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Abstract—Inverter-based resources (IBRs) are now an increas-
ingly important component of modern power grids. However,
as the penetration of IBRs increases, several real-life instances
of instability or nuisance oscillations are being reported. High-
fidelity small-signal models can greatly help to diagnose, an-
ticipate, and mitigate these problems. This paper proposes a
scheme for the online small-signal model estimation of IBRs
using external excitation signals and/or ambient noise as probing
signals. These excitation signals can be realized through small-
amplitude wide-band set-point modulation of power electronic
equipment such as IBRs, FACTS, or HVDC converters in the
vicinity. The linearized models of IBRs so obtained can be
combined with the impedance of the transmission network and
other devices to predict the stability of the overall system. This
paper describes the signal processing algorithms used in the
scheme and discusses the practical implementation issues. Proof-
of-concept Electro-Magnetic Transient (EMT) simulation studies
are presented, and the effect of various parameters are analysed.

Keywords—Inverter-based resources, admittance frequency re-
sponse estimation, system identification, Spectral analysis, multi-
coherence based identification.

I. INTRODUCTION

Power electronic inverters are a crucial component for
interfacing renewable energy systems, FACTS, and HVDC
transmission systems with the AC grid. While they provide
enhanced control flexibility, their widespread adoption has
raised stability concerns due to the possibility of adverse in-
teractions; several instances of undamped oscillations between
IBRs and other power system components have been reported
in the literature [1], [2]. These adverse interactions can be
mitigated through controller parameter modifications and the
use of supplementary damping controllers [3].

In most cases, the undamped oscillations arise due to small-
signal instabilities. Linear time-invariant (LTT) models valid
for small excursions around the equilibrium can be used to an-
alyze such oscillations. Frequency domain LTI models can be
extracted using simulations or online experiments by injecting
small-amplitude wide-band signals probing signal(s) into the
system and measuring the responses [4]. These IBR models are
typically obtained in the form of frequency responses of Multi-
Input Multi-Output (MIMO) transfer functions obtained in the
D-Q domain. The overall system can be built in a modular
fashion: the D-Q domain MIMO admittance of individual IBRs
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can be extracted and combined with the electrical network
impedance to obtain the frequency response of the overall
system. This can then be used to determine the stability of
the system. Since the underlying system is non-linear, the IBR
models are operating point-dependent. However, the network
impedance transfer function is linear, and it can be obtained
analytically in a straightforward manner.

The models required to accurately diagnose, anticipate,
and mitigate stability problems need to have high fidelity.
Therefore, even if analytical models are available, they need
to be validated experimentally. In sifu probing to estimate the
parameters of passive power apparatus like transformers can
be done offline, i.e., when the apparatus is out of service [5].
Online probing is more meaningful for IBRs as the aim is
to extract a small-signal model around a quiescent operating
condition, which is available if the IBR is energized and in
service. Such estimation of models requires external probing
signals. Probing signal injection has been used previously
for online transformer testing [6] and low-frequency modal
estimation in power systems [7]. It is also used in experimental
model estimation of automatic voltage regulators [8].
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Fig. 1: Online model estimation facilitated by remote excitation.

This paper proposes the use of other Voltage Source Con-
verters (VSC) based IBRs, HVDC or FACTS converters in
the vicinity of the IBR under test to inject small-amplitude
currents into the system. This is achieved by modulating the
set point of their fast-acting current controllers with suitably
designed signals. The model of the IBR under test is estimated
using the measured signals at that IBR. The scheme is depicted
in Fig. 1. Unlike the simulation-based frequency scanning [4],
which is done in a controlled environment, online estimation
is affected by ambient noise. Major sources of this noise
are consumer-initiated load variations/switching and naturally
occurring disturbances. While ambient noise contaminates the
test signals, it could potentially be used to aid the estimation
if its statistical properties are stationary during the tests.

This paper lays the signal processing groundwork for the
estimation procedure and brings out the practical implementa-
tion issues. The cross-power spectral density (CPSD)-based
algorithm is used, which is suitable under noisy ambient



conditions. A multi-coherence function is used to assess the
reliability of the estimated model. Simulation case studies are
presented to demonstrate how the estimation scheme works.

II. D-Q MODELS OF THE NETWORK AND IBRS

The aim of the online model estimation is to obtain the
transfer function of an IBR at its terminals. The model is
extracted in the D-Q domain, as the underlying system is time-
invariant in this frame under balanced operating conditions [9].
The D-Q transformation in (1) transforms the a-b-c variables to
the D-Q-o variables. The variable x can denote either voltage
or current, and v = w,t + &£, £ being an arbitrary constant.
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The frequency used in the D-Q transformation w, is taken
to be the prevailing steady-state frequency so that the D-Q
variables are constants in the steady state.

A. Network Model

The transmission network can be modeled as a balanced
circuit with R-L-C elements for control interaction studies. It
can be represented as a multi-port transfer function in the (o —
() variables obtained by applying Clarke’s transformation [10]
to the corresponding a-b-c quantities.
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The prefix ‘A’ denotes small deviations from the equilibrium.

Each element of the impedance matrix given above (Zag, ) is

a 2 x 2 sub-matrix relating a 2 X 1 voltage vector Vg, to a
2 x 1 current vector I, 8, the other currents being zero.

[ AV, (s) } _ [ Z:i(s) 0 } { Al,,(s) ] 3)
AVg, (s) 0 Zi(s) | | Alg,(s)
where AV, = [AV,, AV,]T and Alag, = [Aly, Alg T
If the impedance matrix in the D-Q variables is represented
as follows,
[ AVpi(s) ] _ { Zpp,;(s) Zpq,(s) ] { Alp,(s) ] )
AVqi(s) Zop,,;(s)  Zqq,(s) | | Alg,(s)
then, from the relationship between the a-f8 and the D-Q
variables, we obtain the following relationship [10],
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B. IBR model

Assuming balanced conditions and neglecting harmonics,
the IBR model in the D-Q variables is time invariant [9] and
can be treated as a linear system for small levels of signal
excitation. This yields the small signal model of the IBR as
given in (6). For a single-port IBR connected at bus ¢ of the
network as shown in Fig. 1,
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where the current is injected into the network by the IBR.

C. Overall System Model

The network impedance model is linear and can be analyt-
ically derived; it depends only on the topology and network
parameters and not on the power flows. The IBR models have
to be extracted and stored for different operating conditions.
An operating condition is characterized by the real and reactive
power injection by the IBR, as well as the voltage and fre-
quency at its terminals. The model of each IBR at the various
system operating conditions is combined with the transmission
network model (which can be analytically obtained) to obtain
the model of the overall system as shown in Fig. 2. These
combined system models can be used to determine the stability
at these operating conditions. A lookup table consisting of
damping and resonant frequencies at different operating con-
ditions could be constructed for the operator. If an operating
condition with poor damping is encountered, then the operator
could steer the system to the closest safe operating point by
carrying out set point changes in the IBR(s).
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Fig. 2: Combining the models of IBRs and other system components.

Remarks

1) D-Q Reference Frame: For interaction studies involving
multiple IBRs, the impedance and admittance matrices should
be obtained using a common D-Q frame. This is because, in
general, the angle £ in the D-Q transformation (1) affects the
individual terms of the admittance matrix in the D-Q variables.
If a 2 x 2 admittance matrix in the D-Q frame Y, is obtained
using a D-Q transformation with £ = £ 4, and Yp is obtained
using & = £p, then Y4 and Yp are related by the following
equation, where § = & — &;.

Y = [coscs —smé] “ Vi |:COS(5

sind  cosd —sind  cosd

sin (5] 7

The matrices Y4 and Yp are equal only if their diagonal
terms are equal and the off-diagonal terms are equal in
magnitude but of opposite sign. A similar condition holds true
for the impedances.

For a passive electrical network, both the admittances and
impedances satisfy these properties, as evident in (5). How-
ever, this is not true for IBRs, and synchronous generators [11].

Therefore, if the IBR admittances are to be combined with
transfer functions of other IBRs and the transmission network
for interaction studies, they should use a transformation de-
rived from a common clock with equal values of £. This is
possible to achieve using GPS-based timing signals, which
can provide a theoretical accuracy of synchronization better



than 1 ps. This is adequate when the bandwidth of the model
to be extracted is, say, from 0 to 100 Hz.

2) Stability Analysis: The IBR admittance matrix is con-
veniently obtained by the process of frequency scanning, as
discussed in the following section. This yields the values of the
matrix components at s = j ) = j 27 x f for different values
of f, which typically range from 0—100 Hz for controller
interaction studies. This frequency range is sufficient because
instabilities associated with interactions between IBRs and the
network usually lie in the range of 0-100 Hz. The transfer
function poles could be obtained via the process of “vector
fitting” of the frequency response matrix to a rational transfer
function matrix [12], from which the system’s stability can be
inferred. Alternatively, the frequency response could be used
directly to determine stability using the Generalized Nyquist
Criterion [13]. The inferences must be drawn carefully, as the
model is estimated only for a finite range of frequencies.

III. ESTIMATION OF IBR MODEL
A. Simulation-based model estimation

If a black-box simulation model of an IBR is available
that can be probed only at its terminals, then its small-signal
frequency response can be obtained using time-domain simula-
tion tools as indicated in Fig. 3. This technique is commonly
known as frequency scanning [4], [14]. In this method, the
signal injection is done directly at the IBR terminals by adding
a controlled voltage source, as shown in the figure.
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Fig. 3: Estimation of transfer functions using frequency scanning.

A multi-sine probing signal of the following form can be
used for the frequency scanning.

No
u(t) = Z a; sin(2rl fat + @) (8)
I=N;
Note that this signal has Ny — N; + 1 frequency components
(from Nify to Nsfy) each spaced by f; Hz. Therefore,
the fundamental period of w(t) is Ty = (1/f4) s. The
maximum amplitude of u(¢) has to be limited to avoid large
deviations from the equilibrium. The parameters a; and ¢; may
be chosen appropriately to reduce the maximum amplitude,
thereby avoiding nonlinear IBR behavior [15]. The effect of
this choice is illustrated in Fig. 4. Fig. 4 (b) is desirable due
to its smaller envelope.
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The steady-state response of the system to the low-
amplitude multi-sine injection is periodic with a period Tj.
The Fast Fourier Transform (FFT) algorithm [16] is generally
used to determine the frequency components of the measured
currents and voltages after the natural transients have died
down. The FFTs of the periodic injected and measured signals
are then obtained over a data window spanning one fundamen-
tal period or integral multiples of the period of the multi-sine.

Models extracted using simulation-based frequency scan-
ning have proven to be quite useful and accurate [17], but
validating these models through physical testing is desirable.
This can be achieved using online methods as described below.

B. Online Model estimation using Probing Signals

Online small-signal model estimation can be done through
tests and measurements on an actual IBR (not the simulation
model) that is in service and is energized. While the wide-band
test signals could be directly injected at the terminals of the
IBR as done in the simulation-based method, it would require
coupling the signal generation equipment to the high-voltage
system via injection transformers.

A more convenient and inexpensive way of doing this
testing is to use other VSC-based devices in the vicinity
for injecting the signals (see Fig. 1), obviating the need for
special equipment. Set point modulation of the inner current
controllers of these devices with multi-sine signals can help to
achieve this. The inner current controllers are usually present
in all VSC-based grid-connected power electronic systems and
are fast-acting. Therefore, they can facilitate wide-band current
injection into the system. The candidate signal injection points
in a typical grid-forming IBR are shown in Fig. 5.
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Fig. 5: Candidate injection points for multi-sine signals in an IBR.

Remarks:

1) Minimum Independent Injections: The estimation of the
four components of the 2 x 2 admittance matrix of a single-port
IBR would require at least two independent (non-simultaneous
and distinct) injections. For example, in the simulation-based
model estimation of Fig. 3, the D-Q currents are obtained for
the Avp(t) injection first and then for the Awvg(t) injection.

In the case of excitation implemented by modulating the real
or reactive current of remote IBRs, at least two independent
injections are required that give linearly independent Awvp



and Avg spectra at the terminals of the IBR under test.
The measurements of the D-Q currents and voltages (four
measurements) at the terminals for the two injection tests can
then yield the desired admittance matrix components.

For example, one multi-sine signal could be injected at the
set-point of the real current controller of a remote IBR, while
at a later time (i.e., independent of the first injection) another
signal could be injected at the reactive current controller of
that IBR. The use of more than the minimum (two injections)
number of experiments can help to reduce the effects of noise,
which can be done by involving multiple remote IBRs. The
model can then be extracted from the over-determined system
of equations using methods like total least squares.

2) Active Power Injection: The small-amplitude modulation
of the set points of the real current (current in phase with volt-
age) will cause corresponding variations in the instantaneous
real power exchange between the VSC injection device and
the system. However, since the multi-sine signals have a zero
average, the net energy required for this is essentially zero.
Nevertheless, these real power variations will cause variations
in the DC link capacitor voltage of the VSC. Hence, the
amplitude of real current modulation should be restricted.
Reactive power modulation is less restrictive, as it does not
result in power modulation on the DC side of the VSC.

C. Online Ambient Noise based estimation

Ambient sources of excitation like naturally-occurring dis-
turbances and consumer-initiated load-switching noise (which
is continually present) are generally considered a nuisance in
model estimation using probing signals. However, it may be
possible to utilize noise for model estimation when statistical
methods are employed. Note that the aggregated load vari-
ations, which is a major source of noise in power systems,
can be treated as band-limited white noise [18]. Ambient
noise-based estimation, if feasible, could obviate the need for
probing signal injection at the other IBRs. Ambient noise and
naturally occurring disturbances have been used for estimating
the frequency and damping of low-frequency swing modes [7]
and for transformer frequency response estimation [19], [20].

Intuitively, the scheme seems viable if the noise or transient
disturbances have spectral components of sufficient magnitude
in the frequency range of interest. Long data records are
generally required for accurate noise-based estimation. Even
with this approach, a minimum of two uncorrelated noise
sources that give linearly independent Avp and Awvg spectra
are required. Fortunately, since a power system has a large
number of loads at different buses acting independently, this
condition is usually satisfied.

IV. SIGNAL PROCESSING STEPS FOR MODEL ESTIMATION
A. FFT-based estimation

For each independent injection scenario & carried out under
a given operating condition, the following equation is satisfied
for each frequency component (s = j€2 rad/s) of the voltages
and currents obtained using FFT.

g Yoo (i)

N — | AVbo, Gk 0 Ypo(i9)

(Ao, (1] = [0] AVpq, (10 Yop () ®)
Yoo (i©)

where, AVpo(iQ)k = [ AVD(iQ) AVp(5Q) ], and
[AIpo(i)]k = [ AIp(jQ) Alg(j2) ],. Note that the subscript
‘2> denoting the bus at which the IBR under test is connected
is omitted to avoid notational clutter.

Each injection should be carried out for a duration of time
which spans several windows of duration 7,;. A few initial
windows are discarded to allow the natural transients to decay.
The measurements will be contaminated by ambient noise,
which will affect the estimation. Therefore, the measurements
are averaged over several non-overlapping time windows of
period Ty before computing the FFT. Ideally, this will improve
the signal-to-noise ratio (SNR) by a factor equal to the number
of windows that are averaged [21].

Two independent injections (k = 1,2) carried out sequen-
tially will yield four equations to solve for the unknowns
Ypp,Ypg,Yop and Yyq, as given in (9). As discussed in
Section III-B, this is the minimum number required to obtain
the four admittance components. Additional (independent)
injection tests are likely to yield better estimates in the pres-
ence of noise in both the current and voltage measurements.
The over-determined set of equations resulting from these
additional tests, which are of the form Ax = b, can be solved
using the fotal least squares formula. The TLS solution is
obtained as shown in (10).

R(1:n,n+1)

R(n+1,n+1) (19)

Tls = —
Risa (n+1) x (n+ 1) matrix obtained from the singular
value decomposition, [A b] = P ¥ RH, where [A b] is an
n X (n+ 1) matrix obtained by appending the column vector b
to the matrix A. P is a n xn matrix and ¥ is a diagonal matrix
containing the singular values. The superscript ‘H’ denotes the
conjugate transpose operation.

B. Cross Power Spectral Density based estimation

As an alternative to the FFT-based approach, one may
use a Cross Power Spectral Density (CPSD) based approach
to estimate the frequency response. The advantage of the
CPSD-based scheme over the “plain” FFT-based scheme of
Section IV-A is that it can potentially leverage the ambient
noise to aid the estimation.

The CPSD S,, between two signals Axz(t) and Ay(t) is
defined as follows.

Szy(§Q) = FFT(xcorr(Ax(t), Ay(t))) (11)

where xcorr(Ax(t),Ay(t)) denotes the cross-correlation be-
tween Axz(t) and Ay(t) [22]. The record duration is chosen
to be long enough so that S, (j2) is relatively constant in the
frequency range of interest. For injection tests using multi-sine
periodic signals of fundamental frequency f;, multiples of its
period Ty can be used for the computation of S, (j9), after
the natural transients have died down.

The CPSD of the voltages and currents obtained from the
kth data record are related as follows.

SiD—’UD (JQ) YDD(']Q)
SinvQ(jQ) _ S’UDQ (JQ)IC [0] YDQ(jQ) (12)
Sicg—’UD (]Q) [O] S'UDQ (]Q)k YQD(]Q>
Siq-v@ (i) |, Yoo (i)



Svp—vp (J€2)
X S’UD*’UQ (]Q)
notes a 2 X 2 matrix of zeros.

The admittances can be uniquely obtained if .S, (7€) is
of rank 2 at each frequency. It is easy to verify that this is
not true for a data record obtained from a single multi-sine
injection test with no ambient noise. Therefore, two or more
records (k = 1,2,..) corresponding to independent multi-sine
injection tests are used to form a system of equations that will
yield the four admittance components.

Even if no multi-sine injection tests are performed using
the external VSC devices, two or more uncorrelated external
sources of noise, e.g., caused by load switching at different
buses, can, in principle, be used for the CPSD-based estimation
(see Section III-C). However, this requires measurement record
lengths over which statistical properties like cross-correlation
do not vary significantly. In practical implementations, the data
record is often divided into windows. The CPSD estimates
obtained for each of these windows are then averaged to get
a smoother estimate [23].

Svg—vp (7€)

where S,,,(iQ) = S (39)
vQ—VQ k

and [0] de-

C. Multi-Coherence Function

The IBR model estimation schemes presented in the pre-
vious sections rely on excitation sources external to the IBR,
with no internal changes (like set point changes) occurring
in the IBR under test. However, even if there are no internal
changes in the IBR, measurement noise and non-linearities
in the IBR response will cause errors in the estimation. The
coherence function [24] is generally used to determine the
extent to which the measurement noise and non-linearities
are responsible for what is observed in the measurements.
Consider the estimation of the two-input, two-output system
IBR model given in (6), taking Avp and Avg as the inputs,
and Aip and ig as the outputs. The coherence function can
be evaluated for the outputs, one at a time, as shown in (13).

S% i, G Sk x (7)) Sx—ip ()

7V x-ip (1) = Sip—ip(382)
gl = i (jms,s.;i.x((j}%)) e
iQ—iq
where, Sy_x(jQ) = { gzz:zzgg; 2:2:32883 }
Sxiol®) = | G200 |5 Sxoiati = | Gomiebl) |

The multi-coherence function for each output lies between 0
and 1. It equals 1 at all frequencies if there is no measurement
noise and nonlinearity. If it is significantly below 1, then
it indicates that measurement noise and/or non-linearities
are present and are at least partly responsible for what is
observed in the measurements; in such a case, the estimates
are unreliable. The estimations then have to be discarded and
this has to be repeated with re-calibrated injections.

D. Practical Considerations

The IBR model estimation scheme requires consideration
of several practical issues, which are summarized as follows.

1) Injection Sources: A prerequisite for this scheme is the
accessibility of test signal injection points in the controllers.
Considering the importance of model validation, it is imper-
ative to include the provision of such injection points as a
part of the specifications/regulations for IBR controllers. In
this context, it is important to note that the signal injection
by modulating the current controller set point of an IBR
can also yield the necessary information for the design of a
Supplementary Damping Controller for that IBR [3].

As discussed earlier, the signal injection should preferably
be done where it is unlikely to be significantly attenuated by
the controller, e.g. the summing point of the high-bandwidth
inner current controller. However, attenuation at certain fre-
quencies cannot be completely ruled out as it depends on the
specific controller and the network characteristics. Inadequate
excitation at some frequencies may result in poorer estimates
at those frequencies. Therefore, the online estimation should
preferably be based on several diverse excitation sources,
including the natural ambient noise due to load variations.

The proposed approach is scalable for large power systems,
as frequency domain models are generated using the mea-
surements of each IBR over a range of operating conditions.
The stability of the overall system can be obtained offline by
combining the individual IBR models with the analytically
obtained network model. A few IBRs are needed to provide
the necessary excitation. In a large network, the excitation
sources should preferably be near the IBR under test to
ensure adequate signal amplitude at those IBR locations for
measurement.

2) Measurement Instrument and Signal Conditioning: Mea-
suring equipment with sufficient bandwidth and precision is
necessary to capture the low amplitude variations. To cap-
ture the steady-state perturbations with higher precision, the
voltage and current measurements should be passed through
an analog notch filter to eliminate the large fundamental fre-
quency component. The measured signals should also be low-
pass filtered to avoid aliasing. Washout or de-trending filters
are necessary to remove the variations below the bandwidth
of interest due to slow generation and load changes.

3) Amplitude of Signal Injection: The IBR model is as-
sumed to be linear for small levels of signal excitation and
time-invariant in the D-Q variables. The linearity assumption
may be violated if the variations at the terminal of the IBR
under test (due to the excitation at other locations) are large,
or if the IBR is operating close to the thresholds of non-linear
blocks (like limiters) in its controller. This will cause distor-
tions in the frequency response, which may result in inaccurate
inferences. However, such situations can be identified using the
multi-coherence function (Section IV-C), and the estimation
can be repeated with a reduced injection signal.

The injection magnitude should be such that it results in
responses whose amplitudes are about the same or higher
than the ambient noise to be measurable using practical
instrumentation. At the same time, the excitation should not
affect normal operation or cause equipment limits to be hit
during the estimation process. In practice, the voltage and
current measurements will also be contaminated by ambient
noise, which could affect the estimation. This can be reduced



by the signal processing techniques discussed in Section IV. To
prevent excessively large magnitudes of the excitation input,
the multi-sine signal given in (8) can be further optimized by
utilizing the additional degree of freedom in the amplitudes
of the individual frequency components. Offline simulation
studies done prior to the online estimation can help deter-
mine appropriate levels of excitation and the accuracy of the
estimation in the presence of noise.

4) Model Estimation Algorithm: In an ideal noise-free
environment, the CPSD-based estimation would give results
identical to the FFT-based method. However, in the presence
of noise, the “conventional” FFT and CPSD algorithms differ
in one key aspect. In a real-world system, the FFT would be
inaccurate due to noise pollution, which can be alleviated to
some extent by averaging the signal over several cycles (the
effectiveness of this depends on the noise properties).

In contrast to the noise being an unwanted irritant that
creates error, it is actually welcome in the CPSD approach
which uses it to yield the system model. In this method,
the frequency components of the cross-correlations of the
measured signals are used to compute the frequency responses.
The CPSD indirectly extracts the stationary properties of the
noisy input and output measurements (through the FFT of the
correlation of the signals). Therefore, CPSD can potentially
exploit the noise if the noise is stationary.

5) Validation of Results: The estimated model of each
IBR can be validated by comparing the inferences with the
behaviour of the actual system. For example, the resonant
frequency and damping obtained from the system model can
be compared with the corresponding system measurements. If
the reference model of the IBR is provided by the original
equipment manufacturer (OEM) or can be obtained through
testing, this can be used as a benchmark for the estimated
model. If the OEM has provided a “Digital Twin” [25], i.e.,
a black-boxed EMT model, then the validation could also be
done by comparing with this model. If such reference models
are not available, the coherency measures in Section IV-C can
be used as an index to determine whether the estimated models
are affected by internal noise or non-linearities.

V. SIMULATION CASE STUDIES

The IEEE 9-bus system with 100% renewable energy pene-
tration, developed on the Electro-Magnetic Transients (EMT)
simulation program PSCAD [26] by the National Renewable
Energy Laboratory (NREL) [27] is utilized for this study.
The system operates at 230 kV and supports a total load
of 315 MW and 115 MVAr distributed among three IBRs.
Fig. 6 depicts the schematic of the three-IBR system. Two
of these IBRs - IBR-1 and IBR-2 function as Grid Forming
(GFM) inverters, while IBR-3 operates as a Grid Following
(GFL) inverter. The GFM inverters are equipped with active
and reactive power droop controllers, which determine the set
points of a voltage controller, which then determine the set
points of the inner current control loop as shown in Fig. 5.
The GFL inverter supplies real and reactive power based on
externally specified set points.

We seek to estimate the model of IBR 3. The set points of
the current controllers, both IBR 1 and IBR 2, are selected

Bus-2 Bus-7 Bus-9 Bus-3

Bus-8

18 kV 230 kV

IBRs used for
signal injection Ps, @5 Vi,

\ Bus-1

230 kV L

13.8 kV /

IBR under test

Bus-6
.Y Ps. Qs

230 kV

Bus-5

Ly, Ly, L3 are
(noisy) loads

Fig. 6: Example system for the case studies.

as the candidate injection points for multi-sine signals. The
maximum amplitude of the multi-sine envelope is taken to be
1% of the current rating of the IBR. The loads at buses 5, 6,
and 8 (denoted by Lj, Lo and L3) are modelled as constant
impedance loads with ambient noise injection. The standard
deviation of the noise is about 1% of the quiescent value of
the base load currents. Each injection test is carried out for
250 s. The measurements for the first 50 s have been excluded
to allow for the natural transients to decay.

To assess the accuracy of the estimation with noise included,
the frequency response obtained using the FFT and CPSD
methods are compared with the reference (true) frequency re-
sponse which is obtained using the approach shown in Fig. 3. It
may not be possible to make such an idealized measurement in
the field. Under such circumstances, the coherence function is
useful to detect measurement contamination and non-linearity.

Various injection scenarios are considered as given in Ta-
ble I. To get an idea of the deviations induced by the tests,
the waveforms at IBR 3 terminals are shown in Fig. 7, for the
test ‘1C’.

TABLE I: Cases considered.

Description/Multi-sine injection points(s) FFT CPSD

No Noise; IBR-1 idmf and i, Case 1A Case 2A
No Noise; IBR-1 id'ref and iqrcf’ IBR-2 idmf Case 1B Case 2B
Ambient Noise + IBR-1 iq, Case 1C Case 2C
Ambient Noise + IBR-1 74 and 4 Case 1D Case 2D

ref ref

Ambient Noise + IBR-1 idmf and iqref, IBR-2 idrcf Case IE Case 2E
Ambient Noise; No Injection. - Case 2F

50 100 150 200 250 50 100 150 200 250

Time (s) Time (s)

Fig. 7: Terminal quantities of the IBR under test (Case 1C).

A. Observations

1) The results for the FFT-based estimation are shown in
Fig. 8. While the FFT-based method provides more accurate



estimates in controlled, low-noise environments, its perfor-
mance degrades in the presence of ambient noise. With only
one multi-sine injection (Case 1C) in the presence of noise, the
FFT based method is unable to estimate the model correctly
as expected.

‘ ----- Reference (True) value — Case-1A —Case-1B —Case-1C — Case-1D — Case-1E
T

Case-1A
(No Noise + 2 injections)

g Dl il w’
LA/ A
'/'\ \ |‘ W‘l ]

A [
AT
Case-1C
(Ambient Noise + 1 injection)

Re{Ypp} (S)

0.04f (No Noise + 3 jnjections; i B
10° 10!

0.06 :

0.04 - Case-1D Case-1E J

(Ambient Noise + 2 injections) , (Ambient Noise + 3 injections)

Im{Ypp} (S)

1

Frequency (Hz) 10

Fig. 8: Estimates using the FFT method of Section IV-A. Time-
domain measurements over 20 non-overlapping windows of 10 s each
are averaged before performing the FFT.

The results for CPSD-based estimation are shown in Fig. 9.
In contrast to the FFT-based method, the CPSD-based method
exhibits greater robustness under noisy conditions, including
the only-noise case (2F). However, in this case (Case 2F),
while the resonant frequency is correctly captured, the resonant
peak is significantly lower than the true value.

- Reference (True) value — Case-2A — Case-2B — Case-2C — Case-2D — Case-2E - Case-2F

Case-2A
(No Noise + 2 injections) [/
i

Case-2C 7

(Ambient Noise + 1 injection)
I

10"

Case-2B

(No Noise + 3 injections) Case-2E

(Ambient Noise + 3 injections)
Case-2D

(Ambient Noise + 2 injections) N Case-2F 1

(Ambient Noise only)

Frequency (Hz) 10!

Fig. 9: Results using the CPSD method of Section IV-B. CPSDs over
20 non-overlapping windows of 10 s each are averaged.

2) The estimation accuracy for both methods is quantified
using the Normalized Root Mean Square Error (NRMSE). The
error is computed over the frequency range of 1 Hz to 10 Hz in
which the resonant frequency lies. The NRMSE is estimated
using a 0.1 Hz resolution for each admittance component is
computed as follows.

V& (oo - oo’

max (VGO x 100

NRMSE (in %) = (14)
where Y (j€) is the estimated admittance, Y (jQ) is the
reference admittance (obtained from frequency scan without
noise), and the summation is over the frequency range of
interest. The NRMSE values are shown in Table II. Note that
T, Ny, and T}, denote the data record length, the number of
data windows, and the length of each window, respectively.

TABLE II: NRMSE comparison for FFT and CPSD methods.

NRMSE (%)
Case Ty (s) Ny Tw (s) Overlap Yoo Ypo Yoo Yoo
10 1 10 no 1.38 1.33 1.34 351
1D 100 10 10 no 1.31 1.12 1.45 1.27
(FFT) 200 20 10 no 0.93 0.80 0.88 0.81
200 5 40 no 0.38 0.37 0.35 0.44
2D 200 10 20 no 0.37 0.34 0.33 0.34
(CPSD) 200 20 10 no 0.38 0.33 0.32 0.34
200 13 20 25% 0.37 0.31 0.32 0.32
200 19 20 50% 0.36 0.27 0.30 0.27

For the cases with two injections and noise, the CPSD gives
a more accurate estimate (Case 2D) compared to the FFT
based estimate (Case 1D). Averaging the CPSD over a larger
number of windows N,, seems to marginally improve the
performance, although using overlapping windows does not
seem to appreciably improve the results. In contrast, averaging
of the signals in the time domain in the FFT method generally
improves performance.

3) The multi-coherence functions (Section IV-C) are shown
in Fig. 10 for two cases where ambient noise is also present.
It is seen that the coherency values are generally good (above
0.75), except at frequencies lower than 1 Hz.

] S
= )
8 <
o8 Tos
ol —Case-2F | | =
- -
0.6 0.6
10" 10° 10! 10> 10" 10° 10! 10%

Frequency (Hz) Frequency (Hz)

Fig. 10: Multi-Coherence functions for the cases 2C and 2F.
B. Effect of variation of excitation and ambient noise

To verify the effect of the magnitude of the excitation input
and the ambient noise, the system is simulated with different
levels of excitation input and ambient noise. In the first study,
the ambient noise generated by load switching is kept constant
at 1% (base case scenario). The amplitude of the excitation
input is increased and decreased (by a factor of 2) from its
value in the base case (1% of current rating). In the second
study, the excitation level is kept constant while the noise level
is increased and decreased by a factor of 2. The estimated
frequency response of the Ypp term using the FFT (Case 1D)
and CPSD (Case 2D) approaches for the first study are shown
in Fig. 11 and Fig. 12 respectively. The NRMSE values for
both the studies are given in Table III. The frequency responses
indicate that the error decreases with larger excitation, and
vice versa. The reduced error for larger excitation indicates
that non-linear behaviour is not significant for these excitation
levels. The NRMSE values indicate that the SNR has a more
significant impact on the FFT method than the CPSD method.

VI. CONCLUSIONS

This paper presents a framework for online model estima-
tion of an IBR using excitation signals generated by other
voltage-source converters in the vicinity of the IBR under test.
Ambient noise caused by consumer load variations such as
load switching can also potentially be used for this purpose.
The paper describes two signal processing algorithms, one
using FFT of the waveforms and the other using cross-power
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Fig. 11: FFT-based estimates for different excitation levels.
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Fig. 12: CPSD-based estimates for different excitation levels.

TABLE III: NRMSE for FFT (1D) and CPSD (2D) methods.

‘ NRMSE (%)
T. | No | Tw Method [ Ypp | Ypg | Yob | Yoo
Variation of excitation input
E N . 2D (CPSD) 0.62 0.53 0.54 0.57
1% noise, 0.5% excitation 200 10 20 1D (FFT) Lol 104 110 105
E N . 2D (CPSD) 0.38 0.35 0.33 0.34
1% noise, 1% excitation ) 200 | 10 | 20 | "yp pry | 093 | 080 | 088 | 081
E N . 2D (CPSD) 0.22 0.15 0.18 0.18
1% noise, 2% excitation 200 10 20 1D (FFT) 021 0.14 0.18 017
Variation of noise level

. - 2D (CPSD) 0.2 0.16 0.18 0.17

c excits 2
0.5% noise, 1% excitation 200 10 20 1D (FFT) 02 014 0.18 0.17
. - 2D (CPSD) 0.38 0.35 0.33 0.34

c excit 2
1% noise, 1% excitation 200 10 20 1D (FFT) 0.93 0.80 0.88 081
. - 2D (CPSD) 1.57 1.39 1.49 1.64

e excita 2
2% noise, 1% excitation 200 10 0 1D (FFT) 248 2.05 2.49 235

spectral density-based estimation. The latter approach (CPSD)
is more recommended for field implementation as it works
better in the presence of ambient noise. Simulation case studies
demonstrate the scheme, with multi-sine injection tests and
random load variations.

The results indicate that both the FFT and CPSD based
methods can yield a good model estimate. The CPSD algo-
rithm can leverage the ambient noise to obtain the estimate
even without multi-sine injection signals, but the estimates
are more accurate with the injection signals. In general, the
accuracy of the methods is improved by averaging over several
windows of the measurements. The simulation studies indicate
that these methods hold promise and can be taken up for
experimental validation.
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