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Abstract-- Ferroresonance, a non-linear and unpredictable 

disturbance, is rare compared to traditional power system faults 
occurring in power systems. This rarity, coupled with its 
complexity, makes it a challenging phenomenon to be detected and 
identified. This work presents a detection and classification 
scheme for ferroresonance and its modes. It is carried out by 
continuously processing the three-phase voltage and current 
signals using the discrete wavelet transform (DWT). The 
developed models are simulated in electromagnetic transient 
software and processed using the DWT to extract fault signatures 
and predictors. A decision tree classifier is trained to detect and 
classify a disturbance as ferroresonance using an adaptive time 
based on the disturbance class. The computational burden of the 
detection and classification process is significantly reduced by 
using the superimposed component of the voltage and current to 
detect transient inceptions before classification. Furthermore, the 
classification of different modes and classification from other non-
linear faults, such as arcing faults, is discussed. The adaptive 
timing and detection scheme demonstrates that the proposed 
methodology is efficient and can classify the disturbance into 
different modes. 

Keywords: Ferroresonance, Fault identification, 
Electromagnetic transients, Pattern recognition.  

I.  INTRODUCTION 
HE electrical power system is the most complex man-made 
systems on earth. The continuing rise in energy demand, 

today’s emphasis on greener, more sustainable electricity 
generation, and the regulations to provide high-quality and 
affordable energy always add further complexity to power 
system studies. The impact of disturbances on power grids 
depends on the event nature, location, severity level, system 
design, interconnection network downstream, and protection 
system. Although primary and backup protection schemes are 
designed to reduce the impact of disturbances, certain faults are 
inherently difficult to detect or identify. The constantly growing 
power system must be able to handle all kinds of disturbances, 
including those produced by inverter-based resources (IBR) 
from wind farms, solar power plants, and battery energy storage 
systems (BESS). Wind and solar plants to ensure continuity of 
service to the users.  

Ferroresonance is one of the phenomena that is difficult to 
detect or identify by actual protection devices. In fact, it is a 
complex and unpredictable phenomenon in power systems 
caused by nonlinear interactions between transformers, 
reactors, and surrounding capacitances resulting from cables 
and lines [1]. It can lead to severe overvoltage, equipment 
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damage, and insulation breakdown, posing significant risks to 
system reliability and safety. Detecting and mitigating 
ferroresonance is challenging due to its dependence on system 
conditions, such as switching operations or abnormal 
configurations, which makes it difficult to predict or control. 
Therefore, a resilient monitoring system is needed to 
complement the action of protection relays and securely protect 
the network from this kind of disturbance. Different studies 
have been carried out to understand the ferroresonance 
phenomenon in power systems since the term was coined in 
1920 by P. Boucherot [2]. The different circuit configurations 
vulnerable to ferroresonance occurrence are discussed in [3], 
including experimental and real-life cases of occurrence of this 
phenomenon. Similarly, research was conducted on detecting 
ferroresonance in power systems, discriminating the event 
against other switching transients like capacitor switching, 
transformer switching and load switching. In [4], the Wavelet 
Transform (WT) was used for signal decomposition and the 
Learning Vector Quantizer (LVQ) neural network for 
classification over other disturbances. In [5], the Stockwell 
transform (S-transform) was used for feature extraction and 
support vector machine (SVM) to distinguish ferroresonce 
events from other transients. In [6], the authors used WT for 
signal decomposition and feature extraction and then proceeded 
to employ a decision tree to determine a ferroresonance among 
other events. The approaches discussed in [4] and [6] were 
found to be not robust enough to distinguish ferroresonance 
modes. Moreover, wavelet decomposition presents a high value 
at the inception of all transients and is not unique to only 
ferroresonance occurrence. Later on, by applying an artificial 
neural network with multi-layer perceptron (MLP) for 
classification combined with WT, the ferroresonace is 
identified and differentiated in [7], however, there is no 
classification in terms of ferroresonance modes. Classification 
of fundamental and high-frequency ferrroresonances was done 
in [8] where an improved Elman-Adaboost method is used for 
classification and identification. In [9], by using the Deep 
learning approach, the authors reported that the most difficult 
ferroresonance mode had been identified, the chaotic. 
Nevertheless, the signals reported in [9] correspond to a 
transitional chaotic phenomenon but not a chaotic mode. 

The methods discussed above focused on distinguishing 
ferroresonance phenomena from other transient events. The 
most recent methods use artificial intelligence [6-9], and a few 
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of them [8], [9] can classify the ferroresonance in a few modes.  
In contrast, this work introduces a method that can distinguish 
and classify the ferroresonance in all its possible modes just 
after a few cycles of its occurrence. This allows for a nuanced 
approach to managing this phenomenon, ensuring that the 
power systems remain stable, efficient, and safe under various 
operating conditions. It aids in decision-making to prevent and 
mitigate the future occurrence of this disturbance. Once the 
fundamental mode is detected, the tailored mitigation strategy 
must be focused on damping and load adjustments. If quasi-
periodic and subharmonic modes are detected, non-linearities 
and resonances from near nodes must be avoided. Robust 
protective relays and system isolation strategies may be 
implemented when chaotic mode is detected.  

The developed approach is designed to assist transmission 
and distribution operators in identifying and classifying 
ferroresonance, filling an existing gap in identification tools. It 
enables early detection of specific ferroresonance modes, 
promoting proactive monitoring to mitigate potential damage.  

II.  FERRORESONANCE MODES AND MODELING 
In [10], the ferroresonance phenomenon is defined as an 

unusual anomaly characterized by overvoltage and quite 
irregular electrical signals. It is associated with the excitation of 
one or more saturable inductors through capacitance in series. 
However, resonance could be produced by an arrangement in 
parallel or series, depending on the network topology. When a 
resonance occurs in a system, the resonant frequency is 
deterministic due to the capacitor’s and inductor’s nature. In 
contrast, ferroresonance does not occur at a fixed frequency. 
The inductor, with non-linear behaviour, can have different 
values in the saturation region of the ferromagnetic material. 
This implies that different capacitance values can potentially 
cause ferroresonance at a given frequency [11]. The event can 
be listed depending on the modes and its characteristic waves, 
as mentioned in [12] and explained in the next subsections. 

A.  Ferroresonance network configuration  
Five network configurations that potentially produce a 

ferroresonance [2] are: 1) A transformer accidentally energized 
through only one or two phases, 2) a transformer energized by 
a capacitive load due to a switch opening, 3) a transformer 
connected to a series compensated transmission line 4) a 
transformer connected to a system with an isolated neutral in 
distribution systems, and 5) a coupling capacitive voltage 
transformer connected to a non-energized line in parallel to a 
long line energized or a cable with small short circuit power 
Among all the possible systems, in this work, the network 
shown in Fig. 1 has been selected to reproduce and analyze the 
ferroresonance events. The system consists of a source 
connected to a line, which at the end is connected to a nonlinear 
inductor in parallel to a capacitor, a linear load, and a set of 
three one-phase, three-winding transformers. The model is built 
in EMTP-ATP environment. The parameters of each element 
can be found in TABLE I. 

B.  Fundamental mode  
Fig. 2 shows the evolution of a fundamental ferroresonance 

event. At the beginning, the signals show a fundamental 
frequency sinusoidal shape; then the event happens at 0.2 s;-  
 

TABLE I  
FERRORESONANCE NETWORK ELEMENT PARAMETERS  

Element Name *    
Source 
 

AC 𝑉𝑉 = 32.4 𝑘𝑘𝑘𝑘 f=50 Hz  

π line 1∅ π line 1 𝑅𝑅 = 1.659𝑒𝑒4 Ω/𝑚𝑚 L=3.09e-6 
mΩ/m 

C=6.08e-5 
µF/m 

π line 1∅ π line 2 𝑅𝑅 = 3.318𝑒𝑒4 Ω/𝑚𝑚 L=8.18e-6 
mΩ/m 

C=1.216e-4 
µF/m 

π line 3∅ π line 3    

Capacitor C1 CABC=0.0006µF   

Non-linear 
load 3∅ NL I=3.002mA 

Flux 
=135.105 

Vs 
See Table III 

Capacitor C23 CABC=0.00027µF   

Resistance R2 R=75MΩ   

1∅ 3 
windings 
transformer 

BCT 1 
BCT 2 
BCT 3 

HV 
V= 400 kV 
P = 0.1 kVA 

LV 
V = 0.1 kV 

P = 0.1 
kVA 

TV 
V= 0.033 kV 
P = 0.1 kVA 

*Names of the elements correspond to Fig.1 
** All π lines are 1 m length 

 

 
after that, an electromagnetic transient starts and lasts from 0.25 
s to 0.5 s (from 0.2 s until 0.7 s).  

Thereafter, the voltage and current signals exhibit steady, 
non-sinusoidal shapes. Fig. 2 signals are obtained by using the 
model depicted in Fig. 1 and the parameters used in TABLE I. 

C.  Quasi-periodic mode  
The quasi-periodic mode is not strictly periodic; instead, it 

exhibits oscillations with multiple frequencies that may not be 
integer multiples of each other. The oscillations result in 
complex patterns that never repeat exactly, leading to a 
quasiperiodic response. For example, the frequency spectrum 
of the voltage and current is shown in Fig. 3. At least two 
dominant frequencies exist in the spectrum of the voltage and 
current; the fundamental (50 Hz) and the third harmonic (150 
Hz). Due to the nonlinear behaviour, this mode also contains 
several frequencies, not multiples of the fundamental frequency 
(interharmonics), such as 65 Hz, 135 Hz and 165 Hz, along with 
a subharmonic of 35 Hz. 

AC
π line 1

π line 2

π line 3 π line 4 π line 5

R1
C1

CB

C2R2NL

BCT1 BCT2 BCT3

HV

VT-S VT-R VT-T

I

 
Fig. 1  Schematic model simulated in EMTP-ATP Model to analyze the 
fundamental, the sub-harmonic and the transitional chaotic (close to chaotic 
ferroresonance) ferroresonance modes. 
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Fig. 2  Fundamental ferroresonance (a) voltage and (b) current 
waveforms. 
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Fig. 3  Quasi-periodic ferroresonance electrical signals and their 
spectral components (a) voltage, (b) voltage frequency spectra, (c) 
current, and (d) current frequency spectra. 

D.  Sub-harmonic mode  
The subharmonic mode of ferroresonance is dominated by 

sub-multiples of the fundamental frequency, as seen in Fig. 4. 
The dominant frequency 𝑓𝑓𝑜𝑜 𝑛𝑛⁄  is a subharmonic of period-𝑛𝑛 
where 𝑓𝑓0 is the fundamental frequency. Fig. 4(b) and Fig. 4(d) 
reveal that the ferroresonance, in this case, is a period 3 
subharmonic. The spectrum has a fundamental frequency of 
16.67 Hz (50 𝐻𝐻𝐻𝐻 3⁄ ). 

To obtain the signals presented in Fig 4, the system depicted 
in Fig. 1 with the parameters in TABLE I is used except for the 
non-linear load, whose values are I =2.15 mA and Flux =725.15 
Vs, and the shunt resistance R =50 MΩ. 

 

Time (s)
0.7 0.75 0.8 0.85 0.9 0.95 1

Vo
lta

ge
 (V

)

3

0

2

1
2

x105

 
(a) 

Frequency (Hz)
0 100 200 300 400 500

M
ag

nn
itu

de

0

1

0.5

1.5

2

x105

 
(b) 

Time (s)
0.7 0.75 0.8 0.85 0.9 0.95 1

-0.2

0

-0.1

0.1

0.2

Cu
rr

en
t (

A
)

 
(c) 

Frequency (Hz)
0 100 200 300 400 500

M
ag

ni
tu

de 0.06

0.04

0

0.02

0.08

 
(d) 

Fig. 4  Sub-harmonic ferroresonance electrical signals and their 
spectral components (a) voltage, (b) voltage frequency spectra, (c) 
current, and (d) current frequency spectral. 

E.  Chaotic mode  
In chaotic ferroresonance, the signal exhibits random 

behavior without any discernible pattern. This transient nature 
persists throughout the signal's duration, lacking uniformity or 



regularity. The voltage and current spectral components, as 
shown in Fig. 5(b) and Fig. 5(d), further emphasize this chaotic 
behavior. Although spikes are noticeable at fundamental and 
subharmonic frequencies, the broadband nature of the spectrum 
poses a significant challenge in identifying chaos within the 
signals, as illustrated in Fig. 5(a) and Fig. 5(c). To obtain the 
signals in Fig. 5, the system depicted in Fig. 1 with the 
parameters in TABLEI is used except for the shunt resistance R 
=50 MΩ and the shunt capacitance C1=0.00045µF. 
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Fig. 5  Chaotic ferroresonance electrical signals and their spectral 
components (a) voltage, (b) voltage frequency spectra, (c) current, and (d) 
current frequency spectra. 

III.  METHODOLOGY  

A.  Discrete Wavelet transforms 
The discrete wavelet transform (DWT) is widely used in 

various applications for signal processing and analysis. It is 
particularly effective for signals with frequency content that 
varies over time. The DWT transforms time-dependent signals 
into wavelets, allowing for the identification of important signal 
features.  

The significant advantages of using DWT as the first step in 
the proposed method are: 

• They function as discrete filters. Electrical signals from 
the field often come with high frequencies and noise that 
do not pertain to the ferroresonance phenomenon. Thus, 
these techniques highlight key characteristics of the 
signals. 

• They decompose signals across different scales; low and 
medium frequencies [14] are utilized for the method, as 
high frequencies do not correspond to ferroresonance. 

• They facilitate the visualization of abrupt changes that 
may not be apparent in the time domain.  

• They are particularly effective for non-stationary 
signals [15] and can follow the evolution of the 
ferroresonance. 

• They are the preferred method for analyzing signals 
with rapid peaks and discontinuities, as they can 
approximate data within a finite domain. 

• Individual wavelets are localized in space, making it 
possible to analyze transient signals resulting from 
disturbances. 

In this document, the signals are transformed using the 
Daubechies-4 mother wavelet. The detail and approximation 
coefficients obtained from the wavelet decomposition are 
utilized as features for the classification algorithm. The choice 
of the Daubechies-4 mother wavelet over Haar, Fejér–
Korovkin, and Symlet wavelets is based on its superior 
performance during chaotic ferroresonance. This wavelet 
captures smooth variations, provides excellent noise 
suppression, enhances frequency resolution, and features a 
simple structure. 

B.  Step 1: Detection scheme 
Superimposed components are used to detect an event. The 

process runs during the entire simulation time and serves as the 
starting of the DWT and classification process. Continuous 
overvoltage and saturation produced during ferroresonance in 
ferromagnetic equipment require a short time detection to 
prevent equipment damage. Therefore, a window of one cycle 
is used to analyze the time series signal of both disturbances. 
During steady-state conditions, the electrical signal over a time 
interval of one period (T) should be equivalent to that provided 
by one cycle earlier when there is no external influence or 
network changes. When a transient condition occurs, at least 
one of the voltage or current signals presents a value greater or 
lower than the steady-state value. 

The superimposed value of the three-phase currents and 
voltages are calculated by equations (1) and (2), respectively. 

Δ𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎(𝑘𝑘) = |𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎( 𝑘𝑘) − 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎(𝑘𝑘 − 𝑇𝑇)| (1) 
Δ𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎(𝑘𝑘) = |𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎( 𝑘𝑘) − 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎(𝑘𝑘 − 𝑇𝑇)| (2) 

where T denotes the number of samples per cycle and k is 
the actual sample. Since the current magnitude of all the 
disturbances has a wide gap, a combination of superimposed 
currents and voltages is used to detect the disturbances. A pair 
of thresholds are then set, one for the current and one for the 
voltage. The data is normalized to prevent numerical errors in 
the design using the corresponding voltage and current base for 



ΔV and ΔI. The equivalent superimposed voltage component is 
then computed as 

Δ𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎(𝑘𝑘) =
|𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎( 𝑘𝑘) − 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎(𝑘𝑘 − 𝑇𝑇)|

𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
 (3) 

The superimposed technique adopted in this work to detect 
disturbances is also used in protective relays [16]. The flow 
chart in Fig. 6 shows the detection scheme. If the superimposed 
components present values above the threshold during a hold 
period (N is the number of samples per period), the disturbance 
occurrence is confirmed, and the next step in the classification 
scheme is initiated. The proposed detection scheme is chosen 
over others for its simplicity and low computational burden. 
The DWT and other features are extracted in step 2.  

The phase after the detection is the classification of the 
disturbances into their corresponding classes. Fig. 7 shows the 
step-by-step approach adopted in this study.  

Current (Iabc) and 
voltage(Vabc)

One cycle 
delay

ΔI=Ik-Ik-1

ΔV=Vk-Vk-1

Threshold
ΔIabc & ΔVabc   

Start counter

Count1=>N

No

Disturbance 
detected

Yes Yes

No

start clasification 
algorithm  

Fig. 6  Disturbance detection flowchart. 
The features extracted from the processing of DWT outputs 

in MATLAB are used in the first phase of the classification 
algorithm to generate the datasets for training and testing. 
 

Generate the 
dataset

Divide the dataset 
into trainnig and 
testing datasets

Training the 
classification model Test the classifier

 
Fig. 7   Flow chart of classification algorithm development. 

C.  Step 2: Machine learning – classification algorithm 
Electrical signals during an event are complex to analyze and 

can sometimes be impossible to classify at first glance, even 
when the classification is performed offline. Therefore, 
Machine learning is proposed as a method to classify 
disturbances. Discrete Wavelet Transform (DWT) is applied to 
currents and voltages immediately after an event is detected. 
This process produces detail and approximation coefficients, 
which are then used to extract features from the various 
disturbances. The results are stored in a dataset that serves as 
the training ground for the algorithm. 

As discussed in Section II.  each type of ferroresonance 
exhibits distinct harmonic characteristics. With the increasing 
power of electronic devices in the system, signal distortion also 
rises. As a result, classifying based solely on harmonic content 
is no longer feasible. To address this challenge, we utilize the 
filtering properties and data size reduction capabilities of DWT. 

Consequently, the resulting signals, only the mother wavelet 
results, are employed in the machine learning approach. 

The algorithm for dataset extraction is developed in Matlab. 
As inputs, the sampling frequency, DWT's decomposition level, 
and window size are required. The data labels are generated 
using the name of each disturbance. The extracted disturbance 
signal lengths range from 0.35 s to 2 s. To reduce the length of 
the time series and obtain compact forms of the signals without 
losing their properties, the signals are partitioned into a shorter 
length of one cycle (200 samples at 𝑓𝑓𝑠𝑠=10 kHz) with an overlap 
of 5 ms (50 samples at 𝑓𝑓𝑠𝑠=10 kHz). These sets of sequences 
provide information at different intervals of the original signal 
that is used as a training dataset to classify the different 
disturbances as listed. 

Figure 8 shows the step-by-step approach to generate the 
dataset for a single disturbance class, where 𝑗𝑗 represents the 
index of each simulation. For instance, assuming 20 simulations 
of the fundamental ferroresonance disturbance in ATPDraw 
software, then j=1, 2, …, 20. The process is repeated for all the 
disturbance classes to obtain the total N rows (observations) and 
M columns (features) dataset. The dataset used here to train the 
classifier has 32 columns; the first 31 columns represent the 
features, while the last column represents the class label. Since 
the datasets are generated sequentially, the matrix rows are 
arranged randomly. Then, the dataset is divided into two parts: 
a training dataset (75 %) and a testing dataset (25 %). The 
training is used to train the algorithm, while the testing dataset 
is used to examine the performance of the trained algorithm.  

There are many types of classifiers used for pattern 
recognition. The common ones are SVM, decision tree (DT) 
[17], k-nearest neighbor (kNN), naive Bayes classifier, 
ensemble bagged trees, etc. DT is adopted in this work because 
of its speed and training time, simplicity, and accuracy [18]. 
After careful observation and several training processes, seven 
out of the initial thirty-one features were found to be sufficient 
for classifying the signals. 

start

Ovelaping percentage, x 
Level of decomposition

k – window size

Load all disturbances of the same type.
n – total 
J=1,2,…,n

Take the jth signal

Generate featursfor 
observation (i) and 
attach a class lebel

Ubdate the dataset 
with observation (i) 

features

Acquire k sample 
points for 

observation (i)

i=i+1

End signal j j=j+1

J<=nSave the fnal 
datasets

No Yes

Yes No

 
Fig. 8  Step-by-step approach to generate a dataset for all disturbances. 



The machine learning process is based on a DT composed of 
the Gini diversity index [19], the towing rule, and the maximum 
deviance reduction split criteria [20]. The tree starts with a root, 
followed by the nodes interconnected by the branches. The last 
nodes of the tree are called leaves, representing the final class 
of the disturbance. At the first node, the classifier analyses all 
the available features and compares them with the trained 
model to split the node. The number of tree branches also 
affects the complexity of the tree. Here, it is set to a maximum 
of 20 to maintain the complexity of the tree. Another concern 
about using the decision tree is the overfitting of data due to 
sharp requirements used at every node. This can be overcome 
by using different decision trees bagged together as ensemble 
trees. The method is combined with a fuzzy logic approach to 
make it more robust and immune to noise [5]. The k-fold cross-
validation approach is adopted in the method, the data is 
partitioned into k-folds, and the accuracy is estimated on each 
fold; therefore, the overall accuracy of the method is the 
average of all folds. This helps to tune the performance of the 
classifier to avoid overfitting. The overall accuracy, sensitivity 
(3) and specificity (4) evaluate the performance. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
 (3) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 (4) 

 
To generate different scenarios, the circuit shown in Fig. 1 

variates the parameters influencing ferroresonance. Increasing 
or decreasing the shunt capacitor more than 30th times, the 
change of parameters has different impacts on the onset of the 
sustained period but not in the modes. The resulting confusion 
matrix that shows the true positive rate of each disturbance is 
depicted in Fig. 9. It can be seen that the model's overall 
accuracy is 99.8%. with an error of 0.2%. 

The essential metrics for the classifier's performance 
evaluation depend on the objective of the classification 
algorithm.  

 

 
Fig. 9  Confusion matrix of trained decision tree for all disturbance classes. 

False tripping or no detection of disturbances can create 
issues in the network and the classifier. The primary aim of this 

paper is monitoring, with the potential for its capability to be 
significantly improved in the future for control activities in the 
network. 

In that sense, after the disturbance is detected in Step 1, Step 
2 is performed (see Fig. 10). The classification is performed for 
a specified window of three cycles. The two major steps during 
this stage are feature generation and new sample prediction. 
During this period, a sliding window is used to collect the signal 
data used as input for the classifier. This step is optimized by 
reducing the evaluation rate to 4 times per defined window. The 
signal length of one cycle k is acquired four times per window. 
This is implemented using the decision flowchart shown in Fig. 
10. This approach is adopted instead of a sliding window of one 
data point increment to reduce the computational burden. 
Consequently, four predictions are obtained per window, and 
the final output is the common predicted class from the four 
predictions, reducing the false positive rate with the assumption 
that one disturbance occurs at a time. The class time in Fig. 10 
indicates the number of windows the classification 
continuously uses. It is set to three cycles, and three different 
results are obtained, showing the first indication of the 
disturbance type. The expected result from the secondary and 
primary arcing detection is determining the arc extinction time, 
which is the time taken to extinguish the arc. Thus, the 
classification window of three cycles is too small to evaluate 
this. Moreover, continuous computation throughout the signal 
will provide redundant data and consume memory. This leads 
to the next step, where an adaptive time is proposed as the issue 
solution. 

D.  Step 3 & 4 Dead times 
Adaptive timing is introduced into the classification 

algorithm to optimize efficiency by reducing redundant data 
and saving computational memory.  
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Fig. 10  Flowchart of a ferroresonance event classification procedure. 

The ferroresonance disturbance takes some time before 
settling into the sustained mode to be classified. At first, a dead 
time of 10 cycles is introduced, after which a lesser dead time 
(period of no computation) is proposed. During the first few 
cycles, all modes are classified as chaotic ferroresonance 
because it has a continuous transient voltage with no pattern. 



Step one is initiated again at the end of the pre-set time (see Fig. 
11, Step 3). This is to reconfirm the presence of the disturbance 
after the dead period. After Step 3, the ferroresonance timing is 
activated (see Fig. 11, Step 4). It has five cycles as a dead time, 
reducing the redundant data generation. This is because the 
sustained period, particularly for fundamental ferroresonance, 
remains unchanged unless there is a modification in the system 
configuration, such as introducing external losses or turning off 
the source. Then, the ferroresonance case is stored.  

Assuming 𝑘𝑘 is the number of samples per window size, the 
detection and the classification algorithm is summarized as 
follows:  

Detection: Compute |Δ𝐼𝐼| and |ΔV| at the current time step. 
Compare these to thresholds to detect disturbances. If values 
exceed thresholds for up to ℎ +  𝑘𝑘/10 sample points, activate 
classification and pause detection during this period. 

Classification: Over 3𝑘𝑘 samples, extract features four times 
per window and classify disturbances, producing three outputs 
per window. 
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Fig. 11  On Steps during ferroresonance event.   

Dead Time: After classification, apply a 10-cycle dead time. 
Recheck |Δ𝐼𝐼| and |ΔV|. If disturbances persist, repeat 
classification (3𝑘𝑘 samples), identifying the type (arcing fault or 
ferroresonance). 

Ferroresonance: If classified as ferroresonance, apply a 
dead time of 5𝑘𝑘, followed by repeated detection and checking 
steps for four cycles. Terminate if no disturbance is detected. 

IV.  STUDY CASE 
To evaluate the proposed algorithm performance. The next 

disturbances are simulated and evaluated:  
• three-phase fundamental ferroresonance,  
• three-phase chaotic ferroresonance,  
• AB fundamental ferroresonance,  
• BC fundamental ferroresonance,  
• single phase elongated air arc,  
• secondary arc, and 
• no ferroresonance.  

The classification error is analyzed using the formula 

𝑃𝑃 = �𝑃𝑃(𝜔𝜔𝑖𝑖)
 𝑚𝑚𝑖𝑖

𝑁𝑁𝑖𝑖
  

𝑛𝑛

𝑖𝑖

 (5) 

where 𝑚𝑚𝑖𝑖 is the number of misclassified vectors, and 𝑁𝑁𝑖𝑖 is 
the total number of vectors from class 𝜔𝜔𝑖𝑖. The confusion matrix 
in Fig. 9, extracted from Matlab after training the classifier, 
presents a value of 𝑃𝑃=0 for all classes except the three-phase 
fundamental ferroresonance and the three-phase chaotic 
ferroresonance. This shows that the classifier is accurate 

enough to classify the disturbances. Additional evaluation is 
done with separate signals to verify the training process's result 
and the adaptive timing. Fig. 12 presents the result obtained 
when the fundamental ferroresonance case is tested with the 
proposed algorithm. Each step is activated when the amplitude 
is 1; otherwise, it is inactive. As shown in Fig. 12,  dead time 
ferroresonance occurs after the general dead time. After this 
period, the ferroresonance mode is found. 

During this event, the first few cycles of the fundamental 
ferroresonance are classified as quasi-periodic, but after (0.5 s), 
the event is ascertained as Fundamental (see TABLE II). The 
method classifies the ferroresonance in time. 

 
TABLE II 

CLASSIFICATION RESULTS DURING FUNDAMENTAL FERRORESONANCE 
Time (s) Ferroresonance mode Time (s) Ferroresonance mode  
0.240 Chaotic 0.620 Fundamental 
0.260 Quasi-periodic 0.640 Fundamental 
0.280 Quasi-periodic 0.660 Fundamental 

0.500 Fundamental 0.920 Fundamental 

0.520 Fundamental 0.940 Fundamental 

 

V.  CONCLUSIONS 
This paper discusses the four common modes of 

ferroresonance; the fundamental, the subharmonic, the chaotic 
and the quasi-periodic. The frequency spectrum of the voltage 
and current signals is applied to categorize the signals into 
different modes. A step-wise implementation and adaptive dead 
time are proposed to reduce redundant data and save 
computational space. Apart from the classifier evaluation with 
a 25 % test dataset, the whole algorithm has been tested with 
more than 20 cases of disturbances using a combination of 
steady-state and post-fault data. The algorithm detects the 
transient inception time in less than a cycle for all cases and 
subsequently classifies them correctly. 

• The algorithm's efficiency is shown by its ability to 
detect and classify disturbances within 100 ms. 
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Fig. 12  Study case: Fundamental resonance event voltage signal and 
steps activation during the classification procedure. 



• The successful application of adaptive dead time to 
ferroresonance reduces computational memory and 
optimizes resources by increasing the dead time 
interval. 

• The algorithm is robust, with a high classification 
accuracy of 99.8 %, which is observed during system 
evaluation. 

The method is not meant to replace primary protection 
functions but serves as a tool for transmission and distribution 
operators to detect and catalogue ferroresonance, addressing a 
current gap in available tools. It supports proactive monitoring 
by identifying early signs of specific ferroresonance modes to 
prevent severe damage. However, the first two steps have been 
developed in a way that can be implemented in real-time; the 
overall method has not yet been adapted for online use. Future 
work will focus on enabling real-time simulation. 

VI.  APENDIX  
TABLE III 

NO LINEAR LOAD PARAMETERS: FLUX LINKAGE VS CURRENT  
Current (A) Fluxlinked (WbT) 

0.0007348 180.058 
0.0057800 1080.139 
0.0083800 1530.284 

0.0154000 1620.729 

0.0273000 1710.550 

0.0741600 1890.608 

0.2000000 2100 
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