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Abstract—This paper presents a study on data regression
strategies which can model real-world cases of transmission
line high impedance faults (HIFs) on vegetation. A reference
HIF model implemented in the Alternative Transients Program
(ATP)/ATPDraw is used as a supporting computational tool
to evaluate different data regression formulas, which consider
different amounts of parameters to represent the most prominent
features of HIF resistance variations caused by the vegetation
charring phenomenon. Real cases of HIFs on vegetation that
took place on a 500 kV/60 Hz transmission line are investigated,
through which a novel promising rational three-parameter
regression function is identified. The obtained results reveal that
such a novel regression formula further improves the accuracy
of other models previously reported in the literature, without
requiring complex setting procedures. For instance, comparing
it against another existing three-parameter HIF model, the
proposed approach reduced the root mean square errors from
17.55 Ω to 8.20 Ω in average, also improving the coincidence rate
(measured via R-square coefficient) between real and simulated
signals, which increased from 0.883 to 0.975 in average.

Keywords—ATP/ATPDraw, EMTP, high impedance faults,
transmission line, power systems, vegetation.

NOMENCLATURE

ATP Alternative Transients Program.
EMT Electromagnetic Transients.
EMTP Electromagnetic Transients Program.
LOC Local line terminal.
REM Remote line terminal.
RMSE Root Mean Square Error.
HIF High Impedance Fault.
TACS Transient Analysis of Control System.
R2 R-square coefficient.
Rf Fault resistance.
Rf (tx) Estimated Rf at instant tx.
Rf,ini Initial high impedance fault resistance value.
Rf,end Final high impedance fault resistance value.
R3p

f HIF Rf value estimated via three-parameter
formula (Parameters: a, b and τ1).
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R4p
f HIF Rf value estimated via four-parameter

formula (Parameters: c, d, τ2 and τ3).
R5p

f HIF Rf value estimated via five-parameter formula
(Parameters: f, g, h, τ4 and τ5).

RRat,2p
f HIF Rf value estimated via two-parameter rational

function (Parameters: r1 and r2).
RRat,3p

f HIF Rf value estimated via three-parameter
rational function (Parameters: s1, s2 and s3).

RRat,5p
f HIF Rf value estimated via five-parameter rational

function (Parameters: v1, v2, v3, v4 and v5).
t Time vector.
tx Time stamp of the x-th sample.

I. INTRODUCTION

H IGH impedance faults (HIF) on vegetation (such as those
on trees) often occur on transmission lines. After the

HIF inception, induced arcs lead trees to burn, resulting in
varying fault resistances Rf due to the vegetation charring
phenomenon. Initially, Rf has a high value, and it gradually
decreases as the charred areas increase. Hence, HIFs challenge
transmission line monitoring schemes, and it has boosted
researches on strategies to model HIFs in Electromagnetic
Transients Programs (EMTP) toward supporting studies on
transmission line faults that occur on vegetation.

The literature is plenty of works reporting HIF models,
being most of them developed in the context of distribution
networks. In [1] and [2], experimental measurements are
used to fit HIF models for medium voltage networks. Both
works divide the fault resistance Rf into two parts. In [2],
for instance, the Alternative Transients Program (ATP) is
used to simulate HIFs on distribution networks by using
two time-varying resistances that emulate HIF signatures for
different soil types. One of these resistances varies as proposed
in [3], and the other emulates a polynomial formula obtained
from regression procedures applied to field Rf measurements.

In [4], the HIF arc resistance dynamic is reproduced via
MODELS and Transient Analysis of Control System (TACS)
elements in ATP environment. Also, in [5], a Matlab/Simulink
model which emulates the HIF Rf behavior as proposed in [6]
is presented. Nevertheless, although these HIF models show to
be realistic, the great number of used parameters, the lack of
detailed and didactic implementation guidelines and the need
for experimental data are considered limiting factors.

Still analyzing the literature, one can find research initiatives
which have explored other methodologies than those already
mentioned, either to improve the HIF model fitting with real
HIF data or to detect/locate HIFs. In [7], for example, an
automated parameter tuning approach is presented. In [8],



arc-based fault modeling for simulations in ATP environment
with nonlinear elements is described. In [9], a polynomial and
neural network-driven HIF distance estimation is developed.
In [10], HIF-induced high-frequency components are analyzed
and a strategy to characterize fault-induced transients is
proposed. Also, in [11], a HIF detection method that combines
variational mode decomposition algorithms with nonlinear
least squares estimation is developed.

From the above-mentioned references, one notices that,
while machine-learning-based HIF detection frameworks have
been widely addressed in the literature, the primary objectives
of most works remain dissociated from the improvement of
HIF models. Furthermore, although promising HIF modeling
approaches have been reported, significant challenges are
identified, particularly due to the need for non-intuitive settings
and high computational costs that result mainly from the
need for large datasets with physically representative features.
Indeed, such features are critical in physics-driven machine
learning approaches, where reliance on synthetic data can
exacerbate biases and over-fitting problems. Hence, classical
regression-based HIF models have regained attention, mainly
due to their simplicity and computational efficiency for
Electromagnetic Transients (EMT)-type simulations. Besides
their straightforward implementation and reduced parameter
dependence, these models open possibilities for intuitive
setting procedures, allowing to include them in EMTPs,
which in turn also permit to emulate noise, circuit sectioning,
fault evolution, and so on. This balance between simplicity,
accuracy and adaptability makes data regression-based
HIF models attractive for EMTPs, specially when high
computational overhead is a limiting factor for the EMT
simulations of interest.

As mentioned earlier, most works in the literature which
report HIF modeling strategies focus on distribution networks.
On the other hand, contributions addressing transmission line
HIFs have been also presented, but they are scarcer. In [12],
transmission line HIF signatures are analytically analyzed, but
computational implementation instructions are not reported.
In [13], a five-parameter HIF model is proposed. These
parameters are obtained from regression procedures based
on the Gauss-Newton approach, considering a formula that
combines two exponential components and a sine term to
emulate Rf decaying and oscillations. Such a HIF model
shows to be accurate, but its computational implementation
is not explained. Also, some non-intuitive parameters are
required, which cannot be directly related to Rf characteristic
values, limiting the model reproduction when experimental
data is not available. Moreover, in [14], a simplified
transmission line HIF model is developed in ATP/ATPDraw.
It approximates Rf by a three-parameter exponential function,
requiring only intuitive settings, such as initial and final Rf

values, as well as Rf decaying time constant. Still in [14],
details on the HIF model implementation in ATP/ATPDraw
are provided, which consists in an important contribution of
such a work. However, as a simplified regression formula is
applied, depending on the case, its accuracy can decrease,
either during the initial Rf decaying or over the final HIF
instants, particularly when the fault takes longer to be cleared.

Based on the presented context, the main goal of this
work is to enhance the modeling strategy often used to
emulate transmission line HIFs on vegetation in EMT-type
simulations. The model must combine accuracy and simplicity,
but maintaining its flexibility to represent both real-world HIF
cases, when experimental data is available, or fictitious HIF
scenarios, just by varying intuitive settings. Hence, this work
is fully focused on modeling aspects of transmission line HIFs
on vegetation toward obtaining a realistic and simple model,
which can support studies on HIF diagnosis methods, whose
evaluation is in turn not included in the scope of this paper.

To allow the proposed modeling studies, six regression
formulas are analyzed, consisting of three exponential
functions and three rational formulas. The R-square
coefficients (R2), as well as the absolute and root mean
square errors (RMSE) are evaluated to select four promising
regression formulas capable of emulating two representative
real HIF cases. ATP/ATPDraw simulations are carried out to
assess such modeling approaches, allowing to select the model
with best cost-benefit as the proposed modeling strategy.

The analyzed real-world cases of HIFs on vegetation
occurred in a 500 kV/60 Hz transmission system, being
reproduced via ATP/ATPDraw simulations. The HIF model
proposed in [14] is used as reference, being adapted only to
reproduce the tested regression formulas. The obtained results
reveal that a three-parameter rational function can be used
to accurately emulate transmission line HIFs on vegetation.
As it requires only three parameters, a direct relationship
between the rational function coefficients and characteristic
HIF parameters can be obtained. Based on that, a practical
application procedure is also developed.

II. TRANSMISSION LINE HIFS ON VEGETATION

Transmission line HIFs on vegetation frequently take place
on lines with rights-of-way that pass through dense forests.
Modeling these events is often demanded during fault studies,
and it requires models more sophisticated than single purely
resistive and linear elements. Hence, practical and easy-to-use
transmission line HIF models have been of a particular interest
for professionals in a number of areas, such as those focused
on EMT, power system relaying, and disturbance diagnosis.

Line HIFs on vegetation occur due to tree-to-line contacts,
which are more likely to take place in hot months, such as
the late summer. As the temperatures are higher, power grid
costumers use more air conditioning equipment, increasing
the system loading. It heats up transmission line conductors,
causing their expansion and increasing line sags over the tower
spans. Concomitantly, trees grow mainly during the spring
and summer months, when, besides the higher temperatures,
stronger airflow across the lines are verified [15].

When tree-to-line contacts occur, arcs are established,
leading the tree to burn [16], [17]. As the charred areas along
the tree increase, the vegetation becomes more conductive
[16], [17], resulting in Rf values which gradually decrease, as
shown in Fig. 1. This figure shows Rf estimations obtained by
means of the methodology reported in [18] for two real-world
transmission line HIFs on vegetation, which are referred here
as Case 1 and Case 2, for the sake of simplicity.



Case 2: Inicial resistance 
of about 805.983 Ω  

Case 2: Final resistance 
of about 79.060 Ω  

Case 1: Inicial resistance 
of about 314.646 Ω  

Case 1: Final resistance 
of about 54.530 Ω  

Fig. 1. Rf estimations obtained from the real-world HIF cases 1 and 2.

Both cases depicted in Fig. 1 are related to HIFs on
vegetation that took place on a 500 kV/60 Hz double-circuit
series compensated transmission line, 333.5 km long, installed
in the North region of Brazil. Due to confidentiality reasons,
details on terminal substations are omitted, such that they
are called here local (LOC) and remote (REM) substations.
Surrounding the faulted line, there are other double-circuit
series compensated lines, which are fed by strong and weak
equivalent sources at each system side. The rights-of-way of
these lines pass through the Amazon Rainforest, where very
tall trees exist [14]. Case 1 consists of a phase A-to-ground
HIF at 18.72 km from LOC substation, which was cleared
by the line protection about 100 ms after the fault inception.
On the other hand, Case 2 stands for a phase C-to-ground HIF
9.66 km far from REM substation, which was cleared in about
425 ms after the HIF inception. In this paper, measurements
from the substations closer to the HIF point are considered,
i.e., records from LOC and REM substations are used to obtain
Rf in cases 1 and 2, respectively.

According to both scenarios shown in Fig. 1, Rf presents
high initial values Rf,ini, which gradually decrease until a
final fault resistances Rf,end. In Case 1, although the fault
period lasts about 100 ms, Rf reduces from Rf,ini ≈ 315 Ω
to Rf,end ≈ 55 Ω in approximately 50 ms, remaining in the
system for additional 50 ms, without relevant Rf variations.
In Case 2, the Rf decreasing rate is smaller than in Case
1, resulting in a slower transition from Rf,ini to Rf,end. In
this scenario, Rf takes about 200 ms to vary from Rf,ini ≈
806 Ω until values smaller than 100 Ω. After that, Rf slowly
decreases for 225 ms, resulting in Rf,end ≈ 79 Ω.

Although Rf tends to converge to well-defined final values,
in some scenarios, like in Case 2, Rf does not completely
stabilize in the final instants of the fault. Indeed, Rf remains
decreasing in a very slow rate, which is different from the
rate observed soon after the HIF inception instant. Based
on such features, one concludes that initial and final Rf

decreasing rates must be considered in the regression formulas
used to reproduce the Rf behavior. Thus, evaluating different
regression strategies is necessary to identify those that better
emulate Rf over the whole fault period. To do so, the
ATP/ATPDraw HIF implementation strategy proposed in [14]
is adopted, since it allows to simulate different Rf functions
just by adapting very few code lines.

III. ANALYZED Rf REGRESSION FORMULAS

Before defining the regression formulas to be analyzed,
it is worth understanding that there are differences between
the fault-induced transient signatures typically verified in
distribution HIFs and those observed during faults caused
by vegetation contact in transmission lines. Distribution
HIFs usually result in more complex transient signatures
in currents waveforms, resulting in asymmetry, modulations,
intermittence, buildup and shoulders [1]–[6]. On the other
hand, from real records and analyzing waveforms shown in
[12]–[14], one notices that the Rf decaying behavior (buildup)
is the most prominent transient signature for transmission line
HIFs on vegetation. Thus, while HIF models for distribution
grids have been developed to emulate various transient
signatures for different soil types, such as sand, asphalt, gravel,
cobblestones, grass and so on [2], transmission line HIFs
on vegetation can be emulated in a simpler way, allowing
to simplify the used modeling strategies toward making
transmission line HIF models more attractive for EMTP users.

In [14], real-world records are assessed to demonstrate that
transmission line HIFs on vegetation can be properly emulated
by considering a single non-linear resistance, provided that
representative regression formulas are used to represent Rf

variations over the time t. Therefore, in this paper, six
regression formulas are assessed with the primary objective
of representing the Rf decaying feature, disregarding other
smoothed signatures which are less prominent in transmission
networks. By doing so, complex simulation structures are
avoided, resulting in a simple and accurate model, as proven
later on in Section IV. Even so, the proposed modeling strategy
is recommended only for studies on transmission line HIFs on
vegetation, such that more complex and detailed models are
recommended if distribution HIFs are under investigation.

The presented case studies focus on Rf emulation in the real
cases 1 and 2 shown in Fig. 1. Pros and cons of each evaluated
regression strategy are revealed, proving limitations of less
representative expressions. Among the assessed regression
formulas, two are chosen based on literature evidences about
Rf behavior due to the vegetation charring phenomenon. In
[13] and [14], good model fitting results are obtained by
approximating Rf by three- and five-parameter exponential
functions, respectively, justifying their evaluation. Also, given
the good fitting obtained in [14] by using a three-parameter
formula, a four-parameter expression is also tested to assess
the benefits of adding one more exponential function in
the Rf representation. Furthermore, three rational regression
formulas are studied, consisting of a two-parameter proper
rational function and two improper rational functions with
three and five parameters. These formulas are chosen due
to their capacity of representing decaying behaviors over the
time, as expected for Rf .

A. Three-Parameter Exponential Formula (R3p
f )

The evaluated three-parameter exponential regression
formula is the one proposed in [14], which is defined as:

R3p
f = a+ b · e(−τ1·t) , (1)



where R3p
f represents the Rf estimations calculated via (1),

being Rf,ini = a + b, Rf,end = a, and τ1 the Rf decaying
time constant.

B. Four-Parameter Exponential Formula (R4p
f )

To improve the Rf estimations reported in [14], a
four-parameter exponential regression formula was designed.
Analyzing the curves shown in Fig. 1, it can be noticed that
the decaying rate of Rf may be difficult to be reproduced
with only one time constant. Moreover, such a decaying rate
seems to change over the time. Hence, by observation of the
Rf behavior, the following regression formula was designed:

R4p
f = c− d · e[(−τ2·t)+e(−τ3·t)] , (2)

being R4p
f the Rf estimations calculated using (2), where

Rf,ini = c − d · e(1) and Rf,end = c. Also, τ2 and τ3 are
time constants which dictate the Rf decaying over the time.

C. Five-Parameter Exponential Formula (R5p
f )

The assessed five-parameter exponential formula is inspired
(but not equal to) in the one reported in [13], where two
independent exponential terms are used in the regression
procedure. Such an adaptation is made to better fit the
regression terms to the Rf decaying, as follows:

R5p
f = f + g · e(−τ4·t) + h · e(−τ5·t) . (3)

The Rf estimations computed by means of (3) are
represented by R5p

f , being Rf,ini = f+g+h and Rf,end = f .
Moreover, τ4 and τ5 are time constants that emulate the Rf

decaying over the time t, such as considered in the other
exponential regression formulas studied in this paper.

D. Two-Parameter Rational Function (RRat,2p
f )

Aiming to evaluate a regression formula simpler than those
previously described, a two-parameter proper rational function
is analyzed, being given by:

RRat,2p
f =

r1
t+ r2

, (4)

where RRat,2p
f stands for the Rf estimations calculated via

(4). Rf,ini and Rf,end can be obtained by making t = 0 s and
t → ∞, respectively, as done for the exponential formulas,
resulting in Rf,ini =

r1
r2

and Rf,end = 0 Ω. Such results reveal
that RRat,2p

f fails in representing final Rf values different from
zero, as it will be demonstrated later on in Section IV.

E. Three-Parameter Rational Function (RRat,3p
f )

Such a rational function has the same number of parameters
used in the HIF model proposed in [14]. It is obtained by
adding one degree in the numerator of (4), leading it to
be an improper rational function (same degree in numerator
and denominator). As it depends on three parameters, a very
similar computational complexity to the one verified in [14]
is expected, being the regression formula given by:

RRat,3p
f =

s1 · t+ s2
t+ s3

, (5)

where RRat,3p
f consists in the Rf estimations obtained from

(5), where Rf,ini =
s2
s3

and Rf,end = s1.

F. Five-Parameter Rational Function (RRat,5p
f )

A five-parameter rational function is also evaluated toward
verifying the effects of adding degrees in the numerator
and denominator of the rational function. Such a number of
parameters is chosen because it allows to evaluate the effects
of increasing the number of function zeros and poles, but
maintaining a closed mathematical relation between Rf,ini

and Rf,end, and the function coefficients. In this sense, the
evaluated five-parameter rational formula was defined to be:

RRat,5p
f =

v1 · t2 + v2 · t+ v3
t2 + v4 · t+ v5

, (6)

being RRat,5p
f the estimations obtained via (6), in which

Rf,ini = v3
v5

and Rf,end = v1. As demonstrated, by
using the same degree in both numerator and denominator,
rational functions with higher orders can be applied, without
compromising the direct relation between Rf,ini and Rf,end,
and the formula coefficients. However, some intermediate
parameters become non-intuitive (such as v2 and v4), which
is considered a limiting factor.

IV. EVALUATION OF HIF Rf REGRESSION FORMULAS

The presented regression formulas are evaluated in two
parts. Initially, the real Rf samples shown in Fig. 1 are
considered, and each regression formula is fitted to the Rf

data by means of Matlab functions based on the trust-region
approach [19]. The absolute errors, RMSE and R2 coefficients
are computed in each case to evaluate the fitting quality
of each regression formula. Then, EMT-type simulations are
carried out in ATP/ATPDraw, considering the most promising
regression models, and comparing simulated waveforms with
real ones. To do so, real-world transmission line HIF
records and validated power network models were required to
guarantee reliable evaluations. Hence, since the authors had
a limited access to real records and validated power system
models, massive case studies are not presented in this paper.
Even so, it does not compromise the reliability of the presented
results, given that the analyzed cases 1 and 2 are representative
for studies on transmission line HIFs on vegetation.

In the proposed studies, the HIF ATP/ATPDraw model
described in [14] is used with few adaptations to reproduce the
assessed regression formulas. By doing so, a fair comparison
between all modeling strategies is provided, allowing to
analyze the cost-benefit of each regression strategy in terms
of accuracy, simplicity and practicality. For these studies, a
validated ATP/ATPDraw power system model used by the
Brazilian transmission system operator was taken into account,
allowing to realistically compare real and simulated HIF
records. However, due to space limitations, further details on
the ATP/ATPDraw system validation studies are not detailed.

A. Regression Formula Fitting Quality Evaluation

Obtained coefficients for the regression formulas used to
calculate R3p

f , R4p
f , R5p

f , RRat,2p
f , RRat,3p

f and RRat,5p
f are

shown in Table I, and the Rf behaviors over the time for
cases 1 and 2 are shown in Figs. 2 and 3, respectively, where
the absolute errors over the time between estimated and real
Rf measurements are also presented.



TABLE I
TRANSMISSION LINE HIF MODEL COEFFICIENTS.

Rf Model Case Coefficients

R3p
f

1 a = 57.73, b = 229.5, τ1 = 247.4 s
2 a = 97.22, b = 494.5, τ1 = 89.03 s

R4p
f

1
c = 52.01, d = −96.58

τ2 = 77.26 s, τ3 = 483 s

2
c = 89.86, d = −248.1

τ2 = 32.29 s, τ3 = 335.3 s

R5p
f

1
f = 50.3, g = 72.62, h = 197.8,

τ4 = 54.47 s, τ5 = 611.6 s

2
f = 95.37, g = 1587, h = −1223,

τ4 = 55.77 s, τ5 = 55.72 s

RRat,2p
f

1 r1 = 3.318, r2 = 0.01734

2 r1 = 23.41, r2 = 0.0758

RRat,3p
f

1 s1 = 46.11, s2 = 0.6105, s3 = 0.001927

2 s1 = 82.14, s2 = 2.772, s3 = 0.003571

RRat,5p
f

1
v1 = 1.91E5, v2 = 2.703E6, v3 = 3.61E4

v4 = 5.891E4, v5 = 113.9

2
v1 = 65, v2 = 11.43, v3 = 0.1048

v4 = 0.06534, v5 = 0.0001266

To assess the obtained results, in addition Figs. 2 and 3,
Table II presents the RMSE and R2 coefficients for each
regression strategy. Hence, by analyzing Figs. 2 and 3, and
Table II, conclusions on the best regression strategies among
the evaluated ones can be drawn as follows:

• RRat,2p
f presents relevant errors in the fault beginning and

ending moments, which tend to increase as the time goes
by. On the other hand, the remaining regression formulas
present satisfactory Rf fitting results.

• RRat,2p
f resulted in errors that reached RMSEs of about

21.73 Ω and 41.36 Ω for cases 1 and 2, respectively, with
R2 coefficients smaller than 0.7 in both scenarios. Thus,
due to these high discrepancies, RRat,2p

f is disregarded
in the next studies.

• An overall good HIF emulation is obtained via R3p
f , but

it results in estimations that decay faster than the real Rf ,
so that errors in the first HIF instants are higher than those
obtained for the other evaluated regression formulas.

• R3p
f resulted in R2 coefficients equal to 0.917 and

0.849 for cases 1 and 2, respectively, revealing an
overall acceptable fitting. However, the RMSEs in these
cases reached the order of 10.85 Ω and 24.42 Ω,
respectively, being greater than those obtained from the
other regression formulas. Even so, as R3p

f is the simplest
approach among the evaluated exponential regression
formulas, it will be considered in the next studies for
the sake of illustration.

• R4p
f , R5p

f , RRat,3p
f and RRat,5p

f presented very good
results for Case 1, with RMSEs smaller than 6.0 Ω
and R2 coefficients above 0.98. Nevertheless, in Case 2,
R5p

f resulted in an RMSE equal to 26.14 Ω, which is
much higher than those obtained from R4p

f , RRat,3p
f and

RRat,5p
f . Thereby, R5p

f is disregarded in the following
evaluations.

Fig. 2. Case 1 analysis: (a) HIF Rf estimations using the studied regression
formulas; (b) Absolute error of estimated Rf values.

Fig. 3. Case 2 analysis: (a) HIF Rf estimations using the studied regression
formulas; (b) Absolute error of estimated Rf values.

• R3p
f and R4p

f were slightly more accurate than RRat,3p
f

and RRat,5p
f in Case 1, but less accurate for Case 2. Given

that, the use of rational functions shows to be promising.
• Analyzing RRat,5p

f , it is noticed that the obtained fitting
quality is very similar to that one of RRat,3p

f , with
a slight superiority of RRat,5p

f . On the other hand,
RRat,3p

f is simpler than RRat,5p
f , which is interesting

for practical applications. Therefore, both approaches are
also considered in the next evaluation step, in which R3p

f ,
R4p

f , RRat,3p
f and RRat,5p

f are taken into account.

B. Comparative Analysis via ATP/ATPDraw Tests

In the second evaluation part, R3p
f , R4p

f , RRat,3p
f and

RRat,5p
f are simulated in ATP/ATPDraw by adapting the HIF

model proposed in [14]. For the sake of illustration, the HIF



TABLE II
RMSE AND R2 COEFFICIENTS FOR THE EVALUATED CASES.

Rf Case 1 Case 2
Model RMSE (Ω) R2 RMSE (Ω) R2

R3p
f 10.85 0.917 24.42 0.849

R4p
f 4.97 0.983 11.54 0.966

R5p
f 3.76 0.990 26.14 0.828

RRat,2p
f 21.73 0.663 41.36 0.566

RRat,3p
f 5.14 0.981 11.26 0.968

RRat,5p
f 5.21 0.981 7.33 0.986

model is shown in Fig. 4. Also, the same power system studied
in [14] is considered here, such that further details on the HIF
model and tested power system available in [14].

Fig. 5 presents the required adaptations in the MODELS
code detailed in [14] (see page 6, Fig. 7 in [14]), particularly
in the code part on ‘HIF resistance configuration’ toward
simulating R3p

f , R4p
f , RRat,3p

f and RRat,5p
f . To simplify

the implementation, for R3p
f and R4p

f , the HIF model was
programmed to receive as inputs Rf,ini, Rf,end and their
respective time constants. In R3p

f , the coefficients a and b were
directly calculated from Rf,ini and Rf,end (see Fig. 5(a)),
whereas in R4p

f , auxiliary variables alfa and beta were
created to relate the coefficients c and d with Rf,ini and Rf,end

(see Fig. 5(b)). On the other hand, for RRat,3p
f and RRat,5p

f , the
ATP/ATPDraw HIF model was programmed to directly receive
as inputs the coefficients of each rational function, whose
nomenclature was standardized in the MODELS code to be as
follows: in RRat,3p

f , p1, p2 and q1 correspond to s1, s2 and s3,
respectively (see Fig. 5(c)), and in RRat,5p

f , p1, p2, p3, q1 and
q2 stand for v1, v2, v3, v4 and v5, respectively (see Fig. 5(d)).
The initialization of Rf,ini in each model was programmed in
accordance to the relations presented in the previous section,
being the auxiliary variables declared in MODELS language.

Figs. 6 and 7 show the comparison between real-world and
ATP/ATPDraw simulated records of currents in the faulted
phase (in pu), for cases 1 and 2, respectively. All tested HIF
models presented very satisfactory Rf fitting, proving the
accuracy of the evaluated HIF modeling strategies.

A superiority of R4p
f , RRat,3p

f and RRat,5p
f over R3p

f is
noticed, especially in Case 2, which consists in a fault that
takes longer to be cleared. Indeed, in Case 2, discrepancies
observed for R3p

f during the initial current increasing and over
the final instants of the fault are not verified for R4p

f , RRat,3p
f

and RRat,5p
f . However, differences between the fitting qualities

of R4p
f , RRat,3p

f and RRat,5p
f are not relevant, which leads to

the conclusion that RRat,3p
f is the best choice when a balance

between accuracy and simplicity is considered.
The good fitting quality of RRat,3p

f reveals also an important
finding about the behavior of HIF Rf values. It is known that
the RRat,3p

f formula (Eq. (5)) represents a hyperbola, revealing
that Rf does not exactly evolves as a single exponential,
as assumed in various works. It explains difficulties found
in properly fitting Rf using exponential regression formulas
with only one time constant. Moreover, although RRat,3p

f

MODELS block responsible 
to emulate the tested 
regression formulas.

HIF 
connection
point

Fig. 4. HIF model implementation in ATP/ATPDraw, as proposed in [14].

(a)

(b)

(c)

(d)

Fig. 5. Adaptations in ATP-MODELS code presented in [14] (see page 6,
Fig. 7 in [14]) to simulate: (a) R3p

f ; (b) R4p
f ; (c) RRat,3p

f ; and (d) RRat,5p
f .

showed to be more accurate than R3p
f , it requires the same

number of settings, i.e., three coefficients. Hence, no additional
complexity is observed, which is attractive for EMT-type
simulations of line HIFs on vegetation.

V. METHODOLOGY TO APPLY THE RRat,3p
f MODEL

Although RRat,3p
f showed to be accurate, the need for

regression procedures to fit the HIF model with real Rf

measurements might be an issue. Also, for EMT simulations
of fictitious cases, setting the HIF RRat,3p

f model may not be
intuitive, so that further guidelines are presented here.

Analyzing the HIF record as reported in [18], Rf samples
over the time are estimated. Hence, Rf,ini, Rf,end and Rf

samples at different time instants can be identified, which are
used here to develop a practical methodology to set RRat,3p

f .
To facilitate the application of the proposed HIF modeling
strategy via (5), the following relations can be considered:

Rf,ini =
s2
s3

, being s2 = s3 ·Rf,ini , (7)

s1 = Rf,end . (8)
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Fig. 6. Currents in Case 1: (a) R3p
f ; (b) R4p

f ; (c) RRat,3p
f ; (d) RRat,5p

f .

Equations (7) and (8) show that s1 can be directly set as
the final HIF resistance Rf,end. On the other hand, s2 and
s3 cannot be directly set, requiring further setting procedures.
In summary, assuming that, besides Rf,ini and Rf,end values,
an Rf sample is available at a given instant tx, i.e., Rf (tx),
substituting tx and Rf (tx) in (5), s3 can be derived as:

s3 =
tx · [Rf,end −Rf (tx)]

[Rf (tx)−Rf,ini]
. (9)

From studies on (9), it was found that reliable estimations of
s3 can be calculated by considering Rf samples obtained when
the initial HIF resistance decaying period is ending, around
the knee point of the Rf decaying curve (see Fig. 1). For
instance, in Case 1, the Rf curve knee point is at about tx =
10.4 ms, when Rf = 88.692 Ω. On the other hand, in Case
2, the Rf curve knee point is at about tx = 20.8 ms, when
Rf = 186.655 Ω. Thus, substituting these values in (9), the
following s3 coefficients are calculated:

scase13 =
10.4E-3(54.530− 88.692)

(88.692− 314.646)
= 0.001572 , (10)

scase23 =
20.8E-3(79.060− 186.655)

(186.655− 805.983)
= 0.0036135 , (11)

which are then used to obtain s2 via (7).
It must be noticed that, although s3 coefficients calculated

using (10) and (11) are close to those shown in Table I, they are
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Fig. 7. Currents in Case 2: (a) R3p
f ; (b) R4p

f ; (c) RRat,3p
f ; and (d) RRat,5p

f .

slightly different. Indeed, s3 coefficients listed in Table I result
from more complex and accurate data regression procedures,
which may not be practical for some potential users of the
proposed HIF model. Even so, considering the presented
practical setting approach, for the chosen parameters, one
obtains RMSE = 7.94 Ω and R2 = 0.954 for Case 1, and
RMSE = 11.773 Ω and R2 = 0.965 for Case 2, which consist
in discrepancies comparable to those shown in Table II that
attest the reliability and usefulness of such a practical HIF
model setting procedure.

In Fig. 8, a flowchart that describes the application of the
proposed HIF model based on RRat,3p

f is presented, explaining
setting procedures for both fictitious and real HIF cases.
To demonstrate the feasibility of the proposed methodology,
Fig. 9 compares Rf curves obtained from real field data (Cases
1 and 2) and from the RRat,3p

f model adjusted by means of
the practical methodology explained in Fig. 8. The results
presented in Fig. 9 reveal a good RRat,3p

f fitting, proving its
applicability to emulate HIFs on vegetation in a very simple
and accurate way, either in fictitious or real-world scenarios.

VI. CONCLUSIONS

A study on six different regression formulas able to
emulate transmission line HIFs on vegetation was presented.
Real-world cases of 500 kV/60 Hz transmission line HIFs on
trees were assessed to evaluate the regression formulas. Four
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Fig. 8. Flowchart describing the application of the proposed HIF model.
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Fig. 9. Practical setting demonstration of RRat,3p
f : (a) Case 1; (b) Case 2.

promising regression strategies were firstly selected based on
their fitting quality and practical aspects. Then, the regression
formula with the best balance between simplicity and accuracy
was chosen to be used in the proposed HIF model.

The chosen regression formula consists of a three-parameter
rational function, which improves a previously published
model with the same number of coefficients. ATP/ATPDraw
simulations were carried out to demonstrate its performance
by reproducing field HIF scenarios. Finally, a practical
methodology to apply the proposed three-parameter HIF
model was presented, which allows to simulate fictitious
scenarios and to obtain a good HIF resistance fitting for
real-world cases reproduction, without the need for complex
regression procedures.

The obtained results reveal that HIFs evolve as a hyperbola
function, which is properly reproduced by the proposed model.
Furthermore, the results demonstrate that the designed model
is reliable, accurate, and easy to set, being flexible to simulate
both fictitious and real HIF scenarios. Also, the presented

practical application methodology shows to be effective and
easy to use, making the proposed modeling strategy even more
attractive for researchers and utilities interested in emulating
transmission line HIFs on vegetation.
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