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Abstract—The application of voltage source converters (VSCs)
to integrate renewable energies into the power electrical
systems has reached higher levels, leading to a displacement
of synchronous generation and the weakening of the networks.
Novel approaches have been proposed in the last decade
to mimic the operation of the synchronous machines (SMs)
trying to reproduce the electromagnetic and electromechanic
dynamics throughout power electronics, giving robustness to
the power system and inertial support. To understand the
impact of the so-called grid-forming operation of VSCs, this
paper assesses the control approach known as the virtual
synchronous generator. The stability of the steady state is studied
throughout the eigenvalues of the linear state-space model in
the synchronous framework DQ. By developing parametric
variations, the impact of control gains is checked, and the stability
is verified using extensive time-domain simulations carried out
in PSCAD/EMTDC.

Keywords—Grid-forming converters, virtual synchronous
generators, stability analysis, small-signal.

I. INTRODUCTION

THE environmental concerns in the world have impulse
the massive integration of environment friendly energies

into the electrical networks. Eventually, this has also led to
a progressive reduction of carbon-based generation produced
using SMs [1], [2]. The new-generation technologies rely on
the extensive utilization of inverter based resources (IBRs) and
VSCs, bringing new opportunities to operate the system more
efficiently, flexibly, and controllable [3], [4]. However, these
new technologies are also changing the traditional operative
paradigms of power systems because IBRs are faster than
SMs, and their dynamical behavior is predominantly dictated
by the implemented control strategies. This has given the
birth of instability issues in the system, wideband oscillatory
interactions, subsynchronous oscillations, the reduction of
inertia in the networks, and diminishing of the short circuit
ratio (SCR) among others [5]. To maintain the correct
operation of the electrical network, it is essential to have the
presence of SMs in the system that can form the system,
providing enough support to establish the voltage magnitude
and the frequency of the system. These are features that
the VSCs could not provide some decades ago because,
in those days, the main goal of IBRs was to integrate
renewable energies into the system, but looking for the
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maximum extraction of power. This operative paradigm was
known as grid-following, where the VSCs were seen as a
current-controlled source that attained the synchronization by
a phase-locked loop (PLL) [6], [7].

Formely, the inverters have used the PLL to attain the
successfully synchronization to the grid, this control element
can also provide a way to filter disturbances. The study of
its behavior has been done following linear and nonlinear
analysis, bifurcation theory, phase diagram and other tools.
Some issues that synchronization using PLLs have are:
In weak grids, where synchronous generation is poor, the
voltage and frequency stability is deficient, this also difficults
the correct operation of power converters. During large
disturbances in the grid, it is hard for the PLL tracking
the phase and frequency of the system. This can lead to
oscillations that degrade the performance of the converter. In
severe cases, the synchronization can be loss. The information
of phase and frequency is highly sensitive to the impedance
of the grid; hence, larger impedances can affect the stability
margins of the PLL, increasing the risk of instability. The
risk of interactions increases due to the inner and outer loop
controls depend on voltage and current, and these variables
also impact in the information of phase that the PLL tries to
track.

As an alternative to raise the capabilities of the VSCs,
newer control strategies have been developed to endow these
devices with the ability to behave as a SM [8]. Following this
approach, the VSCs are seen as voltage-controlled sources, and
the operation is known as grid-forming. Grid-forming VSCs
offer some outstanding features, such as the ability to maintain
the voltage in a system with very low SMs, the capability
to operate in systems with small SCRs, and provide inertial
support to the system, as well as damping to oscillations in
the system [9].

Typical approaches to control VSCs as grid-forming
are the power synchronization control, the droop control,
the synchronverter, the virtual oscillator, and the virtual
synchronous generator (VSG); several of these methods are
focused on reproducing the dynamics of the swing equation
of SMs [7], [10]. These approaches are widely studied
to understand the stability features that grid-forming VSCs
offer; this has been done using small-signal and large-signal
analysis. Large-signal analysis is mainly based on time-domain
simulations to assess the performance of the system under
large disturbances using electromagnetic transient (EMT), or
root mean square (RMS) simulations. On the other hand,
linear analysis carries out the study using time and frequency
domains to develop models, either as state space or impedance



models. These approaches have permitted a comprehensive
understanding of phenomena, such as oscillatory interactions,
harmonic coupling, control design, sensitivity analyses, and
bifurcations, among others.

This contribution presents a stability analysis of the VSG,
checking the impact of the control parameters on the system’s
performance. The study uses a linear state-space model
to identify the change in the eigenvalues when parametric
changes are done, and the dynamical behavior is confirmed
using nonlinear time-domain electromagnetic simulations. The
content of this work is organized as follows: section II
presents the test case, and the dynamical model is given as
a set of ordinary differential equations (ODEs). The model
is based on an average model, and the performance of the
ODEs is validated using PSCAD/EMT, where the model is
simulated using detailed pulse width modulation (PWM) and
power electronics models. In section III, the stability of the
steady state is studied using eigenvalue traces to determine
the effect of parametric variations on the stability. Finally, the
conclusions are provided.

II. MODELLING OF THE TEST SYSTEM

A. Clarifications

This paper uses bold symbols to denote three-phase
variables in the reference framework DQ (voltage or currents),
so writing i is the current i =

[
iD iQ

]T
. To change from

ABC to DQ the Park transform is used:
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with θ = ωbt, being ωb the base angular frequency of
the system. Lowercase fonts are used to define time-domain
variables, and uppercase fonts denote the steady-state value of
any variable. The argument (t) is omitted in the equations for
brevity. All the equations presented in this work are written
in per unit (p.u.). The VSCs are considered typical two-level
power converters that operate using sinusoidal PWM, and the
systems under study are assumed to be balanced.

B. Virtual synchronous generator

The objective of the VSG is to ensure that the VSCs can
participate in the inertial support of the grid, automatically
changing the active and reactive power dispatch according to
the frequency and voltage amplitude of the system. The control
is based on [11], [12], and the block diagram control is given
in Fig. 1. Two control loops are used; one regulates the active
power of the VSC, while a second loop supports the voltage
of the system, controlling the reactive power.

Fig. 1. Control strategy of the VSG.

Both loops try to reproduce the dynamic behavior of a
synchronous generator. The synchronization of the VSC is
attained following a similar approach as the swing equation.
It is noted that both control loops add a damping feature that
helps to reduce the effect of oscillations in the system. On the
other hand, the VSC has an LC filter that is interconnected
to the grid through a step-up transformer. The dynamical
equations of the control are the following:

dθ1
dt

= ωbωv1

dωv1

dt
=

1

J

[
Pref1 − P1

ωnom
+Ddam(ωnom − ωv1)

]
dEm1

dt
=

1

K
[Qref1 −Q1 +Qdam(Enom − Ef1)]

(2)

P1 and Q1 are the active and reactive power that are
measured using the current in terminals of the VSC (if1 ),
and the voltage in the filter (ef1 ). Pref1 and Qref1 are the
control references of the powers, ωnom is the nominal angular
frequency of the system in p.u., Enom is the reference of
voltage magnitude in p.u., Ef1 is the voltage magnitude in
p.u. of ef1 . Finally, ωb is the base angular frequency of the
system. The outcomes from these control loops are the angle
θ1, and the magnitude m1, of the modulation signals:

mod1 = m1
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(
θ1 − 2π

3

)
cos
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2π
3

)
 (3)

Using each modulation signal, the PWM is built by
comparing the corresponding modulation against a sawtooth
waveform of higher frequency, and then commutation patterns,
sa, sb, and sc are created. Finally, we have the PWM patterns
[13]:

s1 =

sa − 1
3 (sa + sb + sc)

sb − 1
3 (sa + sb + sc)

sc − 1
3 (sa + sb + sc)

 (4)



The following six equations complement the dynamical
model of the VSC:

d

dt

 if1
vf1

itf1

 =
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(5)

The transformer is modeled as an ideal transformer with
a leakage inductance Ltf1 , whose high-voltage signal is
represented by vhv1

. This signal would be different depending
on the point where the VSC will be connected. The matrix P
is included to model the cross-coupling between variables in
D-axis and in Q-axis:

P =

[
0 −1
1 0

]
(6)

It is worth mentioning that if the average model is used,
then the PWM patterns in (4) are not used. Instead, they should
be modeled as mod1/2.

C. Nine bus system model

This work used the well-known nine-bus system, initially
presented in [14]. However, in this case, two synchronous
generators are replaced using VSG, and the third generator
is changed to represent an equivalent electrical network. The
system is given in Fig. 2, showing the currents and the
voltage in each transmission line. A lumped-parameter PI
circuit represents each transmission line, and the system’s load
models are modeled as constant impedance loads. Each VSG
is modeled as the system given in Fig. 1. So, the model of the
grid is the following 32 ODEs:

Fig. 2. Power system with penetration of VSG.
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D. Validation of the dynamical system

For each VSG, a set of ODEs similar to (2)-(5) is obtained,
and together to (7) the whole dynamical system is written.
Table I gives the system’s high-voltage side parameters. The
impedances of the loads correspond to the following powers:
P8+jQ8 = 100+j35 MVAR, P5+jQ5 = 125+j50 MVAR,
and P6 + jQ6 = 90 + j30 MVAR. The parameters of each
VSG are provided in Table II and Table III (the base values
are provided for the electrical parameters, whereas the base
values for the active power and reactive power control gains
are 7.036× 10−4 MVA·s2 and 6.12 kA respectively). Finally,
the commutation frequency is 2.7 kHz in both VSC.

The transformers are connection Y-Y, with a ratio of 20
kV / 345 kV; the leakage inductance of Ltf1 = 0.0576 p.u.,
Ltf2 = 0.0625 p.u. (using Sb = 100 MVA) . The voltage
in the equivalent grid is a balanced three-phase source with
vtha

= 1.03 cos(ω0t+ 0.133) p.u.
To validate the performance of the ODEs, the system is

numerically integrated (using zero initial conditions in all
state variables) and simulated in PSCAD/EMTDC (the state
variables start from zero, the simulation is carried out using
a time-step of 1 µs, without ramping in the controls). The
waveforms of some state variables are compared in Fig. 3
and Fig. 4. The comparison is done during the energization
transient of the system, as well as in a steady state. Fig.
3 shows the currents in terminals of each VSC; it is noted
that the model in PSCAD/EMTDC has a commutation ripple,
while the ODEs only retain the information of the fundamental
component of the dynamics. During the transient, it is harder



TABLE I
DATA OF THE GRID (345 KV, 100 MVA, 60 HZ)

Parameter Value Parameter Value
R78 0.0085 p.u. L78 0.072 p.u.
C78 0.0745 p.u. R89 0.0119 p.u.
L89 0.1008 p.u. C89 0.1045 p.u.
R75 0.032 p.u. L75 0.161 p.u.
C75 0.153 p.u. R96 0.039
L96 0.17 p.u. C96 0.179 p.u.
R54 0.01 p.u. L54 0.085 p.u.
C54 0.088 p.u. R64 0.017 p.u.
L64 0.092 p.u. C64 0.079 p.u.
Rth 0.001 p.u. Lth 0.089 p.u.
Rl5 0.8 p.u. Ll5 2 p.u.
Rl8 1 p.u. Ll8 2.8571 p.u.
Rl6 1.111 p.u. Ll6 3.333 p.u.

TABLE II
DATA OF THE VSG-1 (20 KV, 100 MVA, 60 HZ)

Parameter Value Parameter Value
Vdc1 1.4 p.u. Rc1 0.00157 p.u.
Lc1 0.1947 p.u. Rf1 0.3099 p.u.
Cf1 0.03041 p.u. Pref1 1 p.u.
J 0.5625 p.u. Ddam 49.398 p.u.
K 0.3825 p.u. Qdam 5.766 p.u.
Qref1 0 p.u. Ef1 1.015 p.u.

TABLE III
DATA OF THE VSG-2 (20 KV, 100 MVA, 60 HZ)

Parameter Value Parameter Value
Vdc1 1.4 p.u. Rc1 0.00157 p.u.
Lc1 0.1947 p.u. Rf1 0.3099 p.u.
Cf1 0.03041 p.u. Pref1 0.9 p.u.
J 0.5625 p.u. Ddam 49.398 p.u.
K 0.3825 p.u. Qdam 5.766 p.u.
Qref1 0 p.u. Ef1 1.02 p.u.

to appreciate this ripple; however, as is shown in Fig. 3-(b),
in a steady state, the effect of the PWM is more visible.

On the other hand, Fig. 4 shows the response of the voltage
in the bus B5, and the current throughout the transmission
line that goes from B5 to B4. These state variables have less
harmonic content because the responses between the average
and commutated models (PSCAD/EMTDC) almost overlap.

Again, this figure validates the energization transient and
steady-state response. Other state variables of the model were
also compared, and a good similarity was found between the
ODEs and PSCAD, but they are not shown here for brevity.
Once this task is completed, the dynamical model is validated,
and we can trust that the model’s performance in PSCAD can
be studied using the ODEs instead of developing time-domain
simulations.

III. STABILITY ANALYSIS

As seen from Fig. 3 and Fig. 4, the system is stable because
the variables are bounded and do not diverge; this behavior can
also be verified by computing the eigenvalues of the linear
model in DQ. This reference framework has the advantage
of mapping periodic orbits to a steady-state operating point.
Then, around the invariant equilibrium point (Xss,U ss), the

(a) Transient state

(b) Steady state

Fig. 3. Dynamical response of currents in terminals of each VSC.

dynamics of the large-signal model can be approximated by
the small-signal model [15]:

d∆x

dt
=

∂f

∂x

∣∣∣∣∣
Xss,Uss

∆x+

∂f

∂u

∣∣∣∣∣
Xss,Uss

∆u (8)

The eigenvalues for the system operating with the nominal
parameters are given in Fig. 5; all are located on the left-hand
side of the complex plane; therefore, the system should
be stable, and this matches with the simulations done in
PSCAD/EMTDC.

Fig. 5. Eigenvalues of the system in the nominal condition.



(a) Transient state

(b) Steady state

Fig. 4. Dynamical response of variables in the transmission network.

The dominant eigenvalues of the system are λ1,2 =
−0.5175± j376.8 and λ3,4 = −0.937± j376.478. They have
damping factors of ξ1,2 = 0.001516 and ξ3,4 = 0.00249,
although the system is stable, it is poorly damped, so it can
be prone to turn unstable. The system’s stability is strongly
influenced by several factors: the operating condition, the
topology of the network, the load consumption, and the
control gains, among others. The linear model is suitable to
study the effect of parametric changes and small changes
in the operating conditions around the steady state. Hence,
some sensitivities are done to check the impact of parametric
variations of the controls on the system’s performance.

In the following subsections, the traces of the most
dominant eigenvalues of the system are assessed.

A. Effect of the active power control: VSG-1

The effect of variations in the damping gain, Ddam, is
presented in Fig. 6. The arrows point out the direction of the
movement in the eigenvalues as Ddam increases from 10−6

to 100. It is worth mentioning that here, we only present
the nearest eigenvalues to the imaginary axis (in the complex
plane, this is s = 0); these eigenvalues are the interest because
they can move toward the complex right-half plane.

The analysis indicates that the system remains stable
despite the gain being almost zero; however, it has a very
low damping ratio. When Ddam = 1 × 10−6 the system has
dominant modes λ1,2 = −0.1577± j38.886, with a frequency
of 6.188 Hz. On the other hand, the impact of variations in J is

(a) Effect in the eigenvalue λ1

(b) Effect in the eigenvalue λ3

Fig. 6. Impact of changes in Ddam ∈
[
10−6, 102

]
in VSG-1.

illustrated in Fig. 7 (arrows indicate the direction of movement
when J decreases); this parameter provokes the system to
lose stability when J ≤ 0.088, and a pair of modes with a
frequency of 375.2 rad/s appears.

Time-domain simulations around the steady state are done
to test the results above. To disturb the dynamics from the
equilibrium point, a reference change in Pset2 from 0.9 p.u.
to 0.85 p.u. and then returning to 0.9 p.u. is assessed. Fig. 8
shows the active power of both VSG diminishing the value
of Ddam in VSG-1. It is seen that damped oscillations are
presented, and the frequency of the oscillations is identified
with the fast Fourier transform (FFT) with a value of 6.21 Hz.

Whereas in Fig. 9, the effect of J is assessed, it is validated
that a value of J = 0.088 causes unstable oscillations in the
system, and the FFT gives the oscillation frequency as 59.5
Hz. These results match those obtained with the small-signal
analysis.

B. Effect of the active power control: VSG-2

It is found that gains J ≤ 0.0412 cause instability in the
system, with modes λ1,2 = 0.0042 ± j375 (see Fig. 10-(b));
regarding the constant, Ddamp, in Fig. 10-(a) it is appreciated
that diminishing this value the system reduces the damping
but remains stable. These outcomes are very similar to those
of the VSG-1 and give insights into the dominant impact of
the inertial constant on the stability; hence, the system is more
susceptible to changes in J .



(a) Effect in the eigenvalue λ1

(b) Effect in the eigenvalue λ3

Fig. 7. Impact of changes in J ∈
[
1.5, 0.05

]
in VSG-1.

Fig. 8. Dynamical response when Ddam = 1× 10−6.

C. Effect of the reactive power control: VSG-1

The movement of λ3 while varying the gain K in the range[
1 0.1

]
is presented in Fig. 11-(b), showing that the system

is unstable when K ≤ 0.161 and detonating oscillations with
a frequency of 376.2 rad/s. On the other hand, Fig. 11-(a)
shows the traces of λ1 when Qdam changes in the range[
10 1× 10−3

]
, the system is less sensitive to this gain,

because the dominant eigenvalues do not move far from the
original location. Time-domain simulations given in Fig. 12
and Fig. 13 validates this behavior.

Fig. 9. Dynamical response when J = 0.088.

(a) Effect of variations in Ddam ∈
[
10−6, 100

]

(b) Effect of variations in J ∈
[
1, 0.01

]
Fig. 10. Impact of changes in J and Ddam in VSG-2.

D. Effect of the reactive power control: VSG-2

The sensitivity results for this control are very similar to
those of VSG-1. The traces of the eigenvalues are given in
Fig. 14-(a) showing the sensitivity of the VSG-2 to changes
in K, and Fig. 14-(b) depicts those results related to changes in
Qdam. Analyzing these results, it was found that the system
is stable for K ≥ 0.1437, because in Fig. 14-(a) is seen a
movement to the right-hand side of complex plane. On the
other hand, the traces showed in Fig. 14-(b) indicates the
system would be stable although the Qdam gain is changed
because the most dominant eigenvalue does not move very



(a) Effect of variations in Qdam ∈
[
10, 1× 10−3

]

(b) Effect of variations in K ∈
[
1, 0.1

]
Fig. 11. Impact of changes in K and Qdam in VSG-1.

Fig. 12. Dynamical response when Qdam = 1× 10−3.

much from the initial position.

IV. CONCLUSIONS

This paper presented a small-signal analysis of the VSG
control of VSCs based on linear state-space models. The
analysis used an extensive eigenvalue location study to see
the sensitivity of the modes of the system to parametric
variation. It was tested the effects of the active and reactive
power loop gains in the dynamical performance, finding that
low-frequency oscillations can be presented. The validation of
the dynamical model was done using PSCAD/EMTDC using a
commutated model, where the PWM was modeled. The results

Fig. 13. Dynamical response when K=0.161.

(a) Effect of variations in Qdam ∈
[
10, 1× 10−3

]

(b) Effect of variations in K ∈
[
1, 0.1

]
Fig. 14. Impact of changes in K and Qdam in VSG-2.

showed a good match between the ODEs and the PSCAD
simulation. Moreover, the results given by the small-signal
analysis were verified using the large-signal model, indicating
a match respecting the theoretical analyses.
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