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Abstract—High Impedance Faults (HIFs) are common events in
Electrical Power Distribution Systems (DSs) and are responsible
for imposing danger to public safety due to the potential to
ignite fires and cause electric shocks. Many recent studies
have applied methodologies based on intelligent algorithms (IA)
and machine learning (ML) to classify these events. However,
these studies did not address feature selection and collinearity
analysis to investigate the quality of methods’ input metrics,
resulting in high-dimensional data inputs that may hinder the
method training and generalization, as well as its interpretability.
Therefore, the purpose of the present study is to perform a feature
selection evaluation for HIFs. Then, the metrics are used as inputs
to a newly proposed classification method based on Support
Vector Machine (SVM). The main goal is to compose a model
for practical implementations, therefore a generalization study
was conducted in two stages: training the detection algorithm
under normal system conditions and validating it with unseen
system conditions and events. The model was validated with
a wide variety of tests that indicate an accuracy greater than
97% in the generalization analysis. The dataset for training,
testing, and validation was obtained using Alternative Transients
Program (ATP) software. This study proposes a robust method
for classifying HIF with potential for practical application, in
addition to providing a model for developing new studies on
HIF classification using intelligent algorithms.

Keywords—Fault Classification, Feature Selection, High
Impedance Fault, Machine Leaning, Power Distribution System,
Support Vector Machine.

I. INTRODUCTION

H IGH Impedance Faults (HIF) are common events in
Electrical Power Distribution Systems (DS) and are

responsible for imposing danger to public safety due to the
potential to ignite fires and cause electric shocks. These events
are caused by the contact between an energized conductor
and surfaces such as bushing trees, gravel, sand, grass, or
asphalt, which have low conductivity and impose a low fault
current during HIFs [1]. Moreover, the current measured
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during the event has low magnitude, can be intermittent and
has non-linear behavior due to electric arc formation [2].
Consequently, conventional protection devices are incapable
of appropriately detecting an HIF, which can keep occurring
for hours until being reported to the utility.

Most strategies to detect an HIF uses signal processing tools,
such as Fourier Transform (FT), Wavelet Transform (WT), or
Stockwell Transform (ST) [1], [2], [3]. These methodologies
are capable of detecting the event, however, they can present
difficulties in differentiating the HIF from other events in DS,
such as capacitor bank and load switching, transformer inrush
current, non-linear load, and distributed energy resources
operation. This limitation reduces the reliability of the methods
and can result in protection misoperation.

Many recent studies have applied methodologies based
on intelligent algorithms (IA) to address the issue of
differentiating HIFs from other events based on predefined
metrics extracted from current and voltage signals. The
authors in [4] proposed an HIF detection method based
on Support Vector Machine (SVM) applied to metrics
obtained through Variational Mode Decomposition (VMD) to
distinguish between HIFs and non-HIF events. The authors in
[5] also proposed an HIF detection method using WT-based
metrics and SVM. The authors in [6] and in [7] performed
a comparative study between different IA methods for HIF
detecting. In [8], the authors presented a detection method
based on the energy of WT and investigated the application
of various IA methods for decision-making. In [9], the authors
proposed a method based on KNN to classify events on the
distribution system. The method was based on the energy and
standard deviation of the detail and approximation components
of the WT. The authors in [10] proposed a detection method
using the standard deviation of the WT and neural network.
Although the discussed papers propose algorithms with high
accuracy, they did not explore the features selected for their
methods or explored how these methods perform during
events that occur in conditions that are not on the training
dataset. Furthermore, these methods were not evaluated using
signals from actual events or including noise. This type
of generalization analysis is crucial to ensure the reliable
operation of these methods in real-world applications.

Additionally, the mentioned HIF detection methods
investigate the application of IA and ML over a limited set
of predefined metrics to detect an HIF. However, they do not
address the feature selection process or collinearity analysis
to investigate the quality of these metrics, which results in



methods that require input data with high dimensionality,
hindering the training, generalization, and interpretability of
the method. Moreover, a weak correlation between the metrics
and the classes can negatively impact the performance of the
algorithms. To try to address the problem of the correlation
between the metrics and the classes, the authors in [11]
proposed a framework for feature selection for HIF detection
methods. The framework was based on an information gain
ranking of a set of metrics extracted from current and
voltage signals using Discrete Fourier Transform (DFT) and
the Kalman filter. However, the authors did not present a
collinearity analysis for the selected metrics, nor did they
conduct a generalization analysis to ensure that the selected
features were sufficient for accurately detecting and classifying
an HIF in new event scenarios.

Therefore, the contributions and the purpose of this paper
are to propose a complete methodology based on SVM for HIF
classification involving feature selection and generalization
analysis in order to distinguish them from other events.
First, a feature selection study is performed on a set of low
computational cost metrics obtained through the Short-Time
Fourier Transform (STFT) of voltage and current to ensure
the minimum dimensionality of the input data and avoid
collinearity of the metrics. The feature selection analysis
includes evaluating the length of the signal window, the
Pearson correlation between each metric, and the mutual
information between each metric and the target classes to rank
them. Additionally, an optimal selection of hyperparameters
of the SVM was applied based on the Grid Search Cross
Validation (CV) algorithm. The method’s generalization
capacity is assessed regarding exposure to event conditions
not present in the training database and includes analysis such
as the different loading of the system and noisy signals. In the
end, the methodology is presented to differentiate HIF and
non-HIF events with a precision greater than 97%. The main
contributions of this paper can be summarized as follows:

• Presenting a framework for feature selection based
on mutual information applied to IA-based HIF
classification. This framework analyzes the quality of the
metrics and collinearity;

• Proposing the application of a Grid Search CV
methodology for optimal selection of IA hyperparameters
for classifying HIF;

• Investigating the generalization of the method by two
stages: training the classification algorithm under system
normal conditions and validating it with unseen system
conditions and events;

• Developing an HIF classification method with low
dimensionality data input and high generalization
capacity, which are relevant characteristics for a practical
implementation.

This paper is organized as follows: Section II presents the
test system and explains how the HIFs were modeled. Section
III presents the proposed feature selection methodology.
Section IV presents the proposed SVM-based HIF
classification method and the generalization analysis,
and Section VII concludes the paper.
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Fig. 1. Power distribution test system single-line diagram.

II. TEST SYSTEM MODEL
In this study, the performance of the proposed method is

tested on a test system based on a real Brazilian DS. The
topology of the test system is presented in Figure 1, which
shows 9 buses with a nominal voltage of 11.9 kV and two
buses with a nominal voltage of 220 V . This test system
has power transformers, capacitor banks, non-linear loads, and
linear loads that sum a nominal balanced loading of 5 MVA.
These devices make it possible to evaluate different switching
events and assess the performance of the detection method
for false positives. The detailed modeling was given in [12].
The simulations were carried out with the system operating
at both nominal loadings of 5 MVA and with only 10%
of them. Moreover, it includes scenarios with balanced and
unbalanced load conditions. In normal conditions, the system
has a balanced loading of 5 MVA and noisy-free signals.
In all these operating conditions, events such as capacitor
bank switching, load switching, power transformer switching,
rectifier operation, arc furnace operation, low impedance
single-phase faults, and HIFs were simulated. The non-HIF
events represent short-duration transients and non-linear loads
with the potential for false positive detection. The simulations
were carried out in the Alternative Transients Program (ATP)
with 128 samples per cycle. All these simulations composed
a database with 3,792 events, in which were 1,896 HIF and
1,896 non-HIF events.

The HIF events considered in this study were single-phase
events that occur due to conductor rupture and contact with
the ground at the substation side. To simulate this defect, 34
real HIF signals obtained through the cases presented in [13]
were used. The authors in [14] explain that harmonics sources
in electrical systems can be modeled as current sources. So,
in this paper, the recorded signals were inserted into the
simulation using a controlled current source and the Models
environment available in ATP, as described in [15]. Figure 2
shows the topology of the circuit used in the simulation. The
switches sw1 and sw2 were applied to simulate the rupture
and contact of the cable with the ground. HIF events were
simulated in all phases of the test system and in all 11.9 kV
buses. Figure 3 illustrates a HIF current measured at the fault
spot in the simulation, caused by the contact between phase
A and the sand at bus 2, using the method presented in [15].

III. PROPOSED METHODOLOGY FOR FEATURE SELECTION

The proposed SVM HIF classification method is responsible
for indicating whether the disturbance was an HIF or a
non-HIF event. Therefore, the HIF classification conducted
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Fig. 3. HIF current measured at the fault spot caused by the contact between
phase A and the sand at bus 2.

in this study was carried out by dividing the simulated
dataset into HIF and non-HIF classes. This approach was
chosen to minimize the computational burden of the final HIF
classification method. For this classification process between
HIF and non-HIF, three signal windows were evaluated to
extract the metrics for the HIF classification method from the
start of each event. The Window 1 had one cycle post-event,
the Window 2 had three post-event cycles, and the Window 3
had five post-event cycles. Figure 4 illustrates these windows
in the current signal measured at the fault spot during an HIF.
For each window, the STFT was applied and the amplitudes
of the harmonics from the second up to the 20th order were
analyzed for the current and the voltage signals of the affected
phase. This frequency range was chosen because it contains
most of the energy of the signal measured during HIF, as
can be seen in [15], and can still be obtained using devices
with a low sampling rate. For each harmonic component and
window, the maximum (max), mean, minimum (min), standard
deviation (std), range, skewness, rugosity, kurtosis, and energy
values were calculated. These statistical metrics resulted in
176 metrics for current and 176 for voltage totaling a pool
of 352 candidate predictors. They were chosen to represent
the randomness of the signal measured during an HIF and
because of their low computational burden. Figure 5 presents
a flowchart with the methodology to extract the metrics.
Figure 5 presents a flowchart with the methodology to extract
the metrics. In Figure 5, ATP simulated the events for the
measurement voltage and current step. Python and its libraries
handled COMTRADE, feature extraction, and implementing
algorithms like FFT, SVM, and correlation methods.

For the feature selection analysis, mutual information and
Pearson correlation were applied. Mutual information is a
measure from information theory that quantifies how much
information one random variable provides about another. A
higher score indicates a stronger dependency between the
metric and target variable, making the feature more useful
for prediction [16]. In this paper, mutual information was
calculated between each metric and the event classes by
applying Equation (1), in which X and Y are metric classes
and p is the probability function. The mutual information

-6

-4

-2

0

2

4

6

A
m

pl
it

ud
e 

(A
)

0 26.04 52.08 78.12 104.16 130.2
Time (ms)

Window 1

Window 2

Window 3

Fig. 4. Analyzed data window for the HIF classification method.
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Fig. 5. Metric extraction process for feature selection, training, validating,
and testing HIF classification method.

values obtined were sorted in a ranking from the metric
with the highest score to the lowest. The best metrics and
window for HIF classification were selected based on this
ranking. Furthermore, collinearity is an index based on the
correlation between two random variables, and it indicates
whether these metrics carry the same information about the
target class. In cases in which collinearity is identified, one
of the metrics can be dispensable to the IA-based method.
In this paper, for identifying collinearities within the pool
of candidates’ metrics, the Pearson correlation between each
metric was calculated by applying Equation (2). Also, the
Pearson correlation between a voltage metric and a current
metric was calculated to identify collinearity between different
signals. Thus, the steps for feature selection presented in
this study are the selection of the data window, collinearity
analysis, and the selection of metrics.

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y)× log

(
p(x, y)

p(x)× p(y)

)
(1)

r =

∑
(xi − x)(yi − y)√∑

(xi − x)2
∑

(yi − y)2
(2)

A. Signal Window Selection

The size of the window used to extract a metric is directly
connected to the amount of information needed to identify an
HIF correctly. Moreover, windows that have many samples
can lead to a delay in HIF classification. Therefore, it is
necessary to choose the size of a signal window in order
to identify an HIF correctly and reduce this delay. For the
purpose of identifying the best window size, the dataset
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Fig. 6. Mutual information boxplot for each window size assessed.

with all 352 metrics extracted from HIF and non-HIF events
during the normal operation of the test system was separated
into three sets containing metrics extracted from each of
the proposed windows. For each set, the mutual information
between the metrics and the event classes was calculated. It
was possible to identify the window size impacts by evaluating
the mutual information of each group since the metrics and
events were the same in all three sets and the only difference
was the window size, consequently, the mutual information
difference between the groups is due to signal window size.
Measurements such as the mean, maximum, minimum, and
standard deviation of the mutual information in each group
were applied to illustrate the overall performance of the
window and indicate the best choice for the method.

As mentioned previously, the application of mutual
information results in a score capable of evaluating the
metrics. Identifying the signal window that yields the highest
mutual information values is a key parameter in determining
its choice. Figure 6 illustrates the boxplot of the mutual
information results of all metrics for each signal window.
In this boxplot, the mean, max, min, and range of the
mutual information for each window are available. The boxplot
indicates that Window 3 presented better results than the other
windows since its statistical values were higher. Due to the
randomness of HIFs, a window that contains more information
can often imply a better representation of the event, which
may have caused the greater mutual information score of this
window. This suggests that Window 3 is the most promising
for application in the HIF classification method.

B. Collinearity Investigation

A collinearity analysis aims at identifying and removing
metrics that provide the same information to the ML algorithm,
reducing the dimensionality of the input data of the method. In
this study, a window size, harmonic order, and type of signal
measured during the events were fixed. Additionally, HIF and
non-HIF events occurring during normal system operation
were considered. These selected cases ensured that the impact
on the metrics correlation depended only on the collinearity
between them. In order to indicate the collinearity by applying
the Pearson correlation, a threshold of 0.7 was adopted, which
means if the correlation between two metrics was greater than
0.7 or less than -0.7, they have collinearity. Otherwise, the
metrics were independent. The threshold of 0.7 indicates a
high Pearson correlation.

The collinearity analysis provides an additional criterion
for choosing metrics and aids in simplifying the complexity
of ML models. In order to identify these metrics, Figure 7
illustrates this analysis on the 4th order harmonic current (ih4)
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Fig. 7. Matrix of collinearity of current and 4th harmonic order metrics.

and contains a map that indicates 1 or -1 if the pair of metrics
have collinearity and 0 if it does not based on this threshold. A
negative signal in the Pearson correlation indicates that metrics
are inversely proportional. Figure 7 illustrates that all metrics,
except the minimum value (ih4min), are collinear. The minimum
value not having collinearity with the other metrics may be
because an HIF is an intermittent event. The minimum value is
often the system load current value, which does not depend on
the event. The collinearity between the metrics indicates that
just one of them may be applied to HIF classification in order
to avoid high dimensionality. The same analysis was used for
metrics extracted from current and voltage and no collinearity
was found. These results indicate that it is possible to choose
only one metric from each signal, which contributes to the
simplicity of the HIF classification implementation.

C. Selected Metrics for HIF classification

For the purpose of choosing the best metric, two
analyses were conducted: the mutual information ranking
and the graphical analysis. In the mutual information
analysis, only events that occurred during normal system
operating conditions were considered. Moreover, the study was
performed considering the signal Window 3. After the mutual
information was calculated, the metrics were sorted from high
to low values and the best ones extracted from the current and
voltage measured during the events were selected for graphical
analysis. The graphical analysis consisted of analyzing the
separability of the space formed by the metrics. The easier
it is to separate classes in this space, the better the metrics.

Table I presents the 10 best metrics among the 176 extracted
from the current measured during the HIF events and the 10
best extracted from the voltage. These 20 metrics compose
a pool of the best candidates to be chosen. Additionally, the
result of the collinearity analysis, which indicated that metrics
extracted from the same signal provide the same information,
was also used. Therefore, only one metric was selected from
each type of signal to compose the HIF classification method.
Figure 8 contains a graph with the distribution of events when
characterized by the metrics ih4range and vh2std. It can be observed
that these two metrics consistently distinguished most events,
with only occasional instances of misclassification as an
HIF. These results indicate that these two metrics have great
potential in composing the HIF classification method.



TABLE I
TOP TEN METRICS OF CURRENT AND VOLTAGE SIGNALS SORTED BY

MUTUAL INFORMATION RESULTS

Current signal Voltage signal

Metric Value∗ Metric Value∗

ih8range 0.6510 vh4kurtosis 0.6312

ih8max 0.6510 vh4skewness 0.6277

ih4std 0.6287 vh2std 0.6186

ih4max 0.6182 vh6skewness 0.6144

ih4range 0.6280 vh14skewness 0.6106

ih10max 0.6273 vh2range 0.6092

ih15std 0.6270 vh2max 0.6076

ih6std 0.6266 vh4rugosity 0.6008

ih10range 0.6266 vh10range 0.5924

ih20std 0.6256 vh2rugosity 0.5923
* - Mutual information result
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Fig. 8. Distribution of the HIF and non-HIF events at the vh2std x ih4range.

IV. HIF CLASSIFICATION METHOD

In this study, the challenge of the generalization of
the method based on IA was addressed. Therefore, the
HIF classification method developed was designed in two
steps: optimal selection of hyperparameters and training and
analysis of the generalization of the algorithm. The Grid
Search CV methodology was used to select the optimal
hyperparameters. This methodology presents a range of
variations for the hyperparameters of the intelligent algorithm
and, iteratively, trains and evaluates the performance of the
method through cross-validation with different combinations
of the hyperparameters in this range [17]. In the Grid
Search CV, the combination of hyperparameters with the
best performance in the cross-validation test is the chosen
combination. The training and evaluation of the generalization
capacity of the detection method was carried out by training
the SVM with data from events that occurred under normal
operating conditions and the validation was carried out with
events that occurred outside the normal conditions without
retraining. Additionally, events in the validation set were
removed from the training set.

A. Selection of Hyperparameters by Grid Search CV

The SVM-based HIF classification method developed in this
study used a Gaussian kernel to ensure the separability of event
classes. The search space in the selection of hyperparameters
was defined based on this kernel and on the general SVM

hyperparameters. The SVM algorithm has a regularization
hyperparameter (C) that increases the robustness of training
against noise in the dataset. For optimization, four possible
values of hyperparameter C were evaluated: 1, 10, 100,
and 1000. Additionally, the Gaussian kernel requires an
adjustment in the gamma hyperparameter inherent to the
Gaussian function. For the optimization, six possible gamma
values were evaluated: 0.001, 0.01, 0.1, 1, 10, and 100. After
adjusting the search region of the Grid Search algorithm, the
training and validation dataset was defined. In order to evaluate
the generalization of the method later, the hyperparameters
were optimized only for the normal operating conditions of
the system. Also, the z-score normalization was applied to the
data to eliminate the influence of the difference between the
magnitudes of the metrics. It is presented in Equation (3),
in which x is the value to be normalized, x is the mean,
and σ is the standard deviation of the dataset. The z-score
normalization makes the mean of the metrics equal to zero
and the standard deviation equal to one. In the next step, the
dataset was divided into 5 folds, and for each hyperparameter
combination, the cross-validation method was applied for
training, testing, and validating the method.

z =
x− x

σ
(3)

As discussed previously, the Grid Search CV algorithm was
applied to ensure the maximum accuracy of the method with
the data set and metrics used. The best SVM accuracy obtained
by applying this method was 98.7%. This high accuracy value
obtained with the application of SVM could suggest overfitting
during training, however, the cross-validation methodology
was applied to minimize the possibility that this has occurred.
Therefore, the high performance of the algorithm may be
related to the application of a hyperparameter optimization
algorithm and the selection of the best metrics from the
data set. The SVM with this accuracy was obtained with
the combination of hyperparameters with C equal to 100 and
gamma equal to 10. This combination of hyperparameters will
be used to parameterize the SVM for detecting HIF in the
method generalization evaluation step.

B. HIF Classification Method Generalization

For the practical application of the classification method,
it is necessary to evaluate its generalization against system
operating conditions not present in the model training. To
address this problem, a generalization study of the detection
method was conducted, consisting of two stages: training
the classification algorithm under normal system operating
conditions and validation for conditions and events not present
in the training dataset. Therefore, the training dataset consisted
of HIF and non-HIF events during system operation with
loading equal to 100% and 10%. This training dataset did not
contain noisy signals or unbalanced loads. The SVM algorithm
with the Gaussian kernel and the hyperparameters selected by
the Grid Search CV algorithm was trained with this dataset
corresponding to 70% of the set. After training, the method
was tested with the remaining 30% of the set. The method
was also evaluated, without retraining, with a new dataset



composed of events with unbalanced loads and 50 dB Gaussian
White noise. Moreover, to increase the rigor of the tests, the
events were not repeated in the databases.

To evaluate the performance of the method and its
generalization, four indexes were used. The first index
evaluated was accuracy, which indicates the ratio between the
number of correctly classified events and the total number of
events tested (Equation (4)). The next metric was the recall,
shown in Equation (5), which evaluates the performance of the
intelligent method in correctly classifying only the target class.
In the case of the detection described in this study, the target
class is HIF. It varies between 0 and 1, and the closer to 1, the
better the method’s performance. The next index is balanced
accuracy, which is calculated as the average of the recall values
for a possible class in the database. This metric addresses the
issue of unequal event distribution across classes. Finally, the
last metric evaluated is the F1-score, which is interpreted as
an average between accuracy and recall. Equation (6) shows
how this metric is calculated. It also varies between 0 and 1.

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Recall =
TP

TP + FN
(5)

F1score =
2× TP

2× TP + FP + FN
(6)

In these equations, TP and TN are the true positive and
negative, FP and FN are false positive and negative.

Table III presents the validation results of the SVM
algorithm training in the different system operation scenarios.
Eight scenarios were evaluated considering the combination of
noise parameters (no noise and 50 dB Gaussian white noise),
loading (100% and 10% of nominal), and state (balanced and
unbalanced loads). The conditions named "Balanced and 100%
Loading" and "Balanced and 10% Loading" correspond to the
validation of the method for the same training conditions. In
both scenarios, accuracies higher than 99% were obtained,
which indicates a high performance of the method. The
high balanced accuracy, F1 score, and recall confirm the
effectiveness in distinguishing HIF from non-HIF, highlighting
the reliability of the chosen metrics and hyperparameters.
The other system conditions of the table provide results
for the scenarios unknown to the detection method. The
lowest accuracy obtained was 97.6% for the system operating
conditions that were not in the training. Even for the worst
case evaluated, the method maintained a performance higher
than 97%. These generalization results of the method suggest
a good choice of metrics and selected hyperparameters, and
they illustrate the effectiveness of the practical application.

V. COMPARISON

In this section, the proposed method has been compared
with the methods reported in [4] and [9], recent methods that
use IA to detect HIFs. The method proposed in [4] implements
an algorithm based on a SVM and features extracted from
current signals through Variational Model Decomposition. The
method proposed in [9] implements an ensemble classifier

based on K-Nearest Neighbor (KNN), Logistic Regression
(LR), Random Tree (RT), and features extracted from current
signals with Wavelet Transform. Both papers validated the
proposed methods in several tests. However, the generalization
of the classification models was not analyzed under different
conditions of the system. Table II shows the classification
accuracy for the nominal conditions of the test system and
training the method with 70% and testing with 30%. All
methods in Table II were implemented and tested in the
same conditions. The results reveal that the proposed method
performs better.

VI. FINAL REMARKS FOR THE PROPOSED METHOD

The analyses in this paper proposed a methodology to
distinguish HIF from other events in distribution systems
using SVM algorithm. It included a feature selection study
on a set of low-cost voltage and current metrics to
minimize input data dimensionality and avoid metrics with
collinearity. The feature selection process considered the
signal window length, Pearson correlation between metrics,
mutual information between metrics and target classes for
ranking, and graphical analysis. Additionally, optimal SVM
hyperparameters were selected using the Grid Search CV
algorithm to maximize the accuracy of the SVM and avoid
overfiting. The method’s generalization ability was also
evaluated under event conditions absent from the training set
and including different system loads and noisy signals. The
final version of method trains and validates in 7s, and classifies
the dataset in 1ms after SVM training, using a computer
with an AMD Ryzen 7 2700 processor (3.2 GHz) and 32GB
RAM for efficiency. Figure 9 presents the comprehensive
methodology proposed in this paper, encompassing each step.

VII. CONCLUSIONS

To distinguish HIF from other events is a hard-to-solve
problem in DSs. Previous studies have presented HIF detection
methods based on intelligent algorithms. However, these
studies did not apply feature selection techniques to assess
the quality of the input metrics or even the existence of
collinearity among them. This can result in models with high
dimensionality. DSs present variable conditions, which can
hinder the real-life applicability of AI-based classification
methods. In this sense, existing solutions did not assess the
generalization capacity of the models when subjected to fault
conditions and events not present in the training database.
To address these gaps, this paper presented an SVM-based
HIF classification method with feature selection techniques,
optimal hyperparameter selection, and training generalization
analysis aligned with practical implementation bias.

Initially, 352 candidate metrics were proposed for the
SVM algorithm. Using feature selection techniques, only

TABLE II
ACCURACY COMPARISON WITH OTHER METHODS IN THE LITERATURE

Method IA Method Accuracy
Proposed SVM 99.3%

[4] SVM 92.5%

[9]
KNN 97.2%
LR 60.4%
RT 97.2%
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Fig. 9. Practical implementation flow chart of the proposed HIF classification method based on SVM and feature selection.

TABLE III
GENERALIZATION ANALYSIS OF THE PROPOSED METHOD

Event conditions Accuracy Balanced
Accuracy

F1-score Recall

Noise free

Balanced and 100%
Loading

99.3% 0.993 0.993 0.987

Balanced and 10%
Loading

99.3% 0.994 0.994 0.988

Unbalanced and 100%
Loading

98.6% 0.985 0.985 0.971

Unbalanced and 10%
Loading

97.6% 0.979 0.980 0.973

Noise level of 50 dB

Balanced and 100%
Loading

97.9% 0.980 0.980 0.961

Balanced and 10%
Loading

98.6% 0.986 0.988 0.988

Unbalanced and 100%
Loading

98.6% 0.985 0.985 0.971

Unbalanced and 10%
Loading

97.6% 0.979 0.980 0.973

two were selected. The selected metrics were capable of
characterizing the evaluated events without collinearity and
with high correlation with the HIF classification. This result
demonstrates the importance of the study of feature selection
in the construction of ML models.

In the following, the Grid Search CV algorithm was
applied to find the optimal combination of hyperparameters
for the SVM algorithm, to maximize its performance. For
this purpose, a search space was defined for each of the
desired hyperparameters and a database with events under
nominal system conditions. This study returned the best
set of hyperparameters for the base case of events without
overfitting during training, given that the cross-validation
training method was applied. In the generalization evaluation,
even in the worst-case scenario, the proposed classification
method maintained an accuracy above 97%, illustrating the
effectiveness of the presented methodology.

In general, this study can contribute to the advancement of
the state of the art of HIF classification methodologies based
on intelligent algorithms. It is also expected to contribute with
a methodology for the development of new IA-based models
to operate in electrical power systems.
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