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Abstract—Due to the reduction in the systems total mechanical
inertia, frequency swing deviations increase with the penetration
of inverter-based resources (IBR). For frequency swings, transient
stability programs usually model the load as frequency-dependent
using, for example, exponential load models. These programs
usually use a phasor solution at 60 Hz for the AC network,
and the frequency is estimated from the solution for the
phase angles at previous and current time steps but is not
explicitly included in the present time step solution. On the other
hand, in Dommels EMT time domain solution, the frequency
is implicitly included in the solution at all locations in the
network, including the load busses. A full-system EMT solution,
however, is expensive compared to a phasor solution. In this
paper, the Shifted-Frequency Analysis method (SFA), which is
a phasor solution with magnitude and phase angle discretized
with the EMT method, is combined with a frequency-dependent
load synthesis model to study the influence of the frequency
dependence of the load in frequency swings. The IEEE-39-Bus
system is used for tests of load-shedding conditions. The results
show that using a frequency-dependent load model has an
important influence on the maximum frequency deviations during
the contingency.

Keywords—Accurate frequency swing solutions in low inertia
systems, Frequency dependent load model (fdLoad), Shifted
Frequency Analysis (SFA) modelling.

I. INTRODUCTION

THE transition from synchronous generation to
inverter-based resources (IBR) has created challenges for

traditional power system simulation software due to the wider
swings caused by the decrease of system inertia. In particular,
frequency swings during generation loss, load shedding, and
faults can be larger than expected by frequency relays.

The SFA-EMT simulator [1] was developed to solve
a phasor-domain electric circuit using Dommel’s EMT
discretization techniques [2] applied to the magnitude and
phase angle of the voltage and current phasors. (In this paper,
whenever the generic term EMT is used, it refers to Dommels
EMT discretization method of [2].) SFA-EMT can simulate
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any frequency in the system, but it is particularly efficient for
frequency deviations around 60 Hz.

In conventional phasor-based software, frequency is
estimated from the rate of change of the phase angles from the
previous solution to the present solution (e.g., [3]–[6]). This
approach does not use the current step frequency for frequency
dependent loads and has difficulties at discontinuities, for
example during load shedding.

In SFA-EMT, the phase angles are continuous variables,
and the frequency at the present solution step is implicit in
the solution. As a result, it is possible to model the frequency
dependence of the loads using a frequency-dependent network
synthesis branch, as in the frequency-dependent models of the
EMT solutions (e.g., [7], [8]).

For the SFA-EMT solution, discontinuities can be treated
as in the EMT programs using, for example, CDA ( [9]) or
using the backward Euler rule instead of the trapezoidal rule
for the entire simulation. Since in the SFA-EMT solution, the
frequency is implicit in the solution, the system impedances
or admittances are not constant at 60 Hz but are obtained at
the correct frequency at every solution step.

This paper extends the accuracy of the SFA-EMT simulator
of [1] for modelling frequency swings by developing a
frequency-dependent load model (fdLoad) that synthesizes the
load as a combination of constant R, L, and C components
(Fig. 3).

The fdLoad model follows the EMT frequency-dependent
line models (e.g., [7]) that use a network synthesis to model
impedances or admittances. The Vector Fitting procedure
of [8] was chosen for this modelling because it can
synthesize complicated frequency-dependent functions defined
in a relatively narrow frequency band, as compared to Bodes
method of [7].

The IEEE-39-Bus system is used to test the fdLoad model
during frequency swings during load-shedding situations
with variable amounts of IBR penetration. These results
are important for Underfrequency Load Shedding schemes
(UFLS). The existing UFLS may be set to operate too early
when the load’s frequency dependence is not considered.

II. SFA-EMT SHIFTED FREQUENCY ANALYSIS
SIMULATION

The application of Dommel’s EMT solution methods to
complex signals was discussed in [10]. The Shifted Frequency
Analysis (SFA) algorithm to model synchronous machines
was discussed in [11]. The SFA-EMT simulator to solve a
general network for the time-dependent magnitude and phase



angle of phasor voltages and currents using EMT discretization
methods was developed in [1].

As discussed in [1], in the SFA-EMT method, a
frequency-shifting transformation of -60 Hz, e−j(2π60)t is
applied to the instantaneous voltage and current waveforms
with the result that the 60 Hz components of the signals
are shifted down to 0 Hz and the frequencies around 60 Hz
become frequencies around 0 Hz, that can be solved with large
∆t’s.

The SFA-EMT equivalent branches shown in Fig. 1,
3rd column, were obtained using Dommel’s EMT time
discretization techniques of [2] on the phasor branches of
Fig. 1, 1st column. Fig. 1, 2nd column shows the discretized
branches for the basic circuit components R, L, and C. In
addition to the time discretization techniques, other EMT
solution strategies, such as CDA [9] for discontinuities, and
frequency dependence synthesis modelling can be directly
applied to the SFA-EMT solution.

Notice that the branches for the SFA-EMT model are a
hybrid between the traditional phasor model and the EMT
discretized branches for the circuit components. The solution
in SFA-EMT proceeds one time step at a time, exactly like
in the normal Dommel’s EMT, using the discretized phasor
models for the branches and injecting the history sources
calculated in the previous time steps. The only difference
between the EMT solution and the SFA-EMT is that SFA-EMT
solves a phasor system of equations.

Even though SFA-EMT is particularly advantageous for
small deviations around 60 Hz in terms of being able to use
very large discretization steps, the method is still capable of
solving for any transient with higher or slower frequencies,
as long as the time step size is chosen using the EMT
rule of ∆t = 1

10·fmax
, only that now ∆t = 1

10·(fmax−60) .
For example, to capture the third harmonic f3 = 180Hz,
the time step required is ∆t = 1

10·(fmax−120) = 0.835 ms.
The normal EMT would require ∆t = 1

10·180 = 0.556 ms.
However, as the frequency deviates further from 60 Hz, a
regular EMT solution is preferred because the EMT solution
is based on real-number operations while SFA-EMT requires
complex-number operations.

Since SFA-EMT is based on phasors, if we express
the equivalent SFA-EMT branch in shunt form, it is
straightforward to modify a traditional transient stability
solution [Y ][V ] = [I] into an SFA-EMT solution by replacing
the normal phasor admittances with the SFA-EMT equivalent
admittances and injecting the SFA-EMT history sources into
the right-hand side of the transient stability solution.

In terms of computer time, the SFA-EMT solution uses
complex numbers as in the static-phasor solution, with an
added small overhead for the transformations between the
original unshifted domain (phase domain) and the shifted
domain (SFA domain) during initialization and changes of
topology. The introduction of a synthesis load model, as
presented in this paper, avoids the overhead due to changes
of topology when the load values change due to frequency
changes.

For transient or frequency stability studies, if we have a
0.9 Hz frequency deviation in the 60 Hz signals, the ∆t
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Fig. 1. The equivalent branch elements (R, L and C) with traditional RMS
phasors, EMT discretization and SFA discretization.

required to capture 59.1 Hz (or 60.9 Hz) in an EMT model
is 0.8 ms. However, because of the 60 Hz shifting, only the
deviation from 60 Hz (0.9 Hz) needs to be captured. This
gives a ∆t of 55 ms, which is 70 times larger than for
60 Hz. In traditional transient stability programs based on
static phasor solutions, the time step is determined by the
machine acceleration and is in the order of 5 ms, which is
smaller than the time step required by the SFA-EMT solution.
Therefore, using SFA-EMT with 5 ms results in basically zero
error for the transient frequency deviations, with basically the
same solution time as the conventional static-phasor solution.

Also because the EMT solution uses CDA [9] to soften up
discontinuities, the transitions at load-shedding are smoothed
out. Fig. 2 illustrates that the frequency simulated by the
SFA-EMT program is smooth and has a lower dip across a load
shedding discontinuity compared to the frequency calculated
from the rate of change of the phase angles in conventional
steady-state transient stability solutions (e.g., [12]).

0 0.05 0.1
56

57

58

59

60

Time (s)

B
us

 F
re

qu
en

cy
 (

H
z)

Solving the bus frequency as a derivative of the bus phase: 
a comparison of SFA and RMS phasors

RMS phasor
SFA 

There is a smoother transition using SFA 
than when using traditional phasors.

Fig. 2. Comparing the two phasor methods when calculating the bus frequency
as a derivative of phase angle.

III. SFA-EMT FREQUENCY-DEPENDENT LOAD MODEL

The models discussed in this paper are for dynamic studies
in the transmission system. At this level, the loads are seen
as aggregates and do not have the physical details that could
be included at the distribution system level [13]. At the
transmission level, the exponential load model in equations
(1) and (2) below [14] is often used to capture the behaviour
of load aggregates. However, the methodology presented in



this paper is general and can be used for other analytical
approximations or, better, from direct measurements.

The exponential load model is given by:

P (f, V ) = P0(
f

f0
)αf (

V

V0
)αv (1)

Q(f, V ) = Q0(
f

f0
)βf (

V

V0
)βv (2)

In this model, f0, V0, P0, and Q0 are the active and reactive
values of the power at 60 Hz while f and V are the current
values. The exponents, αf , βf , αv , and βv , depend on the type
of load and give an approximation of the behaviour around
the operating point. Typical values for these coefficients can
be found in [14].

Because the SFA-EMT solution is a time-domain solution
and frequency is implicit in it, if we express the load’s
frequency behaviour in terms of the frequency behaviour of
an impedance branch (Fig. 3) with constant R, L, and C
parameters, then we can use this branch as individual R, L,
and C elements in the network solution to model the load’s
frequency dependence.

To obtain the synthesis branch of Fig. 3 from (1) and
(2), we can use the methods used in the EMT to model
the frequency dependent characteristic admittance in the
frequency-dependent line models (e.g., [7], [8]), which fit the
frequency response of the admittance with a rational function
of poles and zeroes. In our case, from (1), (2):

Y (f) =
P (f)− jQ(f)

V 2
(3)

and setting V = V0, we obtain a frequency-dependent
admittance linearized around the f0 = 60 Hz value:

Y (f) =
P0

V 2
0

(
f

f0
)αf − j

Q0

V 2
0

(
f

f0
)βf (4)

Assuming, as an example, a typical motor load, with αf =
2.8 and βf = 1.8 [14], we can evaluate (4) to fit accurately the
frequency range of interest, say from 57 Hz to 63 Hz. Then
the rational function fit can be used to find the R, L, and C
elements of the synthesis. We call this synthesis the fdLoad
model.

The fdLoad model of Fig. 3 was obtained for the P and Q
loads in Bus 15 of Fig. 5 for the Case Study of Section IV.
For this bus P0=320 MW, Q0=153 MVar, and V0=350.52 kV.
The results for the synthesis of this branch were L = -1.8 mH,
R1 = -4.96 Ω, R2 = 4.99 Ω and C = -75.1 µF.

The parameters αf = 2.8 and βf = 1.8 depend only on the
load type and not on the specific P and Q values of the bus.
For simplicity in setting up the test case in Fig. 5, all busses
were assumed to have the same type of load (αf = 2.8 and
βf = 1.8). Then, the R, L, and C parameters of Fig. 3 were
re-scaled according to the values of P and Q in these busses.

The rational function fitting used in this work is the Vector
Fitting procedure of [8]. Vector Fitting was chosen for this
application because it uses complex poles and zeroes for the

L
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V

Fig. 3. Equivalent circuit for the fdLoad model.

rational function fit, as opposed to [7], which uses only real
poles and zeroes.

All fdLoad synthesis models used in the paper are
second order. The MATLAB version of Vector Fitting was
used to obtain these functions. Even though some of the
parameters in the synthesis branch have negative values, all
the synthesis branches tested were minimum-phase within the
fitted frequency range. No numerical stability problems were
encountered in any of the simulations.

Using Vector Fitting for our example load, we get a transfer
function of the form

Y (s) = H
(s+ z1)(s+ z2)

(s+ p1)
= K0 + (

K1

s+ p1
) + sK2 (5)

Expanding (5) into partial fractions, we find the synthesis
network of Fig. 3 to model the load’s frequency response.
With s = jω, and matching the partial fraction terms in (5),
we get

Y (ω) =
1

R2
+

1

R1 + jωL
+ jωC (6)

The accuracy of the load synthesis with the fdLoad model of
Fig. 3 is plotted in Fig. 4 for the admittance function as well
as the corresponding real and reactive power functions. For
all plots, the maximum error is about 0.5% in the considered
frequency range of ± 3 Hz.

IV. CASE STUDY - IEEE 39 BUS SYSTEM

The Western Electricity Coordinating Council [15]
recommends that Underfrequency Load Shedding (UFLS)
sequences should be calculated to stabilize the frequency
within 59.5 Hz and 60.5 Hz by activating the controls at
0.9 Hz below the nominal frequency. These guidelines,
however, do not consider the penetration of IBRs and the
corresponding lower inertia of the grid. The wider frequency
swings due to increased IBR penetration will require faster
frequency control responses [16], [17] and the load-shedding
sequencing may need to be revised [18] more accurately.
The SFA software used in this paper [1] assumes balanced
three-phase solutions. This software was developed at UBC.
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Fig. 4. Active and reactive power (P , Q) and admittance (Y ) as functions
of frequency based on equations (1),(2), and (4) at load Bus 15. At 60 Hz,
the actual network and the approximated synthesis network are identical.

A. Case Description

We tested the proposed fdLoad model on a modified version
of the IEEE-39 Bus (New England) system [19] (Fig. 5). This
network is a 345 kV transmission system with 10 generators
and 19 loads. The data for the network is taken from [19].
The power flow and H data are given in Appendix A. The
generators have a damping coefficient, K = 1.5 pu, and a
transient reactance, X ′

d = 0.3 pu. All buses are at 345 kV,
except for bus 12, which is at 138 kV, bus 20 at 230 kV,
and busses 30-38 at 16.5 kV. Generator 1 is at 345 kV and
represents an external bulk power system.

We considered four levels of IBR penetration, 0%, 19.3%,
46.8%, and 71.3%, for a contingency in which 35.9% of the
total generation is tripped off at 100 ms. The total power
imbalance between generation and load after this contingency
is 2054 MW.

To compare with realistic operating conditions, we
implemented a UFLS plan [15] and observed the frequency
response under three load model combinations: 1) 100%
constant-impedance load, 2) 100% frequency-dependent load
(as proposed in this paper), and 3) a mixed-model load with
50% constant-impedance and 50% frequency-dependent.

Voltage Dependence: In this study, we took the voltage
change into account when the load was shed at the UFLS
set points. At these points, the parameters of the fdLoad
branch were recalculated by rescaling based on the new power

Fig. 5. The IEEE 39-Bus Network taken from [19].

absorbed by this branch. However, further testing is needed to
assess the computational time versus accuracy of this process
as compared to continuously taking into account the new
voltages.

IBR Penetration: It is useful when considering the level of
IBR penetration to use the concept of full system’s equivalent
inertia Hsys [20] defined as follows:

Hsys =

i=n∑
i=1

Hgeni
× Sgeni

i=n∑
i=1

Sgeni + SIBR

(7)

where n is the total number of synchronous generators, Hsys

is the inertia of each synchronous generator, Sgen is the total
power from the synchronous generators and SIBR is the total
power from the IBRs.

Table. I shows how the total power of 6297.87 MVA is split
between synchronous generators and IBRs for the four IBR
penetration levels considered. For each IBR penetration level,
the table indicates which generators are modelled as IBRs. It
also indicates the system’s equivalent inertia calculated using
(7).

As expected, the system’s equivalent inertia decreases as
the IBR penetration increases, going from Heq ∼ 5 s for
0% penetration to Heq ∼ 1.7 s for 70% penetration. These
values for Heq match the values given in other studies of large
penetration of inverter-based generation (e.g., [21]).

For the base case of 0% penetration, Generators 2-10 have
an inertia constant of H = 5 s to represent gas steam turbines
[22]. Generator 1 has an inertia constant of H = 6 s to



represent the external bulk power system. For the other cases
with IBR penetration, the equivalent IBR generators were
represented with a very low H of H = 0.1 s [22].

Simulation Setup: The SFA-EMT software used in the
simulations was developed in [1]. To initialize the SFA-EMT
solution, we first ran a power flow using the MATLAB
package MATPOWER [23]. The MATLAB solution provided
the initial values for the bus voltages and real and reactive
power.

The time step used for the SFA simulation was ∆t = 8 ms,
and the time discretization rule for both the electromechanical
equations and the SFA solution was the backward Euler rule.
In our experience, the backward Euler rule has a smoother
overall behaviour for hybrid solutions than the trapezoidal
rule. This is our case when we combine the nonlinear
electromechanical equations for the machines’ acceleration
with the linear SFA equations for the network solution.

TABLE I
SHARING OF MVA BETWEEN SYNCHRONOUS GENERATION AND IBRS

FOR EACH OF THE FOUR SCENARIOS.

(1) (2) (3) (4)
0% IBR 9.34% IBR 46.8% IBR 71.26% IBR

MVAsync 6297.87 5080.0 3350.0 1810.0
MVAIBRs 0 1217.87 2947.87 4487.87

IBRs N/A Gen. 2, 8 Gen. 2, 3,
8, 9, 10 Gen. 3-9

Hsys(s) 5.1 4.2 2.86 1.7

B. Four Scenarios with Load Shedding

For each of the four IBR penetration scenarios in Table. I,
we implemented the WECC load shedding scheme “Plan 1(a)”
[15], described in Table II. In this scheme, 27.3% of the total
load is incrementally shed in five blocks, beginning when
the network frequency reaches 59.1 Hz and ending when the
frequency passes 58.3 Hz. For this study, the load is shed
evenly from a number of load busses. In reality, the loads
would be ranked for criticality, with the non-critical loads shed
first.

TABLE II
LOAD-SHEDDING PLAN FROM [15]

Stage Load shed (MW)
at each stage

Busses load
is shed from

Frequency
set-point (Hz)

1 300 4, 7, 8, 20, 21, 23 59.1
2 320 16 58.9
3 350 39 58.7
4 350 39 58.5
5 350 39 58.3

In the report of [15], the minimum number of 60-Hz cycles
between each shedding block is set to 14 cycles, but as seen
in Table III, the number of cycles required for the under
frequency relays to react can range from as short as 4 cycles
with 70% IBR penetration to as long as 64 cycles with 0%
penetration.

Fig. 6 shows the system’s frequency at load Bus 15, with
the three load combinations for the four penetration levels. For
the frequency-dependent load model, as the IBR penetration
increases, the rate of change of frequency (ROCOF) triples
from 0.57 Hz/s at 0% penetration to 1.72 Hz/s at 70%

penetration. A high ROCOF means that the system does
not have enough inertia to compensate for the high power
imbalance after the loss of some generators, causing the
remaining generators to give out their kinetic energy to the
load and rapidly decelerate.

With high power imbalance and low inertia, the frequencies
in the network change rapidly. In the case of 70% penetration
using the constant-impedance load model, the ROCOF is
2.08 Hz/s. However, by considering the frequency dependence
of the load, the ROCOF decreases by 0.2-0.3 Hz/s. Further
governor action (after tens of seconds) will bring the frequency
back to 60 Hz.

In all four scenarios, the frequency settles above the final
critical frequency of 57 Hz [24], and generators would not
be tripped. However, the frequency-dependent model always
settles at a frequency 0.38 Hz to 0.5 Hz higher than the
constant-impedance model. This is important for determining
the relay’s frequency set points and the minimum number of
cycles between load-shedding blocks in preparing the load
shedding plans.

The number of cycles between load-shedding blocks is
based on the frequency reaching a certain low level and
depends on the load model used. The fdLoad model gives a
longer transition between states than the constant-impedance
load model, and the number of wait cycles for the 100%
frequency-dependent load is always larger than for the 100%
constant-impedance load. The mixed-load combination is, in
general, between the other two. As the penetration of IBRs
increases, the number of cycles between each load-shedding
block decreases due to the system reaching the frequency
set-points quicker than on the higher-inertia system.

Table III summarizes the process of operation of the
UFLS schemes in all scenarios considered. This table shows
the minimum frequency reached before triggering the next
UFLS block shedding for each level of penetration and for
each load combination. It also shows at which bus this
minimum frequency occurs. Since UFLS relays are normally
installed at distribution substations where selected loads can
be disconnected to balance load and generation, the fact
that SFA-EMT accurately determines the frequency at the
load busses is an important consideration to achieving correct
settings for the UFLS relays.

C. The Four Previous Scenarios without Load Shedding

As shown in Fig. 7, without UFLS the power imbalance
would cause the network’s frequency to continuously decrease
past the final 57 Hz cut-off frequency, at which point the
generator would be tripped to prevent turbine damage [24].
Without generator tripping, the final frequency will still settle
for all load types (Fig. 4).

Similarly to the case with load shedding in (Fig. 6), we
can see in Fig. 7 that with no load shedding, the fdLoad
model slows down the frequency decline, in this case by
about 0.2-0.5 Hz/s with respect to the constant-impedance
load model. The higher the IBR penetration, the higher this
difference is.



TABLE III
LOAD SHEDDING FREQUENCY WITH FIVE LOAD-SHEDDING BLOCKS FOR EACH PENETRATION LEVEL AND EACH LOAD COMBINATION.

0% IBR 19.34% IBR 46.8% IBR 70% IBR

100% CZ Time
(s)

Number
of

Cycles

Freq.
(Hz) At Bus Time

(s)

Number
of

Cycles

Freq.
(Hz) At Bus Time

(s)

Number
of

Cycles

Freq.
(Hz) At Bus Time

(s)

Number
of

Cycles

Freq.
(Hz) At Bus

0.944 - 59.09 29 0.840 - 59.09 29 0.480 - 59.08 19 0.368 - 59.04 10
1.152 12 58.89 19 1.016 10 58.89 29 0.568 5 58.89 19 0.544 21 58.89 9
1.336 11 58.69 19 1.216 12 58.69 19 0.688 7 58.69 9 0.624 4 58.69 9
1.696 21 58.49 10 1.424 12 58.49 19 0.792 6 58.48 9 0.720 5 58.49 9
2.136 26 58.29 19 1.920 29 58.29 9 0.952 9 58.29 1 0.840 7 58.29 10

100%FD Time
(s)

Number
of

Cycles

Freq.
(Hz) At Bus Time

(s)

Number
of

Cycles

Freq.
(Hz) At Bus Time

(s)

Number
of

Cycles

Freq.
(Hz) At Bus Time

(s)

Number
of

Cycles

Freq.
(Hz) At Bus

0.960 - 59.09 29 0.848 - 59.09 29 0.488 - 59.08 19 0.376 - 59.08 10
1.184 13 58.89 19 1.032 11 58.89 29 0.592 6 58.89 16 0.552 19 58.88 9
1.480 17 58.69 19 1.288 15 58.69 19 0.664 4 58.64 10 0.624 4 58.48 19
1.984 30 58.49 1 1.736 26 58.49 9 0.984 19 58.49 9 0.840 13 58.49 2
2.944 57 58.29 1 2.576 50 58.29 1 1.304 19 58.29 19 1.256 25 58.29 9

50% FD
50% CZ

Time
(s)

Number
of

Cycles

Freq.
(Hz) At Bus Time

(s)

Number
of

Cycles

Freq.
(Hz) At Bus Time

(s)

Number
of

Cycles

Freq.
(Hz) At Bus Time

(s)

Number
of

Cycles

Freq.
(Hz) At Bus

0.952 - 59.09 29 0.840 - 59.08 29 0.480 - 59.09 19 0.368 - 59.07 10
1.160 12 58.89 19 1.016 10 58.89 29 0.568 5 58.89 19 0.544 10 58.89 9
1.376 13 58.69 19 1.240 13 58.69 19 0.664 5 58.69 10 0.616 5 58.62 19
1.800 25 58.49 29 1.536 17 58.49 19 0.840 10 58.47 1 0.768 9 58.49 9
2.432 37 58.29 10 2.128 35 58.29 2 1.104 15 58.29 19 0.880 6 58.29 29
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Fig. 6. Comparing the four levels of penetration with the three load
combinations using UFLS.

In both cases, with and without load shedding, the
fdLoad model settles at about 1-2 Hz higher than the
constant-impedance load model.

Fig. 8 shows that as the frequency of the network decreases,
the power absorbed by the load at Bus 15 drops approximately
14MW/Hz (42MW in 3 Hz from 60 Hz to 57 Hz), which
corresponds to a decrease in the power absorbed by the fdLoad
model, regardless of the contingency. We can also see that
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Fig. 7. Comparing the four levels of penetration with the three load
combinations without UFLS.

between 58.5 − 56.5 Hz, there is a ∼42 MW drop with the
fdLoad model, while there is only a ∼24MW drop with the
constant-impedance load model. The results presented in Fig. 6
and Fig. 7 confirm the importance of modelling the frequency
dependence of the load in frequency stability studies.

V. CONCLUSION

This paper discusses the effect of frequency dependence of
the system loads on the system’s dynamic frequency behaviour
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under different levels of IBR penetration, 0%, 19.3%, 46.8%,
and 71.3%, for a contingency in which 35.9% of the total
generation is tripped off. The IEEE 39-bus reference system is
used to compare the proposed frequency-dependent load model
(fdLoad) versus a simple constant impedance load model in a
commercial transient stability program.

The SFA-EMT software with the proposed fdLoad model
was used in the study because it automatically includes
the frequency of the network phasors at each solution
step. With frequency being part of the network solution,
the network impedances and admittances are automatically
corrected for frequency. More importantly, it allows the use
of a frequency-dependent load synthesis model. The Vector
Fitting method used in EMT frequency-dependent line models
is used to obtain this synthesis based on constant R, L, and
C parameters.

We tested the fdLoad model using the IEEE-39 bus
system, commonly used for transient stability software
testing, to verify the performance of SFA-EMT with
fdLoad. We observed that with SFA-EMT and fdLoad the
system frequency recovers faster and closer to 60 Hz
after a load-shedding event than with a simple constant
impedance load. These results are important for evaluating the
performance of load-shedding schemes and correctly setting
the load-shedding points and cycle wait times of UFLS relays.

In future work, we will compare, in terms of accuracy
and solution time, the fdLoad model discussed here versus
transient stability software that uses the exponential models
for frequency and voltage dependence.
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