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Abstract—Several previous works examine the use of
cryptographic mining machines, for instance Bitcoin mining
machines, in demand-response mechanisms, as part of the
portfolio of assets managed by the grid operator. This paper
extends this formulation by addressing the effects of fast ramping
transients, which may often occur in power grids rich with
renewable energy sources. The resulting optimization problem
is solved based on Pontryagin’s minimum principle. The solution
is used to examine the profitability and usage of these machines in
a real-world settings, based on data from the California ISO and
the “Noga” grid operator. A sensitivity analysis is conducted,
considering the effects of several key parameters, such as the
electricity price, and the machines’ price, hashrate and monetary
revenue. These are examined for several different machine types
that are available in the market today. The main conclusion
is that the profitability of the discussed mechanism is highly
influenced by the cost of the mining machines, and the percentage
of renewable sources within the energy mix, where some scenarios
are more profitable then others.
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I. INTRODUCTION

AMPING, or the ability of power systems to rapidly

adjust generation output to match sudden fluctuations
in electricity demand or supply, presents a significant
challenge in modern power systems, particularly with the
increasing integration of renewable energy sources. In addition
to traditional demand-response strategies, utilizing massive
power consumers like Bitcoin mining machines presents a
novel approach for balancing the grid demand. These machines
are significant power consumers, and may be operated when
there is a need to increase power usage during periods of low
energy consumption, to abstain from powering off generators
and reducing ramping costs, or when there is an abundance
of renewable energy generation, to avoid energy curtailment.
By doing so, they help substantially reduce ramping costs
and absorb excess energy that might otherwise be wasted,
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providing a flexible demand source that can be dialed up
or down based on grid conditions very quickly. Moreover,
the revenue from mining is another incentive to use these
machine in for enhancing grid stability, instead of other
proposed solution such as storage or curtailment. The profits
from these machines might cover their operational costs, thus
resulting in an economically feasible solution for power plant
operators. This not only maximizes the utilization of renewable
energy but also helps maintain grid stability by smoothing out
fluctuations in demand and supply, making the overall power
system more resilient and efficient.

In the recent literature, many researchers study this
problem from different perspectives. One approach is demand
response based control for ramping mitigation (DR-RM),
which uses Bitcoin mining machines (BMMs) as flexible
loads that adjust their power consumption dynamically in
response to grid conditions [1], [2]. For instance, [3]
focuses on smart grid systems necessitating secure demand
response management schemes for real-time decision-making,
to increase the effectiveness, stability and security of smart
grid systems. The authors propose a secure DRM scheme
for home energy management that is based on a Q-learning
algorithm and an Ethereum blockchain protocol to make
optimal decisions regarding price. From a different outlook,
curtailment absorption using flexible mining loads (CA-DR) is
yet another methodology for transient mitigation using BMMs.
With this approach, the main objective is to absorb excess
renewable energy that would otherwise be curtailed, preventing
waste and ensuring grid stability [4], [5]. For instance,
work [6] addresses the problem of peak shaving. In this
article, the authors design and implement a blockchain-based
prosumer incentivization system, in which the smart contract
logic is based on an in-depth analysis of the “Ausgrid”
dataset. Another example is the extensive review paper
[7]. Here, the authors examine the potential of combining
blockchain technology and machine learning techniques for
the development of smart grids. The different approaches and
some of their main properties are summarized in Table I.

Contribution: As shown in the literature review above,
recent works have already proposed strong methods
for operating mining machines (for Bitcoins, or other
cryptocurrencies) for regulating the load and enhancing the
grid stability. These methods typically follow the usual
patterns of demand-response mechanisms, where generally
the lower the total load, the more power is supplied to
mining machines, and vice-versa [6], [8]. Previous works have



TABLE I
COMPARISON OF DIFFERENT APPROACHES TO BALANCE TRANSIENTS IN POWER SYSTEMS USING BITCOIN MINING MACHINES

Approach  Response Time Implementation Complexity  Grid Benefit Economic Feasibility

DR-RM Seconds to minutes ~ Medium Reduces ramping transients Profitable if electricity price is low
CA-DR Seconds Low to Medium Prevents renewable curtailment Viable in high-renewable grids

A-DR Seconds High Supports grid balancing & reserves  Revenue-generating but requires regulatory

adaptation

investigated many aspects of this problem, and examined for
instance the profitability of these machines in the context
of demand-response, and the use of smart contracts when
renewable energy sources are included in the generation mix.

The objective of this paper is to extend these previous works
by including the aspect of ramping constraints, which is crucial
in power systems with high penetration levels of renewable
energy sources, as demonstrated by the famous “duck curve”.
In comparison to previous works, it is assume that machine
owners are compensated not only for the generated power and
lowering the power peak, but also for mitigating fast ramps,
which are challenging for the system operator. Thus, this study
explores an optimization problem that takes into account the
electricity costs for the grid operator, the ramping costs (which
assign a cost to the power derivative), and the revenue from the
machines. We show that this problem can be efficiently solved
based on Pontryagin’s minimum principle, and thoroughly
explore the profitability of the machines in this scenario.
The simulations are based primarily on data taken from the
“Noga” grid operator, which is examined under changing ratios
of energy production from renewable sources. A sensitivity
analysis is conducted, considering the effects of several key
parameters, such as the electricity price, and the machines’
price, hashrate and monetary revenue. These are examined
for several different machine types that are available in the
market today. The main conclusion is that the profitability
of the discussed mechanism is highly influenced by the cost
of the mining machines, and the percentage of renewable
sources within the energy mix, where some scenarios are more
profitable then others.

The proposed approach may be useful to both system
operators and policymakers. From the perspective of system
operators, the proposed approach may serve as an assisting
tool for planning the cost efficiency of using Bitcoin mining
machines for reducing ramping costs and mitigating the
associated transient effects. For example, in the considered
case study, real data from “Noga” grid operator is examined,
and a scheduling mechanism is proposed. Alternatively,
for policymakers, this paper aims to present the potential
benefit of this demand-response mechanism, and motivates an
open discussion to explore new tariff structures or incentive
programs to encourage Bitcoin miners to act as flexible loads.
As will be presented in the paper, there are grid operators
that may benefit from this mechanism, such as ERCOT’s large
flexible load programs in Texas.

II. TECHNICAL BACKGROUND

Pontryagin’s Minimum Principle is a method for finding
an optimal control policy for a dynamic system, stating that

the optimal control minimizes a certain Hamiltonian function.

Consider the dynamic system % = f(x,u), with the initial
condition z(0) = xzg, wu(t) € , and the cost function

J(u) = gl L(z,t,u)dt, where t; is fixed and known. The
objective is to find a control law »* that minimizes the overall
cost. Several additional assumptions are considered:

o The functions f(z,u) and L(z,u) are continuously
differentiable with respect to x and u.

o The optimal control u*(t) is piecewise continuous in ¢.

o The set 2 is closed, or includes the entire space of u(-).

Necessary conditions for an optimal solution are related to the
Hamiltonian H(x,u,\) = L(x,u) + AT f(z,u), and may be
stated as follows:

1) 4= = f(z*,u*), with the initial condition x(0) = .
2) % = —V H(xz*,u*,\*), with the terminal condition
A*(t1) = 0.

3) H(z*,u*,\*) < H(z*,u,\*),Vu € . This also
leads to the condition that if « is unbounded and
Vo H(z*,u*, \*) exists, then Vo H(z*,u*, \*) = 0

4) The Hamiltonian is constant over time H (x*, u*, \*) =
constant, V¢ € [0,¢;].

III. MAIN RESULT

Consider a power system operator that attempts to balance
its load demand using cryptocurrency mining machines (for
instance, Bitcoin mining machines), which will be referred to
as “miners”. The simplified model consists of a grid-connected
mining machine and an aggregated load. The load is described
by its active power demand, which is represented by the
function pr(t) : R>o — Rso over a finite time interval
[0, T7] for some given and known time 7'. The power supplied
by the generator is denoted by p4(t) : R>g — R and is
associated with a cost function of the fuel consumption c¢,4(t).
More generally, this cost function may represent a general
cost function with various objectives, such as carbon emission
influenced by power generation. The miner is characterized by
its power demand 0 < p,,(t) < P, and the profit obtained
by its operation is ¢, (t). It is assumed that the miner’s
power consumption is much smaller than the total system’s
mining power (all Bitcoin miners), thus, it is justified to use
a cost function ¢,,(¢) which is linear in the miner’s power
consumption. The instantaneous cost of electricity is

dp
FO) = cy(Op) + eal) (52 ) = enltpml). 1)
This cost reflects (a) the fuel cost associated with the generated
power, (b) the cost associated with rapid changes in generated

power, which is represented by the term cqy (t)%, and (c) the



revenue of the grid operator from using the mining machines.
The ogjective of the grid operator is to minimize the total
cost [, F(t)dt by choosing the optimal function p, (), where
the time horizon 7' is known. This leads to the following
optimization problem:

min

- /OT (cg(pg(t)) +eq (Cg'f) - cm(t)pm(t)> at.

s.t. Dg (t) =PL (t) + Pm (t)7
O S p'rn(t) S Pa

2
where all the functions and constants are known and given,
and the decision variable is the function p,,(+). It is assumed
that ¢,(-),cq(-) € C? are strictly convex functions, and that
the derivatives of c,, c4, denoted as cj, cj;, define a mapping
from R to R. In addition, pr,(t), ¢, (¢) are smooth periodical
functions with a period 7". The function £ is used to eliminate
the inequality constraint,

0, for 0 < p,, < P
ap?,, for p, <0 3)
a(pm — P)?, for p,, > P

g(pm> =

where « is a constant.
The new formulation that arises is

T
min [ cyy(0) 4 ca (2 ) = enlpn ) + €lpat,
{pm()} Jo dt

s.t. pg(t) = pr(t) + pm(t),
0, for 0 < p,, < P
ap?,, for p, <0
a(py — P)?, for p,, > P

§(pm) =

“4)
Note that when « approaches infinity, this last formulation is
equivalent to (2).
one approach for solving this problem is Pontryagin’s
Minimum Principle [9]. To apply this principle, the following
definitions are used:

£(1) = py (1),
u(t) = $p4(0).
0 = [—00, 0],
h=T. ©
f(.’L',’LL) =u,
Ll u,1) = () + ca () — en(®) (&~ p (1)

+& (v —pr(t)).

Now, let us define the Hamiltonian
H(x, A\ u,t) = L(z,u,t) + Af(x,u).

Using Pontryagin’s minimum principle, the necessary
conditions for an optimal solution z*(t), u*(t), A*(¢) to exist
are the following ones:

) gFz*(t) = u(t),

2) A" = —cg(@m) +em(t) = &' (=" —prlt)),

3) H(z*, A", u*t) < H(z*, \*,u,t) for all u.

4) z*(0) = «*(T), and A*(0) = A\*(T). This is because
pL(t), cm(t) are periodical, and so the optimal solution
must be periodical as well.

Here ¢ (-) is the derivative of cy(-), and £'(-) is the derivative

of £(+). The third condition is

ca(u™) + Xu* <cq(u) + A*u  for all w. (6)

Since both sides of the equation are convex, the optimal u*
can be found by zeroing the derivative:

cy(u*) + X" =0. (N

According to the assumptions above, c(-) is strictly
monotonically increasing, and defines a mapping from R to
R, so one can write

u* = ()T (=) (3)

This leads to the following explicit conditions for an optimal
solution:

D ga"(t) = u'(®),

2) A" = —cy(a™) +em(t) — &(a" —pL(t)),

3) u* = (cp) " (=),

4y z*(0) = z*(T'), and A*(0) = \*(T).
An equivalent feedback loop reflecting these conditions is
presented in Fig. 1.

cm(t) +

€' (=" —pr(t)

A* 1
s

Fig. 1. A control loop that implements the optimal scheduling of the miner,
as derived from Pontryagin’s Minimum Principle.

IV. CASE STUDIES AND NUMERICAL RESULTS

In this section the profitability and characteristics of Bitcoin
mining machines, as part of the portfolio of the “Noga”
grid operator, are examined. Specifically, the objective is
to reduce ramping charges, and to investigate how the
profitability of the machines is affected by renewable energy
penetration to the market. The files relevant for the analysis
may be viewed in [10]. Further, realistic properties of these
machines are explored, in terms of machine price, their power
consumption, and hashrate, to ensure maximal revenue for
the operator. It is assumed that the machine price directly
affects the initial investment and payback period, while
power consumption influences the ongoing operational costs,
especially in energy-intensive mining processes. Hashrate, a
measure of computational power, determines the machine’s
efficiency in solving cryptographic puzzles, and earning
monetary rewards. Together, these factors are essential for



evaluating the assumed profitability of mining operations in
relation to other resources.

An evaluation is conducted, examining how the following
factors influence the profitability of using these machines: (1)
The influence of the ratio of renewable energy production
out of the total production on electricity costs and thus on
the profits gained from mining machines. (2) The influence
of the ratio of renewable energy production out of the total
production on ramping costs and thus on the profits gained
from mining machines. Next, an investigation is performed,
to quantify the potential profitability of using BMMs by the
power company “Noga” for mitigating ramping effects and
consuming excess power that is generated in the Israeli grid.

As the next step, an examination of several machine
parameters is presented, focusing on machine prices, power
consumption, and machine hash rate, upon which routing the
excess energy during off-peak hours to the Bitcoin mining
machines, will not only reduce ramping costs, and help sustain
the longevity of infrastructure, but also produce profit to
the machine operators. For each parameter set the optimal
operation scheduling is presented. In each scenario, different
types of loads and ratio of renewable energy production
is examined, while trying to find the optimal parameter
set, which will produce maximal revenue for the system
operator over a time horizon of few years. The analysiz takes
into account the growing percentage of renewable energy
production, changing electricity costs, and profit decay of the
machines.

An initial analysis is conducted to determine the effect of
renewable energy production, specifically from solar sources,
on the electricity prices. This data is not available for this grid
operator, but it is available for the state of California, which
has similar sun irradiation conditions. Hence, to perform this
evaluation, historical data from the state of California is used.
The dataset includes information about renewable and primary
production, in addition to electricity prices, between the years
1970-2022, and may be accessed through [11]. In Fig. 2, one
can easily observe that as more and more renewable energy
sources penetrate into the market, and their share in the overall
production increases, then electricity prices rise. This happens
partially due to grid defection [12], and also to account for the
inertia and reactive power correction that must be supplied by
power plant operators, to keep the stability of the grid [13].
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Fig. 2. Renewable energy production in % out of overall production effect
on electricity prices in the state of California between the years 1970-2022.

The profitability of Bitcoin mining machines is very
sensitive to changes in electricity prices. Following this
analysis, an estimation may be calculated, regarding how the
increasing percentage of renewable energy penetration, such as
the trend observed in California and Israel, affects the mining
machines’ profitability. For the simulation, several popular
BMMs were used. The BMMs parameters are displayed in
Table II, and they are based on data acquired from [14].

TABLE 11
BITCOIN MINING MACHINES PARAMETER SETS TAKEN FROM BITCOIN
MINING COMPANIES

Machine Demand Hashrate Income Electricity
[W] [Th/s] [$/day] costs [$/day]
Antminer S21 5360 335 15 0.1
Whatsminer M63 7283 334 14.49 0.1
Antminer S19 3250 110 5.05 0.06

The dependency of Bitcoin mining machines profit upon
the electricity costs is quite complex, and is extensively
discussed in [15]. However, in literature it is common to
rely on a simplified model in which the monetary revenue
of the Bitcoin mining machine is linear in the electricity
price, for example, as seen in [16]. In work [16] the authors
analyze a complex revenue model, accounting for marginal
factors such as network hash rate, machine hash rate, and the
time to mine a block, alongside with other factors including
transaction fees and block reward, their hashing power and the
probability of successfully mining a block. They show that
the most influential factor on the profitability of a machine
is the electricity prices, hence, giving the incentive to use a
linear model for the relation between machine income and
the electricity costs. Thus, the following relation describes the
dynamics:

Profit = a — b - Electricity-Price. )

The parameter a describes the maximal daily monetary profit
that can be achieved, meaning, the daily monetary revenue
from the Bitcoin mining machine when the electricity price is
zero, and b is a linear coefficient that represents how profit
changes with electricity price. For the simulation realistic
parameters are used, based on the following work [16]
and standard machine properties acquired online from sites
providing updated information on Bitcoin mining, such as
[17]. The values are a = 14, and b = 0.1. From Fig. 3, it
may be seen that there is a steep incline in the plot profile,
meaning that the effect of renewable sources penetration is
considerable when looking at mining machines’ profits.
Following, a trend describing the ramping costs as the
percentage of renewable energy sources grows is presented.
The duck curve is a well-known problem that visually displays
the escalation in ramping costs, as may be viewed in [18].
Figure 4 displays the ramping costs, assuming a quadratic
relation between the transient profile calculated in units of
MW/h and the monetary value (based on [19]), as a function
of renewable energy production in percentage, out of overall
production, is presented for the state of California. It is clear
that there is a substantial escalation in ramping costs, as more
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Fig. 3. Bitcoin mining machines profitability in [$], as a function of ratio of
solar energy sources production.

renewable energy sources take a bigger chunk of the overall
energy supply.
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Fig. 4. Renewable energy penetration effect on daily ramping costs in USD
per Watt in California, based on historical data.

Consequently, based on Figs. 3 and 4 it may be inferred that
there is tension between rising electricity prices, which reduce
the profitability of Bitcoin mining machines, and the increasing
ramping costs, which incentivize the utilization of flexible and
quick to respond consumers like Bitcoin mining machines. The
idea is shown in Fig. 5, which presents power plant operators
revenue from mining, which takes into account a prediction of
electricity prices and ramping costs based on historical data.
It may be observed that when excluding machine prices, even
for a modest revenue of 14 USD it is profitable to utilize these
mining machines in the next years, as the share of renewable
sources increases.

Building on the aforementioned results, there is a need to
determine the optimal machine parameters that companies in
Israel, managing power production, could use in their plants
to mitigate ramping costs, and use profits from these Bitcoin
mining machines to sustain their operation. The simulation
uses load and generation data acquired by “Noga” which are
available to the public [20], normalized to represent a single
power plant production. Realistic Bitcoin mining machine
parameters are used. These are based on three families of
Bitcoin mining machines: “Antminert-S19”, “Antminert-S21
Pro”, and “Whatsminerm63”. Since the parameters may
change slightly between providers, estimated prices are used,
and labeled the Bitcoin mining machines tested by the labels:
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Fig. 5. The operator’s revenue from Bitcoin mining machines over time, due

to renewable energy sources integration and plummeting electricity prices.

“17-3”. The parameters of the tested Bitcoin mining machines
are presented in Table III.

TABLE III
BITCOIN MINING MACHINES PARAMETER SETS

Type Demand [W] Hashrate Income [$/day]  Electricity
[Th/s] costs [$/W]

1 5360 335 15 0.1

2 7283 334 14.49 0.1

3 3250 110 5.05 0.06

In the analysis, quadratic cost functions are considered. This
assumption is well-known in literature [19]. The cost function
considered for power generation is given by c,(z) = gz?,
where g = k- (Electricity cost/Power consumption®) and k is
a constant, which has the value of k¥ = 0.0014 for machines
number “1” and “3”, and £ = 0.0012 for machine number “2”.
The cost of ramping is c4(z) = 2. The revenue per kWh
is given by c¢,, = income/consumption, where the income,
calculated in USD/day is based on average profits declared by
miners and presented in sources such as [17]. The consumption
is defined by the machine power consumption over 24-hour
time horizon: consumption = machine power consumption -
24. The parameter of the function ¢ used for eliminating
inequality constraints is a« = 1. The initial conditions are
o = /29 and Ao = 0.

The results are shown in Fig. 6. In the graphs, there
are four sampled days representing a typical load behavior
over the year. For each figure, the top subplot exhibits the
energy generation for that day; the second subplot presents
the consumption for that day, and the last subplot presents the
operational scheduling of the mining machines. As seen from
the results, the generation profiles are constant, clearly leading
to an optimal reduction in ramping costs.

In Table IV, the generation costs, and revenue from the
machine are presented, calculated for 4 months: April, July,
and October of 2023, and January of 2024, that represent
diverse renewable energy production profiles, and various
consumer behaviors patterns during the year. It is clear from
the generation patterns that the ramping costs are eliminated if
a perfect knowledge of the load profile exists. In the analysis,
the number of machines from each type, that are used to
stabilize the solutions are: 2853 machines of type “17, 2175
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Fig. 6. The top subplot of each figure exhibits the total consumption prediction ppet = pj;, + pr; the second subplot presents the consumption for that day
after the subtraction of the PV production according to different months in a year: (a) October; (b) April; (c) July; (d) January, and the last subplot presents
the operational scheduling of the mining machines. The black line represents machine number “1” machine, the blue line shows results for “2” machine and

the red line represents the *“3” machine.

machines from type ‘“2”, and 2924 machines from type “3”.
Thus, taking into account the machine price of 7400 for

TABLE IV
NET PROFIT FROM MINING CONSIDERING MACHINE COSTS AND
ELECTRICITY COSTS FOR SINGLE MACHINE OVER ONE DAY PER [KW]

Looking at the revenues expected over a time horizon of 6
years, it is clear that for machine prices close to machine of
type “1”, the revenue does not account for the purchasing
costs and the company will incur financial losses. Figure 7
presents this idea. Consequently, until Israel reaches 40% of
renewable energy production, it seems to be beneficial for
power plant operators to utilize mining machines for ramping

Month Machi MSRP i . . ..
ont achine [$/§1ay] 2)2:: Tg/]:iiy] :re;ﬁt cost reduction, as long as the daily profit from mining are
[$/day] greater than 5% and the mining machine price does not exceed
April 1 10.14 2377 1.48 6947$. As the daily monetary profit from mining, represented
2 7.12 31.18 3.76 by V, increases, it allows the system operator to invest more
3 8.50 23.19 27 money in the mining machine’s purchase, as long as the price
July 1 10.14 2222 1.64 of the machine, denoted by C, submits to the following:
2 7.12 29.14 3.97 c
3 8.90 21.68 2.92
— —89<V -5 (10)
January 1 10.14 2291 1.57 2-365
2 7.12 30.05 3.88
3 8.90 22.35 2.86
V. COMPARATIVE ANALYSIS OF DEMAND-RESPONSE
October 1 10.14 22.06 1.65
2 7.12 28.93 3.98 MECHANISMS
3 8.90 21.52 2.95

machine of type “1”, 5200 for machine of type “2”, and
6500 for machine of type “3” (considering machine lifespan
of 2 years), the annual revenue from the machines, and the
ramping costs reduction is significant. Nonetheless, although
this idea might sound attractive, there is a sting in its tail.

The recent literature explores various demand-response
mechanisms. Among these, “Incentive-Based Demand
Response” offers financial incentives for voluntary load
reduction, and “Automated Demand Response” (Auto-DR)
employs automation for rapid load adjustments. This paper
focuses on “Bitcoin Mining-Based Demand Response”, which
utilizes the flexible and scalable nature of Bitcoin mining to
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Fig. 7. The operator’s net profit from Bitcoin mining machines, based on
average parameters, over a time horizon of 6 years.

stabilize the grid. This section will qualitatively evaluate the
cost-benefit trade-offs and real-world adoption trends of these
approaches.

Table V presents a qualitative comparison of these three
key demand-response (DR) mechanisms: Incentive-Based DR,
Auto-DR, and Bitcoin Mining-Based DR. This comparison
focuses on critical aspects, including initial investment,
operational costs, response time, net revenue potential, and
scalability, providing a broad understanding of each approach’s
strengths and weaknesses. Incentive-Based DR typically
involves moderate investment and operational costs, yielding
moderate revenue through direct payments. Auto-DR, utilizing
IoT and automation, requiring significant upfront investment,
which is compensated by low operational costs, rapid response
times, and high scalability. Bitcoin Mining-Based DR, while
demanding high investment and operational expenditures due
to mining equipment and electricity, provides instant response,
substantial revenue from mining and DR participation, and
high scalability. To underscore the practical relevance of
these approaches beyond theoretical constructs, the table
includes examples of real-world programs, showcasing their
global deployment. This table facilitates an elementary yet
informative comparison of these DR strategies, highlighting
the critical considerations for their implementation in modern
power systems.

VI. SENSITIVITY ANALYSIS OF BITCOIN MINING
MACHINE CHARACTERISTICS

To further analyze the impact of external factors on the
optimal scheduling of BMMs as a demand-response tool, a
sensitivity analysis is performed, considering Bitcoin price,
network hash rate growth, electricity tariffs, and government
regulations. These factors influence the profitability of BMMs
and, consequently, the optimal control policy w* derived
from Pontryagin’s minimum principle. As was discussed in
Section III, the optimal control policy u* is given by u* =
(¢))71(=A*), where \* follows the adjoint equation d\* /dt =
—cy(z%) +em(t) — &' (2% —pr(t)). This analysis explores how
the optimal control, »*, is influenced by changes in several
key parameters. The analysis is based on work [16], that
presents the expected value for the miners’ profits, taking into
account the operational costs, revenue potential, and orphaning

risk (II) = (H/Hpet)(M + R) - exp(—7/T) — nHpe: T,
where H is the miners hashing rate, H,.; is the network’s
hashing rate, M are the transaction fees, R represents the
block rewards, 7 is the block propagation delay, 7' is the
time to mine a block, and 7 is the costs of the hash value.
For simplicity, small transaction fees are assumed, meaning
M is negligible, thus M + R ~ R, which is proportional to
the Bitcoin prices, meaning that R o Pp, where Pp is the
Bitcoin price. Bitcoin mining profitability declines as the total
network hash rate increases due to the difficulty adjustment
mechanism. Thus, this study relies on the assumption that
the mining revenue per unit power consumption is given by
em(t) = kpPpH(t)/Hpet(t), where kp is a proportionality
constant. Since ¢,,(t) appears directly in the adjoint equation,
an increase in Pp increases ¢, (t), resulting in more mining
activity. In contrast, if H,.:(t) grows faster than H(¢),
then ¢,,(t) declines, decreasing mining operation. Moreover,
examining the objective function, it is evident that higher
electricity prices make Bitcoin mining less profitable, and
tends to reduce mining activity. Finally, regulatory constraints
on mining (e.g., power caps, taxation), in scenarios where they
are relevant, introduce an additional penalty function Rg(p.,)
into the cost function. If R4(p,,) increases due to stricter
regulations, it discourages mining activity. In this paper it is
assumed that there are no regulatory restrictions, meaning that
Rgy(pm) = 0, and as done in [16], the Bitcoin mining profits
are assumed to be proportional to the electricity prices.

VII. CONCLUSION

Previous works have shown how cryptographic mining
machines, for instance Bitcoin mining machines, may be
used in demand-response mechanisms, as part of the portfolio
of assets managed by the grid operator. In this paper this
formulation is extended by addressing the effects of fast
ramping transients, which may often occur in power grids
rich with renewable energy sources. The resulting optimization
problem is solved based on Pontryagin’s minimum principle,
and the solution is utilized for examining the profitability and
usage of these machines in a real-world settings, based on
data from the California ISO and the “Noga” grid operator.
Based on these datasets, a trend of increasing electricity
prices and ramping costs is analyzed. This trend results
from the increasing penetration of renewable energy sources.
Following, a sensitivity analysis is conducted, considering
the effects of changing electricity prices, machine prices,
hashrate, and monetary revenue of the machines. Based on
this sensitivity analysis, a comparative study is conducted,
using the aggregated data to further emphasize the effect of
the different properties of these machines, and comparing
different machine types available in the market. From the
results in Table IV and Fig. 6, it may be suggested that
for today’s typical data and prices, it is more profitable
for a grid operator to utilize low-cost machines with lower
hashrate. The analysis also shows that various trends may
be observed, depending on the electricity price, and the price
and hashrate of the machines. For instance, one non-intuitive
trend that may be observed (For example in Fig. 2 and



Fig.

TABLE V
COMPARING THE KEY CHARACTERISTICS OF DEMAND-RESPONSE MECHANISMS

DR Mechanism Response Time Revenue Potential*  Scalability  Real-world program
Incentive-Based DR Minutes to Hours Moderate Medium EnerNOC’s DR project [21]
Auto-DR Seconds to Minutes ~ Moderate High Google’s AI-Optimized Data Center Cooling [22]
Bitcoin Mining-Based DR Instant High High ERCOT Texas [23]
4) is that as the ratio of production from renewable [13] A.Navon, P. Kulbekov, S. Dolev, G. Yehuda, and Y. Levron, “Integration

sources increases, the cost of electricity rises, which eventually
results in increased operational prices of the machines, but
also in elevated ramping costs. This conclusion however may
change drastically, depending on the data and cost of operating
renewable and conventional sources, and on the machines’
parameters. In addition, the economic analysis focuses on
direct mining revenues, overlooking financial mechanisms like
carbon credits that could affect feasibility. Moreover, transient
stability under extreme conditions remains unaddressed, and
future work may investigate robust control strategies for
resilience. Nevertheless, in many scenarios the machines may
play a supportive role which may help reduce the ramping
effects caused by renewable sources.
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