of R indicates that the resistance 

increases as the area of the subconductor decreases, in 

agreement with (8) [22-25]. This verifies that the calculation of 

R using circular subconductors with error correction is closer to 

the analytical solution than the one achieved using square 

subconductors. 

Fig. 5b shows a similar behavior when using circular 

subconductors and compensating the error to calculate L, 

comparing the results against the analytical Schelkunoff’s 

solution [22-26]. The results indicate that the magnetic flux 

inside the circular subconductors is slightly higher in magnitude 

than the one in the square-shaped ones. This occurs when the 

geometric size of the subconductor is lower than or equal to the 

width of 𝛿 ≈ √𝜌 𝑓⁄  at a given frequency [22]. 

IV.  PARAMETER ESTIMATION FOR SEGMENTAL CABLES 

For concentric power cables, the electrical parameters are 

calculated according to Schelkunoff’s theory for a determined 

number of time-frequency samples in the Laplace domain [21-

24, 25, 37, 38]. However, Schelkunoff’s theory cannot be used 

when the physical geometry of a three-phase electrical power 

cable is segmental, as the one shown in Fig. 6 with the material 

properties given in Table II. 

Thus, the electrical parameters have to be estimated using 

other means when searching for validation, for example, 

numerical methods. Since no analytical solution is available for 

segmental cables, the FEM is implemented in the professional 

software COMSOL [29] to validate the proposed scaled 

algorithm with shape error correction. In addition, and for 

illustrative purposes, Fig. 7 shows a 3D view of the bitmap 

image implemented in MATLAB [36] of the segmental 

electrical cross-section power cable in Fig. 6 [22]. 

As can be observed in this figure, the pixel information of 

each of the segmental nuclei and the external sheath 

subconductor components can be easily identified, giving an 

idea of the number of subconductors used to process the given 

data at a specific resolution; for this numerical representation 

we use a resolution of 46 sub/in. 

 

 

 
 
Fig. 5. Loop impedance between the core and sheath of cable in Fig. 5a using a 

resolution of 20 sub/in. a) resistance and b) inductance. 

 
TABLE II 

CONDUCTOR PARAMETERS FOR POWER SEGMENTAL CABLE 

 

Conductors 
σ 

(s/mm) 
µr 

Core (each) 58000 − 

External sheath 1100 − 

Insulator 0 1 

 



 
Fig. 6. Three-phase segmental cable cross-section. 

 

The edges of the three core conductors in fig. 7 are 

represented in red, orange, and green colors, while the dielectric 

materials of the internal and external insulators of the cable are 

represented in blue color. 

When using an FEM, meshing is one of the fundamental 

steps in the simulation process, as the results are highly 

dependent on the appropriate number of elements used. 

Selecting an excessively refined mesh can lead to a significant 

increase in computational resource usage, making the mesh 

inefficient and resulting in longer computer execution times; 

conversely, a low-resolution mesh can produce inaccurate 

results. 

In areas where electromagnetic quantities vary significantly, 

such as currents and flux densities, refining the mesh is 

essential. The number of elements in the mesh is determined 

based on the skin depth and the frequency range of the 

parameters. The mesh depicted in Fig. 8 was created using the 

boundary layer meshing technique comprising 13,368 elements 

at a test frequency f of 60 kHz, and is applied to each core 

conductor considering the resistivity of the material and the 

depth of the skin effect  (m) calculated using [13-15, 28] 

 

𝛿 ≈ 503 ∙ √
𝜌

𝑓
   (15) 

The intensity of the magnetic flux in each core conductor of the 

cable is obtained exciting the three cores at the same time with 

a potential of 1V. In this case, the return current is negative and 

its magnitude is equivalent to the sum of the three core 

conductor currents. The distribution of the magnetic flux 

density at a frequency of 60kHz is shown in Fig. 9, where it is 

evident that, because of the shape of the core conductors, the 

magnetic flux density is confined into the outer sheath of each 

core conductor of the cable; this is a particular behavior of the 

combination of skin and proximity effects in the conductors. 

Fig. 10 shows the loop resistances and inductances for the 

self and mutual components between the cores and the sheath 

of the segmental cable applying the proposed scaled algorithm 

with circular and square subconductors, against the FEM [22, 

29]; the shape error compensation formulas are used when 

partitioning in circular subconductors. 
 

 
 

Fig. 7. Illustrative 3D view of the bitmap image of the segmental cable. 

 

 
 

Fig. 8 Mesh generated with FEM using COMSOL using boundary layer 

meshing with 13368 elements for the segmental cable in Fig. 8. 

 

 
 

Fig. 9 Magnetic flux density distribution at 60kHz obtained with FEM [34]. 

 

As can be seen in Fig. 10a, the magnitude of the loop-

resistance increases with the frequency because the effective 

area of the current density is reduced accordingly to the skin 

and proximity effects. On the other hand, in Fig. 10b the 

magnitude of the loop-inductance decreases with the frequency 

because the magnetic flux is reduced as the effective area of the 

current density in the conductor decreases [24-27]. It can be 

seen from Fig. 10 that the conductor subdivision method, for 

circular and square shapes, and the FEM-based results are in 

good agreement for the self and mutual resistances and 

inductances. The relative error for the self and mutual loop-

impedance for six samples, each one a decade apart and inside 

the frequency range 1Hz<f<100kHz, are given in Tables III and 

IV. The relative error between curves is calculated with 



 

𝜀𝑟𝑒𝑙 
% = |1 −

𝑓𝑎𝑝𝑝𝑟𝑜𝑥

𝑓𝑒𝑥𝑎𝑐𝑡
| × 100       (16) 

 

where fapprox is the solution using the FEM and fexact is the 

proposed scaled algorithm with circular subconductors and 

shape error correction. It is easy to see from Tables III and IV 

that the relative error between the proposed scaled algorithm 

and the FEM is low, which confirms the effectiveness of the 

proposal. 

 

V.  TRANSIENT VOLTAGE RESPONSE OF AN ELECTRICAL 

THREE-PHASE SEGMENTAL CABLE 

The electromagnetic transient voltage response at the 

remote-end of the electrical segmental cable in Fig. 6 is 

synthesized using the estimated parameters with the proposed 

scaled algorithm and the FEM through the Numerical Laplace 

Transform (NLT) implemented in MATLAB [36, 37, 38]. In 

this study case the cable has a length of 10mi (≈16km) and is 

buried at a depth of 0.76m in a soil with a resistivity of 

ρ=100Ωm. Only core 1 is energized with a unit step of voltage 

at the sending end, thus the transient voltage response at the 

receiving end of core 1 and the induced cores 2, 3 and sheath 

are measured. 

Fig. 11a shows the transient voltage at the receiving end of 

core 1, and Fig. 11b shows the induced voltage responses at the 

core 3 and the sheath. As expected, the overshoot is maximum 

at the receiving end of core 1, achieving a magnitude of 1.734 

pu; whereas a maximum overvoltage magnitude of 0.5402 pu is 

observed at the initial wave-front of core 1. The propagated 

voltage is estimated considering the frequency-dependent 

parameters of the cable. 

 
 

 
 

Fig. 10 Loop impedance between the core and sheath of the cable in Fig. 7 using 

the proposed scaled algorithm with square and circular subconductors, and 

compared against the FEM. a) resistance and b) inductance. 

 

 

TABLE III 

SELF-LOOP IMPEDANCE CABLE FIG. 7 RESOLUTION OF 46 SUB/IN. 

 

Parameter 
f 

(Hz) 
FEM 

Proposed 

algorithm 

Relative 

Error(%) 

R (Ω/m) 
6 0.00284 0.002839 0.039719 

60 0.00285 0.002849 0.030065 

600 0.002967 0.002968 0.042023 

6k 0.003535 0.003557 0.632206 

60k 0.005088 0.005053 0.690415 

600k 0.014731 0.014332 2.708455 

640k 0.015226 0.014781 2.924796 

L (H/m) 

6 2.31E-07 2.35E-07 1.910963 

60 2.18E-07 2.24E-07 2.400467 

600 1.55E-07 1.58E-07 2.354003 

6k 1.18E-07 1.21E-07 2.357915 

60k 1.03E-07 1.05E-07 2.376004 

600k 9.76E-08 1.00E-07 2.698865 

640k 9.75E-08 1.00E-07 2.709231 

 

 
TABLE IV 

MUTUAL-LOOP IMPEDANCE CABLE FIG. 7 RESOLUTION OF 46 SUB/IN. 

 

Parameter 
f 

(Hz) 
FEM 

Proposed 

algorithm 

Relative Error 

(%) 

R(Ω/m) 

6 0.002782 0.002781 0.039297 

60 0.002783 0.002782 0.03573 

600 0.002783 0.002783 0.001852 

6k 0.002705 0.002699 0.221935 

60k 0.002846 0.002875 1.015144 

600k 0.007723 0.007758 0.446325 

640k 0.007983 0.007956 0.329252 

L(H/m) 

6 3.93E-08 3.94E-08 0.20384 

60 3.77E-08 3.90E-08 3.561305 

600 3.36E-08 3.39E-08 0.818055 

6k 3.59E-08 3.61E-08 0.659637 

60k 3.80E-08 3.85E-08 1.362527 

600k 3.59E-08 3.60E-08 0.234113 

640k 3.59E-08 3.60E-08 0.222434 

VI.  CONCLUSIONS 

This paper presents a scaled subconductor partition 

algorithm with shape error correction to enhance computational 

performance of conductor subdivision numerical methods for 

estimating electrical parameters of three-phase power cables. 

The computer execution time with the proposed algorithm is 

drastically reduced, especially when the resolution of the 

subconductors increases, and for the values shown in this work 

can be higher than one order of magnitude compared to other 

techniques. This accelerates computer calculations, and 

consequently reduces the numerical complexity of the 

algorithm. The correction of the error due to the shape of the 

subconductor directly impacts the estimated values of R and L 

for the power cable as a function of the resolution. Although the 

error is mainly due to the area reduction of the gmd calculation, 

which is higher for square geometries when compared to 

circular ones. 
 



 
a) 

 

 
b) 

 

Fig. 11. Transient overvoltages synthesized with NLT using the proposed 

algorithm and the FEM. a) voltage response at the receiving end. b) induced 

voltages of core 3 and the sheath. 
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