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Abstract – Cable parameters are used to establish models of 

cables for transient and steady-state analysis. Finite element 
methods (FEM) can calculate such parameters accurately but are 
time consuming and demanding, thus not always suitable in an 
engineering process. In contrast, classical analytical equations for 
parameter calculations are simple and fast but do not properly 
take proximity effects into account. This is particularly important 
in cables with common screens but also in complicated umbilical 
cables and pipe cases. This paper briefly reviews the MoM-SO 
method for series impedance and shunt admittance. This is then 
applied as extensions to classical pipe-type cable parameters 
procedures. Two cases demonstrate the accuracy of the proposed 
method when compared to FEM analysis. A simple three-core 
cable case shows very good agreement, while a special pipe-in-pipe 
geometry reveals some challenges. The required order of the 
method increases with the radius ratio of the conductors involved. 
A final simulation case shows that analytical methods for pipe-type 
cables underestimates damping but have little effect on the wave 
velocity.     
 

Keywords: Cable parameters, proximity effect, capacitance, 
series impedance.1  

I.  INTRODUCTION 

able parameters are critical for adequate analysis of the 
power system. These parameters can be calculated 

numerically by finite element methods (FEM), but this slows 
down the engineering process considerable. Establishing a 
model in FEM can easily take hours and days, while the 
engineering demand today is minutes and seconds. Thus, cable 
parameters calculated by most electromagnetic program are 
based on the analytical formulas efficiently summarized by 
Ametani [1]. These formulas do not take proximity effect 
properly into account, although for pipe-type cables this is 
partially addressed. The analytical method of moment with a 
surface operator (MoM-SO) was presented by Patel et.al. in [2, 
3]. In this work, the geometry of circular elements and periodic 
current contribution were represented by an analytical Green’s 
function, and each conductor by an admittance representing the 
frequency dependency with surface currents. Later, Tanaka et.a. 
[4,5] presented capacitance correction based on the same 
Greens function. 

In this paper we first for motivation present two test cases 
where the analytical calculated cable parameters significantly 
deviate from what is calculated by FEM, in Section II. Then we 
briefly outline the MoM-SO method for the basic understanding 
of the method’s complications in Section III. Further we discuss 
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the integration in EMTP type of software and present new 
calculation result in agreement with FEM in Section IV. 
Finally, we discuss the result in Section V and conclude with 
main findings and proposed further work in Section VI.     

II.  ANALYTICAL FORMULATION VS. FEM 

Here we present two cases with significant deviations 
between analytical cable parameters and FEM. The analytical 
formulas for calculating the series impedance and shunt 
capacitance are given in [1] both for single core and pipe-type 
cables. Here we focus on the pipe-internal impedance and 
potential coefficients. 

According to [1] the potential coefficient of a pipe type cable 
is P=Pi+Pp+Pc+Po where Pi represents each cable, Pp is the 
potential between cables inside the pipe, Pc comes from the 
pipe’s outer insulation and Po is zero when the pipe is in ground. 
In our further analysis the Pi and Po components are zero. The 
pipe internal and external coefficients are 
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where the geometrical parameters are given in Fig. 1. 
According to [1] the series impedance of a pipe type cable is 
Z=Zi+Zp+Zc+Zo where Zi represents each cable, Zp is the 
impedance between cables inside the pipe, Zc comes from the 
impedance of the pipes itself, and Zo is the ground return 
impedance. In our further analysis the Zi and Zp components are 
subjected to proximity effect. Here we restrict the analysis to 
the mutual impedances of cables inside a pipe, Zp. 
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1 1p p px r j    , K is second modified Bessel function. 

  

A.  Power cable, case 1 

The first case is a (low-voltage) screen less cable design as 
shown in Fig. 1. Here the problem is the screenless design and 
the short insulation distances. The permittivity of the entire 
insulation medium inside the pipe is assumed to have the same 
permittivity. 

 
Fig. 1 Geometry of pipe-type cable design 1. 

 

Fig. 2 shows a FEM simulation in COMSOL of the cable 
design in Fig. 1. It is rotated -30 degrees, but this does not 
matter in this symmetrical design. 1 A is applied to the right 
conductor with return in the pipe. We see that the induced 
currents in the two neighbor conductors show sign of proximity 
effect, while the current in the excited conductor looks fairly 
symmetrical.    

 
Fig. 2 FEM simulation. Current density at 100 Hz.  

 
Fig. 3 shows and compares the calculated series impedance 

Zi+Zp self- and mutual impedance from COMSOL and CABLE 
PARAMETERS in ATP-EMTP that uses the analytical 
formulas. The contribution from the pipe impedance, Zc and the 

ground return Zo is eliminated by subtracting the last column 
and row. Fig. 3 shows that the reactance is somewhat larger by 
the analytical formulations, while the resistance is 
underestimated. The deviations are larger for the mutual 
impedance Z12.  

 
Fig. 3 Comparison of series impedance. Reactance in blue and resistance in red 
colors. COMSOL calculations marked as circles, analytical formulas with dots. 
R11 and X11 are larger than R12 and X12, respectively. 

 
The 4x4 cable capacitance matrix of the configuration in Fig. 

1 is calculated in COMSOL and MatLab and shown in Table I. 
We observe considerable differences even for this simple 
design. The analytical formula is developed from the 
impedance formula at infinite frequency [6].  

 
TABLE I. COMPARISON OF CAPACITANCE VALUES, CASE 1. 

C [nF/km] 1 2 3 4 

COMSOL 196.41  -33.53 -33.53  -129.35 

ANALYT 176.65 -40.58 -40.58 -95.49 

COMSOL -33.53 196.41 -33.53 -129.35 

ANALYT -40.58 176.65 -40.58 -95.49 

COMSOL -33.53 -33.53 196.41 -129.35 

ANALYT -40.58 -40.58 176.65 -95.49 

COMSOL -129.35  -129.35 -129.35  2114.6 

ANALYT -95.49 -95.49 -95.49 2013.1 

 

B.  Pipe-in-pipe heating cable, case 2 

The second example if from an oil&gas pipe-in-pipe 
installation where small heating cables are installed close to a 
large internal pipe as shown in Fig. 4. Here the problem is the 
large difference in dimensions and the short distance between 
the conductors. The purpose of analysis in such system is 
primarily fault studies and corrosion prevention. The 
capacitances to ground are very relevant for analyzing these 
heating systems, often performed with isolated neutral.  
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Fig. 4 Geometry of pipe-type cable Case 2 consisting of two steel pipes. Heating 
cables are installed close to inner pipe and shown zoomed up outside  
 

 
Fig. 5 FEM simulation. Current density at 1 kHz. 1 A applied to the middle 
heating conductor with return in the outer pipe. 

 

Fig. 6 shows the calculated series impedance Z11 and Z12 
with COMSOL and CABLE PARAMETERS in ATP-EMTP. 
We see that the reactance is considerably overestimated in the 
analytical formulas at high frequency, while the resistance is 
underestimated.  

 
Fig. 6 Comparison of series impedance. Reactance in blue and resistance in red 
colors. COMSOL calculations marked as circles, analytical formulas with dots. 
R11 and X11 are larger than R12 and X12, respectively. 

We now calculate the capacitances in the system in Fig. 4 
both analytically in MatLab and numerically in COMSOL as 
shown in Tabl. II. We set the outer pipe insulation to zero to 
reduce the system to 4x4. We identify huge differences between 
the values and the capacitance between the two outer heating 
cables (1-3, separation angle 9.4°) becomes even negative by 
the analytical formulas. 

 
TABLE II. COMPARISON OF CAPACITANCE VALUES, CASE 2 

C [nF/km] 1 2 3 4 

COMSOL 75.809 -25.074 -0.5573 -43.689 
ANALYT 37.939 -24.571 +1.978 -12.387 
COMSOL -25.074  89.884  -25.074  -35.367  
ANALYT -24.571 53.749 -24.571 -3.794 
COMSOL -0.5573  -25.074  75.809  -43.689  
ANALYT +1.978 -24.571 37.939 -12.387 
COMSOL -43.689  -35.367  -43.689  332.88  
ANALYT -12.387 -3.794 -12.387 245.58 

 

III.  IMPLEMENTATION OF THE METHOD-OF-MOMENT 

The MoM-SO method for proximity correction of circular 
conductor is described in detail in [2, 3] and only the elements 
relevant for the implementation for pipe-type cables will be 
outlined here. A contribution is simplifications of the formulas.  

A.  Basic expressions 

The method is an analytical boundary element approach that 
consists of an expanded Greens function (G) taking a space 
periodic surface current into account, and a Surface admittance 
Operator (YS). The boundary element surface current is assumed 
to be written as a Fourier series with a maximum order Np. 

The series impedance is in [2, 3] defined as 
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The shunt capacitance is similarly defined in [4] as 
1TC V G V      (8) 

 
where U, V are connection matrices containing 1s or 0s 

linking the fundamental element to the external conductor.  
 
The Greens function is established for each conductor and 

between each conductors including the pipe. Its elements for 
conductors outside each other are defined in [2] and repeated in 
in (9) for the self-elements (p=q) and in (10) for the mutual 
element (p≠q): 
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If the conductor p is inside q we have 
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and for q inside p similarly 
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where (:) are binomial coefficients. 
 
There are symmetries involving complex conjugates applied 

for n<0  *, ,
', ',

p q p q
n n n nG G  . (13) 

 
For each tubular conductor, there will be two equivalent 

conductors as explained in [3]. 
 
The surface admittance operator is in [2, 3] given as 
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where ( )k j     and 0 0 0k     are the wave 

numbers in the conductor or free space respectively, and n is the 
order. 

For a solid conductor R is a scalar quantity [2]: 

1( )
( , )

( )
n

n

J k r
R n k n k r

J k r
 

    


 (15) 

and for tubular conductors (ro, ri are outer and inner radiuses) 
R is a 2x2 matrix on the form (simplified from [3]): 
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where 

 1 1( , ) ( ) ( ) ( ) ( )n n n n nN J Y J Y             and 
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J and Y are Bessel functions of the first and second kind, 
respectively. 

B.  Structure of MoM-SO matrices 

Two conductors inside a pipe are shown in Fig. 7. A solid 
conductor is called conductor 1, a tubular conductor with inner 
and outer surfaces called conductors 2 and 3, and the pipe that 
becomes conductors 4 and 5. Fig. 8 and 9 shows the structure 
of the G and Ys matrices respectively for this geometry. 

For the capacitance calculation in (8), all conductors can be 
set as solid. There will thus only be three conductors in Figs. 8 
and 9 and the structure will be as the first 3x3 sub-matrices.  

Eq. (7) and (8) will produce series impedance and 
capacitance with size 3x3 for the configuration in Fig. 7. 

 

 
Fig. 7 Generalized configuration of conductors used in MoM-SO. 

 

 
Fig. 8 Structure of the Greens function. Blue dots show non-zero elements of 

sub-matrices 
,
',

p q
n nG . Green: Self element, blue: outside conductors, orange: 

conductors inside each other, pink: inside centered conductors. 
 

 
Fig. 9 Structure of the surface admittance matrix. Blue dots show non-zero 

elements. Colored rectangle shows the structure of sub-matrices 
,
',

p q
sn nY . Green: 

Self element, pink: mutual elements (YS
1,2) for tubular conductors. 

 



C.  Conditioning and order selection 

The functions (15) and (16) are ill-conditioned and must be 
series expanded at low arguments and asymptotic expanded at 
large arguments. Unfortunately, no closed form series 
expansion seems to exist as function of the order n. Thus, 
separate expansions must be made for each order. This 
expansion must handle cases where the inner and outer radiuses 
are close. And for non-magnetic material the contribution from 
the conductor and free space in (14) cancel each other. These 
requirements pose a practical limit on the possible order. The 
large argument asymptotic expansion can be found as a closed 
form as function of the order n, for example: 
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but even with this expression care must be taken evaluating the 
complex, trigonometric functions. 
 

D.  Implementation in Cable Parameters 

With the basis in Cable Parameters [1] we propose a method 
where the proximity effect correction only applies to the Pp and 
Zp pipe internal potential and series impedance expressions in 
(1) and (5). The purpose is to not alter the calculation of the 
cable internal potential Pi or impedance Zi.  

First, we calculate the series impedance according to (7) for 
order Np and subtract a similar calculation with order Np =0. In 
both cases we use the pipe as the reference conductor and 
eliminate its row and column from the contribution [7]. This 
gives us the incremental proximity effect contribution in 
addition to the conductor internal impedance Zi.  
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Since, Zp in (5) already contains parts related to proximity 
effect we must modify (5) by setting Cn=0 (in both (3) and (6)) 
and further let , 1ln( / )i i p iQ r r . This gives us the modified 

pipe-internal impedance where also the Bessel term is updated 
for finite pipe thickness as proposed in [8].  
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For the potential coefficients Pp we calculate this once for 

order Np. The potential contribution from the pipe is based on 
the outer radius of the conductors and the inner radius of the 
pipe. This potential Pp is then added to the internal potential 
from the conductor Pi. The dual insulation media method 
proposed in [4] is not implanted so far.  

IV.  RESULTS 

Here we show the result of calculation of series impedance 
and capacitance using the Greens function and surface 
admittance matrices outlined in Sect. III. 

A.  Power cable, case 1 

The case 1 in Fig. 1 is now recalculated from (21) for the 
series impedance and from (8) for the capacitance. We see that 
the parameters now are in agreement with COMSOL using 
order Np=4 both for series impedance and capacitance.  

 
Fig. 10 Comparison of series impedance. Reactance in blue and resistance in 
red colors. COMSOL calculations marked as circles, MoM-SO with Np=4 with 
dots. 

 

 
Fig. 11 Calculation of capacitance using MoM method as function of order Np. 

 
Tabl. III shows the calculation speed per frequency point of 

the implemented MoM-SO method for Case 1 together with the 
analytical cable parameter calculation when Cn in (3) and (6) is 
set to zero or not. The calculation time is dominated by the 
proximity correction for the series impedance made for every 
frequency point (91 in this case) while the capacitance 
correction is calculated once. 
  

TABLE III. CALCULATION TIME CASE I. CPU 3GHZ, INTER CORE I7-9700 

Time/Freq 
[ms] 

MoM-SO Cable Parameters 
Cn=0  Cn≠0 (3, 6) 

Np=3 2.4 0.15 1.6 
Np=4 4.6 0.15 1.6 
Np=5 7.8 0.15 1.6 
Np=6 12.5 0.15 1.6 



B.  Pipe-in-pipe heating cable, case 2 

The case in Fig. 4 is now recalculated from (21) for the series 
impedance and from (8) for the capacitance. Fig. 12 shows the 
result with order Np=6. The agreement is still not sufficient at 
this order. We have thus repeated the calculation with order 
Np=13 in Fig. 13.  

The evaluation at order Np=13 was possible since the low 
argument expansion of (14)-(15) (supported only up to order Np 
=6) was not needed in this case. No further improvement was 
possible beyond order Np =13 due to numerical issues with 
Bessel/Hankel function evaluations.  

 
Fig. 12 Comparison of series impedance. Reactance in blue and resistance 

in red colors. COMSOL calculations marked as circles, MoM-SO with Np=6 
with dots. 

 
Fig. 13 Comparison of series impedance. Reactance in blue and resistance in 
red colors. COMSOL calculations marked as circles, MoM-SO with Np=13 with 
dots. 
 

Fig. 14 shows how the capacitances are evaluated as function 
of the order Np. Orders above 50 is required for the capacitance. 
Above order Np=75 numerical issues with inverting the G-
matrix appeared. It is important to note that the result in Fig. 14 
was obtained only if the outer insulation of the conductors was 
removed. This is justified only if the permittivities of the 
conductor insulation and the pipe insulation are equal, which is 
the case here. But in general, the assumption to add the potential 

contributions Pp and Pi does not hold and the dual insulation 
approach in [4] should be considered.  

 
Fig. 14 Calculation of capacitance using MoM method as function of order Np. 
 

C.  Application, case 1 

This section shows the relevance of the proximity correction 
for Case 1. Fig. 15 shows how three different cable models are 
energized with a step voltage and Fig. 16 shows the simulated 
far end voltage of the energized phase (timestep 0.1 μs, and 
models fitted from 1 Hz-1 MHz). A cable parameter calculation 
routine is implemented in ATPDraw. This calculates series 
impedance and shunt admittance matrix with optionally 
proximity effect correction with MoM-SO for pipe-type cables. 
Vector fitting is also implemented for fitting of Yc and H 
matrices and the ULM model [9] is called with required poles 
and residue file format. Fig. 16 compares the response of the 
ULM model with the standard JMarti model in ATP. The 
analytical formulas used in the ULM and JMarti models 
underestimate the damping somewhat, but velocity is correct.  

 
Fig. 15 Configuration for studying the effect of proximity correction for 
capacitance and series impedance. 
 

The proximity effect on damping and velocity can be 
qualitatively analyzed based on the single-phase propagation 
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where the proximity effect factors kR and kC>1 and kL<1. With 
the real part of z·y dominating at high frequencies we can now 
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approximate this as 0 0/ /R C L C Lk k k j v k k        

where α0 and β0 are without proximity effect correction. 
Assuming that proximity affects L and C equally in opposite 
directions gives kL·kC≈1. Ignoring proximity effect on 
capacitance (kC=1) will thus increase the damping and velocity. 

 

 
Fig. 16 Simulated far-end step response with and without proximity effect. 
BASEA and JMARTA voltages overlap. Red curve: with proximity effect. 
Magenta curve: proximity effect in impedance only.  

V.  DISCUSSION 

The paper compared calculation of cable impedance and 
capacitance in pipe-type cables. We use FEM calculation as a 
reference and compare this with analytical solutions and 
proximity effect correction with MoM approaches. The paper 
demonstrates severe deviations with analytical formulas and 
appropriate corrections with MoM methods. The calculation of 
incremental proximity effect contribution from MoM-SO 
allows a simple inclusion in classical cable parameter 
calculations without the need for the complications proposed in 
[4,10]. The proposed and implemented calculation process is 
typically faster than 1 s in cable cases where the order is limited 
to Np=3 to 5. Tabl. III shows calculation times in the range 2.4-
12.5 ms per frequency point for Case 1.       

The brief presentation of the MoM-SO method and the 
elements of the Greens function in Sect. III showed that 
conductor ratios rp/rq are used in the expressions for the off- 
diagonal elements in G in (10). The required order of the 
method, Np thus seems to depend on this ratio. Furthermore, the 
series expansion of (14)-(15) limits the order in practice for 
impedance calculations. In this work we have restricted the 
series expansion of YS up to order Np=6. In [3] an order of Np 
=4 was assumed to give sufficient accuracy. In this work we 
have seen that much higher order is required if the ratios of 
conductor radiuses are large. The calculation of capacitance 
requires only G and orders above 50 was required for Case 2.   

Our study indicates that a maximum order in range of 

max min4 /PN r r  is needed for high accuracy in capacitance C. 

For Case 2 in Fig. 4 this means an order of 4·162/5.5=118 
would be required. Such high order will however result in ill-
conditioned G-matrix as well as numerical problems for 
evaluation of the binomial coefficients (:). We have thus 
restricted expansion of the G-matrix in the final implementation 
to order Np=40.  

The authors in [4, 5] have proposed a method to calculate the 

capacitance in the case of mixed insulation. The conductor with 
insulation layer is equivalized with two boundary charges 
similar to tubular conductors in [3]. This method is not 
implemented in our work. The outer radius is used for the pipe 
-internal potential coefficients and added to the potential from 
the conductor Pi. This approach is not justified for the 
challenging Case 2.    

VI.  CONCLUSION 

The paper compared calculation of impedance and 
capacitance in pipe-type cables. With FEM calculation as a 
reference, we have demonstrated severe deviations with 
analytical formulas and appropriate corrections with MoM 
methods.   

The significance of the parameter correction is seen in the 
simulation in Fig. 16 where analytical formulas underestimate 
the resistance and give too low damping. With proximity effect 
corrections in series impedance only, the damping becomes too 
high and the velocity increases since the drop in inductance is 
not compensated by increase in capacitance.  

For cases with large differences between conductor radiuses, 
a larger order number Np is required. This is challenging for 
both calculation time and accuracy. Especially for impedance 
calculation in low conducting media this requires series 
expansion of complex Bessel functions for every order. 

For dual insulation media with different dielectric 
permittivities, the expanded Greens function method proposed 
in [4, 5] should be considered.  
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