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Abstract—Modern power systems are characterized by reduced
inertia and primary frequency response as a result of the
replacement of conventional synchronous generators (SG) with
converter-interfaced renewable energy sources, deteriorating
frequency stability. In this context, a novel data-driven
methodology is proposed to derive an equivalent aggregated
system frequency response (SFR) model that is capable of
simulating the power system frequency response following
a disturbance. The methodology utilizes active power and
frequency response measurements to derive the SFR model
through a nonlinear least squares optimization approach. The
accuracy of the proposed method is validated by Monte Carlo
simulations conducted on the IEEE 9-Bus test system, under
both transient events and normal operating conditions. The
validation is based on two main aspects. Initially, the model
parameters estimated using the proposed data-driven approach
are compared with those obtained through analytical calculations.
Further, the effectiveness of the proposed approach is evaluated
by determining the frequency response of the examined power
system under varying types and amplitudes of disturbances.
Results verify that in all scenarios the proposed approach
provides results similar to those obtained via detailed non-linear
dynamic simulations.

Keywords—Data-driven approach, frequency stability, inertial
response, non-linear least squares, parameter estimation, primary
frequency response, system frequency response models.

I. INTRODUCTION

N modern power systems, conventional synchronous

generators (SGs) are being decommissioned and replaced
with converter-interfaced renewable energy sources (CI-RES).
CI-RES are mechanically decoupled from the power system
and therefore do not inherently contribute to the inertial
response [1], [2]. As a result, higher rates of change of
frequency (RoCoF), larger frequency deviations, and longer
recovery times are observed, jeopardizing the stability and the
reliable operation of the power system [1], [2].

For this reason, system operators should be able to
predict the frequency response characteristics of their
systems. Towards this objective, a computationally inexpensive
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low-order equivalent system frequency response (SFR) model
for the inertial response and the primary frequency response
(PFR) was first proposed in [3]. In [4], the authors proposed
an analytical way to aggregate a multi-machine power system
into such equivalent SFR. This work has been extended in [5]
to include the aggregation of voltage source converter-based
high voltage direct current links and wind turbines. Such
approaches require the a priori knowledge of the frequency
response parameters of all conventional and CI-RES units,
which becomes especially challenging when considering
distributed generation.

As aresult, it is necessary to derive the equivalent SFR using
exclusively system measurements. In the literature, several
data-driven approaches have been proposed for the derivation
of equivalent models for individual SGs. For example, in
[6], the authors estimate the parameters of a low order SG
model through an unscented Kalman filter approach. In [7], the
authors estimate the model of an individual governor through
the time-domain vector fitting (TD-VF) system identification
method, focusing on hydro turbine governors. Nevertheless,
no data-driven methods are available in the literature for the
development of aggregated SFR models, i.e., SFR models that
describe the frequency response of the overall power system.

In this paper, a novel data-driven methodology is developed
for the identification of an aggregated SFR model using
frequency and active power measurements. At the first step,
the proposed methodology derives the inertia constants of
individual system components using the TD-VF [8]. These
are then used to determine the power system center of inertia
(COI) and the resulting frequency response at the COL. This
is an important aspect/feature to account for unspecified
inertia that is not provided as a nameplate property, e.g., in
dynamic loads [9] and virtual synchronous generators (VSG).
At the next step, the COI frequency response and the total
active power deviation are used to derive the aggregated
SFR parameters on the basis of non-linear least squares
(NLS) optimization. The accuracy of the proposed method is
statistically validated by means of Monte Carlo (MC) analysis.
The validation is performed on two aspects. Initially, SFR
model parameters, estimated using the proposed data-driven
method, are compared with SFR parameters determined via the
aggregation formulas presented in [4]. Additionally, a second
validation is performed as follows: The proposed data-driven
SFR is used: i) to predict the frequency response of the
power system under different disturbances and ii) to quantify
several key frequency response indicators such at the RoCoF,
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the frequency nadir, and the post-disturbance steady-state
frequency deviation. The estimated frequency response and
the resulting indicators are compared with those obtained via
simulations, performed on the detailed power system model.
By the comparison of the results better insights regarding the
accuracy and the applicability range of the proposed approach
are obtained.

The rest of the paper is organized as follows: Section II
provides the theoretical background to set the notation for
the rest of the paper. The proposed data-driven methodology
is presented in Section III. In Section IV the impact of
all SFR parameters on the resulting frequency response is
quantified by means of sensitivity analysis. In Section V, the
proposed method is evaluated by MC analysis using transient
data, considering two scenarios: one where only conventional
SGs are considered, and another where a VSG is considered
alongside with conventional SGs. In Section VI, the method
is evaluated using data from normal operating conditions, i.e.,
ambient data. For the purpose of the analysis, a set of 100
MC simulations is performed on the IEEE 9-Bus benchmark
system. Finally, Section VII summarizes the main findings and
concludes the paper.

II. THEORETICAL BACKGROUND
A. SG Primary Frequency Response

Fig. 1 shows the PFR control model of a SG with a reheat
steam turbine, represented in the Laplace domain. AF; is the
per unit (p.u.) frequency deviation on the SG bus, and AP, ; is
the difference (in p.u.) of the output mechanical power. Index
i refers to the i-th SG. Moreover, parameter R; represents
the droop constant, T(; ; the governor time constant, T ; the
steam chest time constant, T ; the reheat time constant, and
Fy ; the high-pressure turbine fraction [4].

Fig. 1 also presents two non-linearities imposed by physical
system dynamics, namely the governor deadband (GDB) and
the turbine generator rate constraints (GRC). The values
considered are 0.036 Hz and 3% per minute, respectively [10].

B. Aggregated System Frequency Response Model

Fig. 2 depicts an SFR model describing the inertial behavior
and the PFR of a power system. Specifically, the model
predicts the frequency deviation Af when a change in the
electric load APp occurs. Both quantities are in the p.u.
system. In this model, H denotes the equivalent inertia
constant, D represents the equivalent damping factor, due to
the frequency dependence of the loads, and the SG damper
windings [11]. A linear feedback loop of an equivalent
governor-turbine model is added to represent the PFR of the
power system, as detailed in Section II-A. Typical ranges of
the SFR parameters are listed in Table I.
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Fig. 1. Primary frequency control of a reheat steam turbine SG [4], [10].
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Fig. 2. Equivalent SFR model [4].
TABLE I
TYPICAL RANGES OF SFR PARAMETERS [4].

Param. H[s] D[] R[] Tgls] Tcls] Trls] Full
Min. 3 0 0.04 0.15 0.2 6 0.15
Max. 9 2 0.1 0.3 0.5 14 0.4

C. Frequency Response
1) Frequency  Response  Indicators: A  graphical

representation of a frequency response of a power system
when excited by a step disturbance is presented in Fig. 3,
where the most important frequency response indicators
[12] are also illustrated. These include the pre-disturbance
frequency fur, the start time of the disturbance, ¢, RoOCoF
at tur, the minimum (or maximum) instantaneous frequency
deviation, fexyeme, the time at which the maximum frequency
deviation occurs, texyemes and the steady-state frequency
deviation, A fy. The maximum frequency deviation and the
time to reach are defined as A fexreme = | fextreme — fstart| and
Atextreme = textreme — nominals TGSPCCtiVely [12]

2) RoCoF calculation: A discrete approximation of the
RoCoF is given by (1) [13].

f n f n—1

=2t """ 1
RoCo At (D

where f,_1 and f,, correspond to two consecutive frequency
samples and At is the sampling rate. Estimating the RoCoF
from two consecutive samples can be inaccurate due to
harmonics and noise. To solve this problem, the guidelines
specified in [13] are followed. First, the frequency signal
is processed through a low-pass filter (LPF). The RoCoF is
then determined through a sliding window of five consecutive
measurements. Zero-phase filtering is used to smooth the
frequency waveform using a 5-th order Butterworth LPF with a
cutoff frequency of 3 Hz. Furthermore, a resolution of 100 ms
is used for the sliding window, as proposed in [13].
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Fig. 3. Graphical representation of the frequency response with relevant

indicators [12].



D. Inertia Estimation Using System Responses

The effective inertia constant at a point of measurement
can be identified from active power (Ap) and frequency (Af)
deviation measurements by developing low-order input-output
transfer function (TF) models. The developed TF model that
relates Ap and A f has the following general form:

_Af(s) _ Bn-18""1 + Br_2s" 2+ ...+ Bo

G(s) = 2
(5) Ap(s) ps™ + ap_18" 1+ ..+ ag 2)
The unknown set of model parameters in the numerator and
denominator, i.e., 8 = [Bn_1,Bn—2, -, Bos Un, Un_1, ..., %],

is estimated using system identification techniques. In this
work, the TD-VF [8] is employed. Eventually, the unknown
inertia constant is estimated using the time-domain impulse
response of G(s) [8], defined as r(t) = L7H{G(s)}.

1

H =~ 30 3)

where £7!{-} denotes the inverse Laplace transform.

III. PROPOSED METHODOLOGY

This Section outlines the proposed data-driven methodology
for the development of SFR models, as depicted in Fig. 4.
The proposed framework assumes the availability of phasor
measurement units (PMUs) at generation and step-down
transmission substations as part of a wide area monitoring
system (WAMS). PMUs are utilized to record active power
and frequency deviation measurements, denoted as Ap; and
Af;, for the i-th measurement point, respectively. Calculations
are performed in the MATLAB 2024a [14] environment.

A. Estimation of COI Frequency Deviation

Following an active power disturbance, the frequency is
not the same throughout the whole system, as the generators
oscillate against each other [12]. The center of inertia (COI)
is an equivalent generator that represents the average behavior

Input Measurements:
Afi, Ap;
TD-VF
Step 1 inertia estimation
Ap;
Calculate COI Calculate total active
Step 2 L .
frequency deviation power deviation
[ Afcor Apiotal |
Fit SFR model using
Step 3 NLS
vV

Output Aggregated SFR

model

Fig. 4. Proposed method to estimate the aggregated SFR model.

of the system. Its frequency deviation, A fcop, can be defined
as [9]:

SN H A+ YN H - Af
SN Hi+ Y H;

where N is the number of generators and synchronous
condensers, and M is the number of load buses with significant
penetration of rotating machinery. Af and H represent the
frequency deviation and inertia at the respective measurement
locations.

The authors of [4] showed that aggregated SFR model of
Fig. 2 outputs the COI in large power systems. Thus, in order
to derive the SFR model parameters via system responses,
the frequency deviation at COI (Afcoy) must be initially
approximated. This approximation is carried out using (5).

AfCOI =

“4)

Zi HiTDVF ) Afi
Zi H;TDVF

In this context, Af; represents the frequency deviation
measured at substation 7, and HzT DVF (denotes the effective
inertia values, estimated by using TD-VE. To accurately
estimate the COI, it is pivotal to include measurements from
both generation and step-down transmission substations with
significant motor loads. The latter provide an aggregated effect
of the distribution network load inertia, thus, ensuring it is
properly accounted for.

This work assumes the availability of measurement units as
part of a WAMS. If no such infrastructure is available, methods
such as [15] have been proposed in the literature to estimate
the COI using local measurements.

Prior to A focor estimation, both A f; and Ap; signals are
filtered through a LPF to mitigate the effect of noise and
high-order harmonics, which can influence the TF fitting.

A feor = )

B. Total Active Power Deviation

The total active power deviation, also required to derive the
SFR model, is estimated from the recorded substation active
power deviations Ap; as:

Apiow = Y Api. 6)

Apioral 18 produced by the generation units of the system to
cover variations in load demand, and the total losses of the
power system (sum of generator and network losses) [11].

C. Parameter Estimation

This Section focuses on fitting an SFR model to the
measurement-obtained COI response, A fcor. The input of the
model is the total recorded active power deviation, Apm/@], and
its output is the estimation of the COI response, A f[n;8)].
Here, n represents each measurement sample, and 6 is the
parameter vector defined as:

9:[H7DaR7TGaTC7TR7FH]7 (7)

where the unknown 6 (see Fig. 2) are estimated via NLS
approach. In more specific, 6 is estimated to minimize the



TABLE 11
NLS TERMINATION CRITERIA [16].

Stopping Criterion Value
Function tolerance 10-7
Step tolerance 10-7
First-order optimality tolerance ~ 10~7
Maximum number of iterations 1000

square of the residuals, i.e., J(@), using the Trust Region
Reflective algorithm [16],

J(0) =" (Afcorln] — Af[n; 6]) (8)
The parameters of 6, are bound between a lower and upper
limit B, and Oy, respectively, detailed in Table I:

0min S 0 S Gmax- (9)

The NLS problem is solved iteratively until one or more of
the predetermined criteria of Table II are met.

Due to the non-convexity of (8), the applied initial
conditions might lead to local minima of J instead of the
optimal solution. To this end, the MultiStart (MS) approach
[17] is employed; the NLS solver is run repetitively assuming
different initial conditions randomly distributed within the
feasibility region defined by O, and 6y,,x. Each solution 8,
is stored and the one leading to the overall minimum value
of J is selected. MS in this work employs 20 starting points.
Once the procedure is completed, the SFR system of Fig. 2 is
created using the identified model parameters.

IV. PARAMETER SENSITIVITY ANALYSIS

It is crucial that the proposed data-driven methodology
can identify accurately the most important model parameters
presenting the highest sensitivity in the system dynamics, as
even small deviations can affect considerably the accuracy
of the developed SFR model. It is also expected that less
sensitive parameters may exhibit higher estimation errors due
to the inability of the NLS method to identify their influence in
minimizing the cost function of (8), especially in the presence
of noise and non-linearities. Therefore, a sensitivity analysis
is performed to identify and characterize the obtained SFR
parameters.

To perform the analysis, an initial SFR system is assumed,
with parameters considered at the midpoint of the bounds
listed in Table 1, i.e., [H, D, R,T¢,Tc, Tr, Fg] =[6, 1, 0.07,
0.225, 0.35, 10, 0.275], to calculate the original system step
response. Afterwards, each system parameter is individually
varied by +25%, and +£50%, and the step response is
recalculated. The impact of each parameter on the system
step response is quantified by means of the coefficient of
determination R? considering the original and the varied
system step responses. In addition, the percentage differences
in RoCoF (tsant)s Atextremes A fextremes and A fys between the
two step responses are calculated.

From the so obtained results in Fig. 5, it is shown
that H is the only parameter that affects RoCoF (tgur).
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Fig. 5. Parameter sensitivity analysis: (a) RZ, (b) RoCOF (tstart), (C) textreme.
(d) textreme, and (e) A fis.

More specifically, RoCoF (ty.) is substantially increased
with decreasing inertia constant. Reduced inertia levels also
increase the maximum frequency deviation and shorten the
time it is observed, but have no impact on the steady-state
deviation. An increase in T causes an increase in the
maximum frequency deviation while causing delay in the
point observed. The opposite effect is observed for Fl.
The droop constant R is a critical parameter; Higher values
lead to higher maximum frequency deviations and to the
times required to observe it. Furthermore, R influences the
steady-state deviation, where a higher R causes a larger A fi;.
This explains its strong influence on R?. Opposite effects are
observed for D, albeit at a significantly lower sensitivity level.
Finally, the other time constants, namely 7 and 7, exhibit
a trivial impact on all metrics.

V. APPLICATION ON TRANSIENT RESPONSES

In this Section, the proposed methodology is assessed
on the IEEE 9-Bus test system, as depicted in Fig. 6,
using post-disturbance transient data obtained from 100 MC
simulations. For each simulation, two distinct scenarios are
considered regarding generation units: (1) the system consists
of three conventional SGs, and (2), the system consists of
two conventional SGs (G1 and G3) and one VSG, replacing
G2. The conventional SGs provide inertial response and PFR,
while the VSG provides only inertial response. The generator
nominal apparent power (5), as well as H, D, R, T, Tc,
Tgr, and F'y values for both scenarios are listed in Table III.
In the same Table the equivalent SFR parameters are calculated
for both scenarios by the methodology of [4], assuming a
p-u. base of Spie = 519.5MVA. Equivalent parameters
R, Tg, Tc, Tr, and Fpy for the second scenario display
reduced values, since the VSG does not contribute to the
PFR. Each conventional SG is equipped with an automatic
voltage regulator (AVR). In the system, three constant power
loads are considered, namely Load A (P4 = 125 MW, Q4 =



TABLE III
FREQUENCY RESPONSE CHARACTERISTICS OF THE EXAMPLE SIMULATION.

Generator SIMVA] HI[s] D[] R[]l Tgls] Tc sl TrIs] Fgl]
Gl1 247.5 3.61 1.74 0.054 0.16 0.28 8.62 0.30
G2 - Scenario 1 192.0 7.60 0.47 0.053 0.20 0.32 11.35 0.31
G2 - Scenario 2 192.0 7.60 0.47 - - - - -
G3 128.0 4.38 0.11 0.092 0.15 0.25 11.91 0.25
Equivalent - Scenario 1 567.5 5.61 1.03 0.06 0.17 0.29 10.13 0.30
Equivalent - Scenario 2 567.5 5.61 1.03 0.09 0.16 0.27 9.39 0.29
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Fig. 6. Topology of the IEEE 9-Bus test system [18]; PMU locations are also
shown.
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Fig. 7. Individual generator and COI frequency deviation: (a) scenario 1 and
(b) scenario 2.
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and time step 75 = 0.01s. The frequency and active power
deviation waveforms A f;(t), and Ap;(t) are obtained through
PMUs located at the three generator buses, as shown in Fig.
6. It should be noted that, due to the absence of motor
loads, no additional measurement locations are considered. To
simulate measurement noise, A f;(t), and Ap; () responses are
intentionally distorted with white Gaussian noise, assuming
a signal-to-noise ratio (SNR) of 30dB. The first 0.8s of
the signal is used for the TD-VF procedure, while the
entire recorded signal is utilized for the NLS procedure.
A third-order Butterworth LPF with a cutoff frequency at
fe = 0.5Hz is used to preprocess the signal prior to inertia
estimation. This cutoff frequency is selected because the
inertial response frequency spectrum generally lies below this
value as reported in [21].

A. Indicative Example

An indicative simulation, where a step load increase of
2MW is applied to Load B at ty,, = 1s is used to
demonstrate the application of the proposed method. The
resulting frequency deviation waveforms of the three SG buses
are shown in Fig. 7a and Fig. 7b for scenarios 1 and 2,
respectively. The influence of the VSG not participating in
the PFR is evident in Fig. 7b, where it can be inferred
that it leads to more profound frequency nadirs and largest
steady-state deviations. The identical initial RoCoF verifies
that the equivalent system inertia is identical in both scenarios.

Fig. 8. Individual generator and total active power deviation: (a) scenario 1
and (b) scenario 2.

The TD-VF is used to estimate inertia constants of the
individual SGs, required to calculate the COI frequency
deviation. The SG inertia estimates [ﬁl, H,, ﬁg,] are
[3.39s,7.615,4.28s] and [3.38s,6.885,4.345] for scenarios
1 and 2, respectively. These correspond to absolute estimation
errors of 6.19%, 0.15%, and 2.19% for scenario 1, and 6.27%,
9.52%, and 0.88% for scenario 2, relative to the original
values reported in Table III. Using (5), the COI response is
approximated and juxtaposed with the individual recorded SG
responses in Fig. 7.

Fig. 8 shows the active power deviation of each SG, as
obtained at their respective buses. Their sum yields the total
power system active power deviation according to (6), which
is also plotted in Fig. 8. As constant power loads have been
considered, the total power deviation is a step change, despite
that the individual active power SG responses present some
oscillatory post-disturbance behavior.

The NLS-estimated parameters are summarized in Table IV.
To evaluate their accuracy, the absolute percentage error (APE)
is calculated:

T—x

APE = -100%. (10)




TABLE IV
APE IN ESTIMATING THE EQUIVALENT SFR PARAMETERS THROUGH NLS
FOR THE TWO TEST SCENARIOS OF THE EXAMPLE SIMULATION.

Scenario 1 Scenario 2
Equivalent dI;IrI;\/Se d APE [%] Equivalent dfgfvse d APE [%]

H [s] 5.61 5.46 2.66 5.61 5.60 0.15
D [-] 1.03 2.03 97.43 1.03 1.12 9.15
Tr [s] 10.13 9.89 2.31 9.39 9.24 1.58
R [-] 0.06 0.06 6.33 0.10 0.09 4.13
Fyr [-] 0.30 0.26 11.75 0.29 0.29 0.13
Tc [s] 0.29 0.28 3.38 0.27 0.27 0.53
Tg [s] 0.17 0.28 59.00 0.16 0.19 20.39

2MW (Detailed Model) = = = 16 MW (Equivalent SFR)

- = =2MW (Equivalent SFR) 23 MW (Detailed Model)

9 MW (Detailed Model) 23 MW (Equivalent SFR)
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16 MW (Detailed Model) 30 MW (Equivaent SFR)
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Fig. 9. Prediction of the system’s response under step disturbances: (a)
scenario 1, and (b) scenario 2.

In (10), x denotes the value of the parameter calculated via
the method of [4] and & represents the estimates provided by
the proposed data-driven method. Recall that the approach of
[4] can only be applied if full knowledge of all individual
components is available, i.e., information regarding time
constants and individual characteristics of all SGs. As shown
in Table IV, the damping constant D and the governor
time constant Tz present a significant mismatch. However,
results in the sensitivity analysis of Section IV show that
these parameters have a minor impact on system dynamics,
compared to other parameters, e.g., droop constant 2 which
are accurately identified. The MS NLS procedure, performed
on a system with an Intel(R) Core(TM) i7-13700 processor
(2.10 GHz) and 32 GB of RAM, required 1.37s to complete.

After deriving the equivalent SFR model, its accuracy is
assessed on simulating the frequency response of the examined
power system under different disturbances, i.e., disturbances
different to the original ones used for the development
of the model. This validation test practically verifies the
generalization capability of the derived SFR model. For this
purpose, the IEEE 9-bus test system is excited under five
distinct step disturbances in Load B of i) 2 MW ii) 9 MW iii)
16 MW iv) 23 MW and v) 30 MW and five ramp disturbances
with slopes i) 0.5MW/s ii)) 1MW/s iii) 1.5MW/s iv)
2MW/s and v) 2.5 MW/s. All disturbances are simulated
in the DigSILENT PowerFactory software using the detailed
nonlinear model of the examined power system.

The continuous lines in Fig. 9a and Fig. 9b demonstrate
the actual frequency step response of the multi-machine
system derived through DigSILENT PowerFactory, while
the dashed lines show the step response simulated by the

0.5 MW/s (Detailed Model) = = = 1.5 MW/s (Equivalent SFR)
= = =0.5MW/s (Equivalent SFR) 2 MW/s (Detailed Model)

1 MW/s (Detailed Model) 2 MW/s (Equivalent SFR)
= = =1MW/s (Equivaent SFR) 2.5 MW/s (Detailed Model)
1.5 MW/s (Detailed Model) 2.5 MW/s (Equivaent SFR)
2 -2
= 0.00 X~§m 000 N
2 -0.55 2 -0.55
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= -1.65 « -1.65
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Time [s]
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Fig. 10. Prediction of the system’s response under ramp disturbances: (a)
scenario 1, and (b) scenario 2.

derived SFR model for scenarios 1 and 2. Based on the
results it can be concluded that the developed SFRs models
successfully capture the frequency response of the first four
step disturbances, including RoCoF at ts:qrt, A fextreme, and
Afs. Conversely, it underestimates the frequency nadir for
the largest disturbance by 10.80% and 8.77% in the two
scenarios. This can be attributed to the activation of the
GRC, which was triggered by the large disturbance amplitude.
Nevertheless, it should be indicated that 30 MW corresponds
to 9.5% of the total load, making this an extreme disturbance
case. Even in that case, A f is correctly estimated.

Lastly, Fig. 10 illustrates the response of the NLS-derived
system under ramp disturbances, along with the response
simulated by the proposed data-driven SFR method for both
scenarios. Results demonstrate that the proposed method
correctly identifies the frequency response of the system
during also ramp disturbances.

B. Monte-Carlo Simulations

To further evaluate the performance of the proposed method
in a wide range of operating conditions, 100 MC simulations
are applied on the 9-bus system for the two scenarios. In each
MC simulation, all frequency-relevant parameters (H, D, R,
Tq, Te, Tr, Fr) are randomly varied between the respective
lower and upper limits of Table I. To excite the system, a
2 MW step disturbance is applied randomly to one of the loads
at tgae = 1.

Fig. 11 shows the distribution of APE for each inertia
constant in all MC simulations using boxplots. The estimated
inertia constants are used to derive the COI frequency as per
(5). All generators exhibit similar errors, with median values
around 3%, and upper quartile less than 11%. Finally, a limited
number of outliers is presented.

The total active power and COI measurements are further
used to derive the SFR model through NLS optimization.
Fig. 12 shows the APE on the SFR parameters derived via
the proposed data-driven methodology, with respect to the
values obtained on the basis of the aggregation method of [4].
Specifically, Fig. 12a shows the APE on the most sensitive,
ie., H, Tg, R, and Fy and Fig. 12b shows the APE on the
least sensitive parameters, i.e, D, T, and T. From Fig. 12b
it can be inferred that the latter parameters exhibit significant
differences with respect to the aggregation calculations of [4].



As these parameters have only a trivial influence on the overall
system dynamics, the level of inaccuracy is inconsequential.
In scenario 1, the most impactful parameters are estimated
with low APE. Specifically, median and maximum values
(non-outlier) are 1.70%, 1.41%, 3.40%, and 6.58%, and
4.45%, 5.21%, 9.76%, and 18.06% for parameters H, Tg,
R, and Fp, respectively. The same can be concluded for the
most impactful parameters in scenario 2, where median and
maximum values (non-outlier) are 1.25%, 0.77%, 2.85%, and
7.97%, and 3.78%, 3.26%, 10.07%, and 27.40% for parameters
H, Ty, R, and Fp, respectively.

Next, both the DigSILENT PowerFactory model of each
MC and the derived SFR model are subject to different step
disturbances, namely those detailed in Section V-A, in order to
statistically quantify the generalization capability of the latter.

Fig. 13 and Fig. 14 show the APE of the main
frequency indicators, comparing the multi-machine model to
the data-driven SFR across all MC simulations and step
disturbances for scenarios 1 and 2. In both figures, a small
number of outliers were removed to better highlight the
underlying trends. As verified by the corresponding APE,
the RoCoF at the moment of the disturbance is accurately
estimated by the proposed SFR, since the mean APE is less
than 3.5%, regardless of the level of the disturbance. On the
other hand, indicators influenced by the GRC, i.e, Atexyeme
and A fexpreme, Show progressively increasing maximum errors
as the disturbance level increases, reaching almost 3.5%
and 17%, respectively, for a 30 MW disturbance in scenario
2. However, as previously outlined, a 30 MW disturbance
represents an extreme case relative to the examined system.
Even in such case, the median values of these errors remain
within acceptable limits. For smaller disturbances, the SFR
model accurately captures the characteristics of the frequency
extrema. The A fy prediction error is practically constant and
always less than 1%, since the influence of non-linearities is
diminished following the dynamic phenomenon, thus allowing
for accurate prediction by the SFR model.

VI. APPLICATION ON NORMAL OPERATING CONDITION
DATA

In this Section the proposed methodology is evaluated using
normal operating condition (ambient) data, through 100 MC
simulations. The system of Fig. 6 is utilized, assuming only
conventional SGs. To simulate normal operating conditions,
the total load of the system is randomly varied within +0.1 %
of its nominal value every 5s. The simulation time is Tix =
600 s and the time step is 75 = 0.01s.
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Fig. 11. APE distribution for each TD-VF-estimated inertia constant.
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Fig. 12. APE distribution in estimating the equivalent SFR parameters through
NLS. (a) Most sensitive parameters, and (b) least sensitive parameters.

] 200 MW [ 16.00 MW [———30.00 MW
[ ]19.00 MW [ ]123.00 MW

3.5

4
— a — b
< 2605 ¢ <3 |®
R K
=17 <2
< 0.875 < 1
0 0
16.5 1
_ — d
< 12375 |© < 075 | @
K S
= 825 = 05
S 4125 3 025
0

Afe.vtre me Afss

Fig. 13. Distribution of APE in frequency response indicators for different
step disturbances for scenario 1 MC simulations: (a) RoCoF at the start of

the disturbance, (b) time to maximum frequency deviation, (c) maximum
frequency deviation and (d) steady-state frequency deviation.
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Fig. 14. Distribution of APE in frequency response indicators for different
step disturbances for scenario 2 MC simulations: (a) RoCoF at the start of
the disturbance, (b) time to maximum frequency deviation, (c) maximum
frequency deviation and (d) steady-state frequency deviation.

The TD-VF method is utilized to estimate the COI by
using (5). To increase the estimation accuracy, a sliding
window of 120s is applied on measurements, with a 30s
offset between consecutive windows. To reduce computational
burden, the signals are downsampled to 50 samples per second.
Additionally, to reduce the influence of higher-order harmonics
on inertia estimation, the responses are filtered by a 15-th order
LPF with cut-off frequency at f. = 5 Hz [8]. The final estimate
is obtained as the mean value of all window-based estimations
that result in inertia values within the limits of Table I and
are derived through stable transfer functions G(s). Fig. 16a,
depicts the APE for each SG inertia constant. The median APE
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Fig. 15. Normal operating condition COI frequency deviation.

is 5.45%, 4.63%, and 4.85% for G1, G2, and G3 respectively,
while the maximum (non-outlier) values are 23.24%, 14.62%,
and 19.54%. Compared to the application on transient data, the
estimation presents higher APE, more outliers and requires
higher computational time. This can be attributed to the
influence of both PFR and inertial response during normal
operation, unlike transient conditions where inertial response
is dominant following the onset of a disturbance [8].

The aggregated SFR parameters are then identified through
the NLS procedure for all MC simulations. For this procedure,
the full-length 600 s signals are used. Fig. 16b shows the APE
on the most sensitive parameters, i.e., H, T'r, R, and Fy and
Fig. 16¢c depicts the APE on the least sensitive parameters,
ie, D, Ty, and T. Similarly to the transient response case,
the latter exhibit significant differences with respect to the
aggregation calculations. On the contrary, the most impactful
parameters are estimated with low APE, similar to the transient
response case. The median and maximum (non-outlier) values
are 1.39%, 3.17%, 3.26%, and 5.93%, and 3.85%, 9.30%,
11.16%, and 16.54% for H, Tr, R, and Fy, respectively.

In summary, the proposed method is effective with both
normal operating condition data and post-disturbance transient
data. The first type is more computational demanding,
requiring longer time windows for both TD-VF and NLS,
alongside high-order LPF and signal preprocessing.
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Fig. 16. Normal operating condition case study estimation APE: (a) inertia
constants, (b) most sensitive parameters, and (c) least sensitive paramaters.

VII. CONCLUSIONS

In this paper, a robust data-driven methodology is proposed
to estimate an aggregated SFR model. The methodology
employs frequency and active power measurements in order
to estimate the constants of the SFR model through a NLS
parameter estimation procedure. The methodology is validated
on the IEEE 9-bus test system via 100 MC simulations using
transient and normal operating condition data. An additional
scenario where one SG is replaced with a VSG was also
examined. Results show that the derived SFR effectively
captures the dynamic behavior and predicts frequency response

indicators with high accuracy under various disturbances,
even under the impact of governor non-linearities and the
simulated measurement noise. Moreover, the most important
SFR parameters according to the performed sensitivity analysis
(that is, the inertia constant, the droop constant, the reheat time
constant, and the high-pressure turbine fraction), are correctly
identified by the procedure with respect to the analytically
calculated aggregated parameters. Future research will focus
on the extension to different generation mixes, i.e., different
types of generation devices and technologies and different load
types including rotating machinery.
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