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Abstract--This paper compares two model order reduction 

techniques for frequency dependent transmission line models to 
enhance numerical performance for large cable or overhead line 
systems. The Modal Truncation and Balanced Truncation 
methods are applied to reduce the order of propagation matrix. 
The simulation examples involving underground cable systems are 
presented for comparison. Time domain simulation results with 
linear terminations are presented. 
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I.  INTRODUCTION 
HE frequency dependent transmission line models are 
widely used in electromagnetic transient studies. In these 

models, frequency dependent characteristics, such as 
propagation (A(ω)) or characteristic admittance (Yc(ω)) 
functions, are approximated using rational functions in the 
frequency domain [5]. Techniques such as Vector-Fitting can 
be used to obtain such approximations [3], [5]. The order of the 
rational function is determined such that the approximation 
error is below a specified tolerance. 
   Typically, the A(ω) and Yc(ω) functions can be 
approximated using low order rational functions. The optimal 
order of approximation for a frequency-dependent function is 
influenced by its characteristics and desired accuracy. 
However, in some cases, the order of the A(ω) function can be 
significantly high, particularly for complex cable systems, 
which necessitates significant computational effort. 
   In popular frequency dependent wideband models, such as 
the Universal Line Model, the rational function approximation 
(curve-fitting) is accomplished in two steps. First, the modal 
elements of the A(ω) matrix (Amodes(ω)) are independently 
curve-fitted using a common error tolerance [5]. Next, the 
elements of the phase A(ω) matrix are approximated with a 
common set of poles (i.e. poles of Amodes(ω) with 
corresponding modal delays). This process is iterated until the 
desired accuracy of the phase function is achieved. For some 
cable systems, since a common error tolerance is used to 
approximate Amodes(ω), some modes may be overfitted with a 
higher-order than necessary resulting in a higher-order phase 
A(ω) function. 
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A higher-order function requires greater computational 

resources and memory in time domain simulations (i.e. to 
evaluate recursive convolution algorithm) and more critically, 
is prone to passivity violations arising from over-fitting [9]-
[12]. 
   Wide-area modeling of power systems is a growing trend in 
countries such as Australia, UK, and US. One major problem is 
that the detailed EMT wide-area modeling can significantly 
slow down simulations. The offshore wind farms connect to 
onshore grid or substation via underground cables. The multi-
circuit cable systems in close proximity are modelled as 
mutually coupled cables in EMT simulations to accurately 
consider the mutual coupling between them.  
   The computational complexity associated with large 
transmission line systems, such as multi-circuit cable systems, 
can significantly degrade simulation performance. This is 
especially critical in real time simulations, which can also lead 
to time step overshoot.  

This paper compares two methods to enhance the numerical 
efficiency of the transmission line models by reducing the order 
of the A(ω) function for multi-circuit cable systems. Model 
order reduction techniques (MOR) can be used to obtain 
reduced-order systems while ensuring a small approximation 
error. Some techniques offer additional benefits, such as 
numerical efficiency, the presence of a priori error bounds, and 
ensuring properties like stability and passivity.  Modal order 
reduction is a well-studied subject and applied in many 
application areas, including modelling of semiconductor 
devices and MIMO macro-models of high-speed VLSI 
interconnects, etc. MOR methods can be classified into two 
main classes:  Krylov-based methods and truncation-based 
methods [1],[2],[4]. The popular truncation-based methods are 
Modal Truncation (MT) and Balanced Truncation (BT).  

The BT reduction was first introduced by Mullis and Roberts 
(1976) [13] and later in the systems and control literature by 
Moore (1981) [14]. In 1984, the Hankel-norm reduction 
technique was introduced by Glover [15]. The BT method is 
based on the solution of the Lyapunov equation of the dynamic 
system. The solutions are the reachability and the observability 
gramians. The basis is that the states that are difficult to reach 
are simultaneously difficult to observe. Then, the reduced 
model is obtained by truncating the states that have this 
property. 

In the MT method, the state-space system is truncated by 
eliminating non-dominant eigenvalues after reordering them 
based on the magnitude of the eigenvalues of the system matrix 

T 



A. 
The first method related to Krylov subspaces was introduced in 
1990. Some of the popular Krylov-based methods include 
Asymptotic Waveform Evaluation, the Padé Via Lanczos 
Method (PVL), the Arnoldi Method, the Passive Reduced-order 
Interconnect Macromodeling Algorithm (PRIMA Method), and 
the Laguerre Method [1],[2],[4].  

II.    RATIONAL FUNCTION APPROXIMATION OF 
PROPAGATION FUNCTION 

     In frequency dependent transmission line models, the 
A(ω) function is approximated (curve-fitted) in two stages. In 
the first stage, the modal delays of A(ω) matrix are computed.  
The unwound modes of A(ω) matrix (Amodes(ω)) are curve-
fitted using rational functions, as shown in (1), employing 
techniques such as Vector Fitting [3]. The order of each mode 
is determined by the common modal error tolerance, ensuring 
sufficient accuracy for all modes. 

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗(𝑠𝑠) = �
𝑐𝑐𝑗̅𝑗𝑗𝑗 𝑒𝑒−𝑠𝑠𝜏𝜏𝑗𝑗

𝑠𝑠 − 𝑎𝑎𝑗𝑗𝑗𝑗

𝑁𝑁𝑗𝑗

𝑘𝑘=1

 
  

 

 
(1) 

 
 Where, 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 , 𝑁𝑁𝑗𝑗  , 𝑎𝑎𝑗𝑗𝑗𝑗  , c�𝑗𝑗𝑗𝑗  and  𝜏𝜏𝑗𝑗     are jth mode of 
A(ω) matrix, order of the function, pole, residue and modal 
delay respectively with 𝑠𝑠 = 𝑗𝑗𝑗𝑗. The fitting error of Amodes(ω) 
is,  
 

𝜀𝜀1 = �𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗(𝑠𝑠) − 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗(𝑠𝑠)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎� (2) 

 
In the second step, using modal delays (𝜏𝜏𝑗𝑗 ’𝑠𝑠) and poles (aj’s), 
the elements of phase A(ω) matrix are approximated as shown 
in (3) 
 

𝑓𝑓(𝑠𝑠)(𝑝𝑝,𝑞𝑞) = ��
𝑐𝑐𝑗𝑗𝑗𝑗𝑒𝑒−𝑠𝑠𝑠𝑠𝑗𝑗

𝑠𝑠 − 𝑎𝑎𝑗𝑗𝑗𝑗

𝑁𝑁𝑗𝑗

𝑘𝑘=1

𝑀𝑀

𝑗𝑗=1

 
 
(3) 

 
Where, M is the number of modes. The fitting error of phase 
A(ω) matrix is  
 

𝜀𝜀 = �𝑓𝑓(𝑠𝑠)(𝑝𝑝,𝑞𝑞) − 𝑓𝑓(𝑠𝑠)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎� (4) 
 
If the fitting error of phase A(ω) matrix exceeds the maximum 
phase error specified (𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚 ), the first and second steps are 
repeated with a reduced modal error tolerance 𝜀𝜀1 = (𝛼𝛼𝜀𝜀1,𝛼𝛼 <
1). This process is continued iteratively until the phase error is 
within the acceptable limits (𝜀𝜀 < 𝜀𝜀max ).  
 

III.    MODEL ORDER REDUCTION OF PROPAGATION 
FUNCTION   

In general, A(ω) and Yc(ω) functions can be accurately 
represented with low order rational functions. However, in 
specific cases, particularly for multi-circuit underground cable 
systems, the order can become excessively high. 
As discussed in section II, each Amodes(ω) function is fitted 
with a common fitting tolerance (𝜀𝜀1). It is possible that some of 

the modes are fitted with a higher order transfer function than 
normally required (over-fitting). Higher-order transfer 
functions can increase the computational burden associated 
with evaluating the recursive convolution algorithm and may 
potentially lead to passivity violations due to overfitting.  
This paper discusses two methods to enhance the numerical 
efficiency of the transmission line models by reducing the order 
of A(ω) function. 

A.  Modal Truncation (MT) 
This is one of the oldest MOR techniques. In general, the MT 
is based on projecting the state space system on the subspace of 
the pencil 𝜆𝜆𝜆𝜆 − 𝐴𝐴 for some subset of eigenvalues [1], [2], [4]. 
The reduced order system is obtained by eliminating the non-
dominant eigenvalues (eigenvalues with smallest real part). In 
case of rational functions expressed as residue pole form, for 
some small enough tolerance (tol), the reduced order system 
represents the condition,  
 

‖𝑐𝑐𝑘𝑘‖
|𝑎𝑎𝑘𝑘| > 𝑡𝑡𝑡𝑡𝑡𝑡 

(5) 

 
Let’s assumed that the first ℓ terms (l<=N) satisfy the above 
condition (i.e. the terms with small residue/pole ratios are 
removed) and hence the truncated transfer function is, 
 

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗(𝑠𝑠) = �
𝑐𝑐𝑗𝑗𝑗𝑗𝑒𝑒−𝑠𝑠𝑠𝑠𝑗𝑗

𝑠𝑠 − 𝑎𝑎𝑗𝑗𝑗𝑗

𝑙𝑙𝑙𝑙

𝑘𝑘=1

 
(6) 

 
For a complex pole pair, the condition is, 
 

�
𝑐𝑐𝑘𝑘

𝑠𝑠𝑘𝑘 − 𝑎𝑎𝑘𝑘
+

𝑐𝑐𝑘𝑘+1
𝑠𝑠𝑘𝑘 − 𝑎𝑎𝑘𝑘+1

� > 𝑡𝑡𝑡𝑡𝑡𝑡 

 
where,  

𝑆𝑆𝑘𝑘 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑎𝑎𝑘𝑘) 
 
Once the rational function approximation is completed, the 
order of phase A(ω) function (see equation (3)) can be reduced 
directly by applying the MT technique. However, this does not 
give satisfactory results for the studied examples. Instead, the 
following procedure is applied to reduce the order after the 
curve-fitting. 
 
(1)  Compute residue/pole ratios of each mode (see 
equation(1)) and sort them in ascending order 
(2)  remove corresponding small residue/pole ratio terms in 
each mode below a small tolerance (tol) 
(3)  using the remaining modal poles, curve-fit the phase A(ω) 
matrix again and calculate the error (𝜀𝜀) 
(4)  if the error is less than the desired tolerance (𝜀𝜀1), then 
iterate (1) to (3) with a reduced tolerance (tol = k× tol, 
k<1.0).     

B.  Balanced Truncation (BT)  
The BT is one of the well-studied model reduction methods. 
The application of BT to frequency dependent transmission line 
modelling is novel.  One advantage of the BT method is that 



the asymptotic stability of the reduced order system is 
guaranteed.  Another advantage is the availability of a priori 
error bounds, which facilitates the determination of the 
appropriate order for the reduced-order model. 
   The application of BT method to a rational function is 
discussed in Appendix A. The state space form (A1a, A1b in 
Appendix A) of the Amodes(ω) function  can be converted 
into a real block diagonal form using a block diagonal 
transformation matrix S [1],[2],[4]. 
 

𝐴𝐴 = 𝑆𝑆−1𝐴𝐴𝐴𝐴 
𝐵𝐵 = 𝑆𝑆−1𝐵𝐵 
𝐶𝐶 = 𝐶𝐶𝐶𝐶 

(7a) 
(7b) 
(7c) 

 
For a given tolerance (tol), the reduced order dynamic system 
(representing 𝐴̃𝐴,  𝐵𝐵� , 𝐶̃𝐶 matrices) is computed by deleting small 
Hankel eigenvalues ( 𝜎𝜎1< tol ) . Since 𝐴̃𝐴 is a full real matrix, 
the poles of the reduced transfer function are found by 
calculating the eigenvalues of A matrix.  Finally using the new 
set of poles of the Amodes(ω) function and the corresponding 
modal delays, the entries of phase A(ω) matrix are curve-fitted 
(see section II). An iterative procedure is designed to gradually 
reduce the order until an acceptable level of accuracy is 
achieved.  
Since Yc(ω) can be typically approximated with low order 
transfer function (typically less than 20 poles), it is not 
necessary to apply model reduction methods for Yc(ω) 
function. 

IV.  SIMULATION EXAMPLE I 
The order reduction techniques on transmission line models are 
demonstrated with an example case involving a double circuit 
30km 3-phase underground cable system (flat configuration) as 
shown in Fig. 1. The summary of the cable data can be found in 
table 1. For both simulation examples, the per unit length 
transmission line parameters (e.g. series impedance and shunt 
admittance) are calculated based on [6] and [8]. The frequency 
dependency of soil parameters such as soil resistivity, soil 
permittivity is neglected. The direct numerical integration is 
used to compute earth return impedance [16]. 

 
 

 
As discussed in section II, Universal Line Model (ULM) first 
calculates and approximates Amodes(ω) function as an 
intermediate step [5]. For rational function approximation, the 
maximum order for Amodes(ω) or Yc(ω) is limited to 20 and 
the maximum fitting error for the phase A(ω) function is 0.5%.  
In ULM, the modes with close delays are [5] combined and 
hence effectively there are eight delay groups as shown in table 
2.  The modes corresponding to 1,3,4,5,6 and 7 delay groups 
have reached or closed to the maximum order limit. Since the 
poles of Amodes(ω) function are used to approximate the phase 
elements, the order of A(ω) matrix is 128 (i.e. sum of modal 
orders).  
 

 
 

(a) Order reduction using MT method 
The MT method is applied to reduce the complexity of the A(ω) 
matrix. Table 3 (second column) summarizes the order of each 
mode using MT method. The order of phase A(ω) matrix is 
reduced from 128 to 70. The number of convolutions to be 
evaluated numerically is reduced by 18,792 (= 58×N×N, where 
N = number of conductors, 18) in each time step of the time 
domain simulation. Fig. 2 shows the first column of the phase 
A(ω) function after and before MT method ensuring the 
accuracy of the curve-fitting. The maximum fitting error for the 
phase A(ω) matrix is 0.28%, which is less than the maximum 
allowed (0.5%). 

 

 
 

Fig. 1. Underground cable system example I 

TABLE 1 
CABLE DATA 

Inner conductor radius  22 mm 
Sheath inner radius 39.5 mm 
Sheath outer radius 39.95 mm 
Armour inner radius 43.45 mm 
Armour outer radius 44.1 mm 
Cable outer radius 49.3 mm 
Resistivity of conductor 6.99e-8 Ohm.m 
Resistivity of sheath 5.1667e-8 Ohm.m 
Resistivity of  armour 8.223e-8 Ohm.m 
Relative permittivity   
of  1st  insulation layer 

3.156 

Relative permittivity  
of  2nd  insulation layer 

2.3 

Relative permittivity  
of  3rd  insulation layer 

2.3 

Ground resistivity  100 Ohm.m 

 

TABLE 2 
TIME DELAY AND ORDER OF THE MODAL FUNCTION 
Delay 
group 

Time delay (ms) Order of the 
transfer 
function 

1 0.240345 18 
2 0.296956 8 
3 1.191263 18 
4 1.194583 18 
5 1.446850 20 
6 1.458000 19 
7 2.500259 20 
8 4.304765 6 

 



 
 
Fig. 2. First column of the phase A(ω) function after and before MT (original- 

solid line and the approximate ‘+’ line) 
 

(b) Order reduction using BT method 
The BT method is applied to achieve reduced order for each 
mode. The Hankel singular values for the PQ matrix are shown 
in the Fig. 3. The states corresponding to small Hankel singular 
values are neglected and table 3 (third column) summarizes the 
reduced order of the modes. The order of phase A(ω) matrix 
becomes 77 (40% less than the original order). Compared to the 
original solution, the number of convolutions to be evaluated 
numerically is reduced by 16,524 (= 51×N×N) in each time step 
of the time domain simulation.  

 

 
The Amodes(ω) functions after and before BT are shown in Fig. 
4 and the reduced functions are in a close agreement with the 
original function. Using the poles and delays associated with 

the reduced order modes, the phase A(ω) function is 
approximated. Fig. 5 compares the magnitudes of the first 
column of the original and reduced phase A(ω) matrix. The 
maximum fitting error for the phase A(ω) matrix is 0.31%, 
which is less than the maximum allowed (0.5%). 
  

 
Time domain simulation is carried out for the network shown 
in Fig. 6 using PSCAD/EMTDC commercial software. The 
conductor C1 is energized with step voltage and the other 
conductors are connected to a ground through resistances. The 
outer layers (Sheaths and Armour, not shown in the diagram) 
are connected to the ground through 1 mΩ resistance. The 
circuit breaker is open at 0.1 sec. Fig. 7 shows the sending end 
current. The two methods are in close agreement with original 
solution, thereby confirming that both BT and MT methods 
give accurate results. 
 

 

 
Fig. 3. Hankel singular values for the modes 

TABLE 3 
ORDER OF THE REDUCED MODAL FUNCTION 

Delay group Order with MT Order with BT 
1 14 10 
2 5 8 
3 8 12 
4 7 11 
5 9 10 
6 10 11 
7 12 10 
8 4 5 

 

  
 

Fig. 4. Modes of propagation matrix before and after BT reduction 
 (original - solid line and the approximate  ‘+’ sign) 

  
 

Fig. 5. First column of the phase propagation function after and before BT 
(original- solid line and the approximate ‘+’ line) 



 

 

V.  SIMULATION EXAMPLE II 
A double circuit underground coaxial cable system (tre-foil 
configuration) is shown in Fig. 8 with cable data in table 4. 
 

 
 
 

 

 
In this example, there are seven delay groups as shown in table 
5. The maximum order for A(ω) function and Yc(ω) is limited 
to 20 and the maximum fitting error for the phase A(ω) function 
is allowed to 0.2%. The order of phase A(ω) matrix is 105.  
 

 
 

(a) Order reduction using MT method 
Using MT method, the transfer function can be reduced as 
shown in table 6 (column 2). The order of the reduced A(ω) 
function is 76 (26.7% less than the original order) for the 
maximum phase fitting error 0.2%. The number of convolutions 
associated with A(ω) function is reduced from 15,120 (= 
105×N×N, , N = 12)   to 10,944 ( = 76×N×N) in each time 
step. Fig. 9 shows the first column of the phase A(ω) matrix 
after and before MT method conforming the accuracy after 
reduction. 
 

 
Fig. 9. First column of the phase A(ω) function after and before MT (original- 

solid line and the approximate ‘+’ line) 
 

(c) Order reduction using BT method 
A reduced order model is obtained through BT method. The 
Hankel singular values for the system are shown in Fig. 10.  
  

 
Fig. 6. Cable network 

 

 
Fig. 7. Sending-end current (solid green line-original, dotted red line-BT and 

blue ‘+’ line-MT)  

 

 
 

Fig. 8. Underground coaxial cable example II 

TABLE 4 
CABLE DATA 

Inner conductor radius  22 mm 
Sheath inner radius 39.5 mm 
Sheath outer radius 44 mm 
Cable outer radius 47.5 mm 
Resistivity of conductor 6.9944e-8 Ohm.m 
Resistivity of sheath 5.4301e-8 Ohm.m 
Capacitance insulation layer 0.3 uF/km 
Relative permittivity  
of  2nd  insulation layer 

2.3 

Ground resistivity  100 Ohm.m 

 

TABLE 5 
ORDER OF THE MODES OF PROPAGATION FUNCTION  

Delay group Time delay (ms) Order of the transfer 
function 

1 0.178039 11 
2 0.843530 20 
3 0.846600 20 
4 0.856592 15 
5 0.858305 18 
6 1.394449 13 
7 2.793333 8 

 



 
 
After removing the Hankel singular values below a small 
tolerance, the order of each Amodes(ω) function is shown in 
table 6 (column 3). Compared to the original, the order of the 
phase A(ω) function is decreased from 105 to 71. The 
computational effort to evaluate convolutions associated with 
A(ω) function is reduced from 15,120 ( = 105×N×N, , N = 12)   
to 10,224 ( = 71×N×N) for each time step in the time domain 
simulation. 

 
Fig. 11 shows the magnitude of Amodes(ω) function before and 
after model order reduction and Fig. 12 compares the 
magnitudes of the first column of the phase A(ω) matrix. 
Reduced functions are in a close agreement with the original 
functions. Fig. 13 shows the sending-end current for the same 
setup in example I. The time domain results from MT and BT 
methods are in a close agreement with the original solution.  

 

 

 

VI.  COMPARISON BETWEEN MT AND BT METHODS 
It is observed that both reduction methods successfully reduce 
the order for large cable systems with a higher order 
propagation function.  
In a range of cases investigated (not presented in this paper), the 
BT method exhibited better performance (in terms of reduced 
order) compared to the MT method. Also, BT has other 
advantages such as preserving asymptotic stability. 
However, in practical situations, BT method requires 
significant computation time compared to MT. For one iteration 
in example II, the BT and MT methods require 2.64 seconds, 
0.34 seconds respectively (2.5 GHz, 32 GB RAM laptop 
computer and using Matlab commercial software). Note that the 
model order reduction is performed only once at the beginning 
of the time domain simulation. 
The BT method is a very complicated method (involves state 
space transformation, real matrix transformation, solving 
Lyapunov equations, gramian calculations) and requires many 
modifications to existing transmission line programs. In 
contrast, the MT method is easy and straightforward to 
implement and provides satisfactory results.   

 
Fig. 10. Hankel singular values for the modes 

TABLE 6 
ORDER OF THE MODES OF PROPAGATION FUNCTION AFTER BR 
Delay group Order with MT Order with BT 

1 9 8 
2 14 10 
3 14 13 
4 11 10 
5 12 12 
6 9 10 
7 7 8 

 

 
 

Fig. 11. Modes of propagation matrix before and after reduction (original - 
solid line and the approximate ‘+’ sign) 

 
 

Fig. 12. First column of the phase propagation function after and before BT 
(original- solid line and the approximate dotted line) 

 
 

Fig. 13. Sending-end current (solid green line-original, dotted red line-BT 
and blue ‘+’ line-MT) 



VII.  CONCLUSION 
This paper demonstrates the application of BT and MT methods 
to frequency dependent transmission line models, enhancing 
the efficiency of time-domain simulation. Both methods 
successfully reduced the order of the propagation function 
while maintaining fitting accuracy.  The reduced order model 
reduces the computational effort and hence leads to fast 
simulations. 
   The BT method requires complicated mathematical 
calculations and significant computational effort. MT method 
is easy to implement in existing transmission line programs and 
provide reasonable results.    

VIII.  APPENDIX A 
The rational function in (1) can be expressed into state space 
form as shown below. 

𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 
𝑦𝑦 = 𝐶𝐶𝐶𝐶 

 

(A1a) 
(A2b) 

Where, diagonal A matrix with the poles (ai’s) in diagonals and 
B is a vector of ones and C is a vector of residues. Where 

𝐴𝐴 ∈ ℝ𝑛𝑛,𝑚𝑚,𝐵𝐵 ∈ ℝ𝑛𝑛,𝑚𝑚,𝐶𝐶 ∈ ℝ𝑛𝑛,𝑚𝑚 
 

(A3) 

The objective of the model order reduction is to find a reduced 
order of the transfer function (r < Nj) for each j, such that the 
approximation error || y = yreduced|| is small.  
It is assumed that the dynamic system (5a and 5b in section II) 
is asymptotically stable (the Vector-fitting algorithm enforces 
that all the poles of the system be located in the left-half plane; 
hence this condition is satisfied). The BT is related to the 
positive semi definite solutions of the Lyapunov equations, 

𝐴𝐴𝐴𝐴 + 𝑃𝑃𝐴𝐴𝑇𝑇 = −𝐵𝐵𝐵𝐵𝑇𝑇  
𝐴𝐴𝑇𝑇𝑄𝑄 + 𝐴𝐴𝐴𝐴 = −𝐶𝐶𝑇𝑇𝐶𝐶 

 

(A4a) 
(A4b) 

Where, P and Q are controllability and observability Gramians.  
Using the Gramians  of the Lyapunov equations, the Hankel 
eigenvalues can be computed as the square roots of the 
eigenvalues of the PQ matrix , 

𝜎𝜎𝑖𝑖 = �𝜆𝜆𝑖𝑖(𝑃𝑃𝑃𝑃) 
 

(A5) 

The Hankel eigenvalues of the system is a measure of the 
significance of the state variables of the dynamic system. The 
Hankel eigenvalues are ordered in a decreasing magnitude. The 
reduced order system can be calculated by eliminating the weak 
states corresponding to small Hankel singular values [1], [2], 
[4]. 

A.  Truncation procedure to eliminate small Hankel 
singular values  

 
(1) The Cholesky factors R (P=RRT) and L (Q = LTL) of the 

Gramians of the Lyapunov equations are calculated  
(2) Singular value decomposition is performed for the matrix 

LR 

𝐿𝐿𝐿𝐿 = [𝑈𝑈1,𝑈𝑈2] �Σ1 0
0 Σ2

� �𝑉𝑉1𝑉𝑉2
� (A6) 

 
Where, the Σ1 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜎𝜎1, … ,𝜎𝜎𝑙𝑙) ,  Σ2 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜎𝜎𝑙𝑙+1, … ,𝜎𝜎𝑛𝑛) 
and U1 , U2 ,V1 and V2 are orthogonal matrices. 

 
(3) The reduced order system can be calculated as  

𝐴̃𝐴 = 𝑊𝑊𝑇𝑇𝐴𝐴𝐴𝐴 
𝐵𝐵� = 𝑊𝑊𝑇𝑇𝐵𝐵 
𝐶̃𝐶 = 𝐶𝐶𝐶𝐶 

(A7) 

 
Where, W and T are projection matrices 

𝑊𝑊 = 𝐿𝐿𝑇𝑇𝑈𝑈1Σ−0.5 
𝑇𝑇 = 𝑅𝑅𝑉𝑉1Σ−0.5 

(A8) 

 
The Hinf norm error bound is [1],[2] 

�𝑓𝑓(𝑠𝑠) − 𝑓𝑓(𝑠𝑠)� ≤ 2(𝜎𝜎𝑙𝑙+1, … ,𝜎𝜎𝑛𝑛) 
 

(A9) 
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