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Abstract— When computing short-circuit (i.e., fault) currents 

using full-wave electromagnetic or circuit-based methods that are 
not reduced to sequence components only, equivalent Thevenin 
source impedances are required at substation terminals or at the 
end of truncated transmission lines that explicitly define self and 
mutual parameters between all modelled conductors. This 
information is typically provided as sequence component 
equivalents, including zero-sequence components. For three-
phase, three-winding transformers that have a tertiary delta 
winding, zero-sequence tests are typically performed with the 
delta winding in place. Results from such tests account for the 
circulating currents in the delta winding. To use the resulting 
impedances in a computer model based on a T-equivalent circuit, 
the test data must be transformed accordingly. In this article, 
formulae for such transformations are derived from the typical 
zero-sequence test setup vs. the desired zero-sequence test setup. 
The methodology is applicable to three-winding transformers with 
a tertiary delta winding such as star-star-delta and auto-star-delta 
configurations. 

 
Keywords: Transformer T-equivalent zero-sequence circuit, T-

circuit zero-sequence impedances, tertiary delta winding, three-
winding transformer model, star-star-delta (Y-Y-Δ), auto-star-
delta (Auto-Y-Δ).  

I.  INTRODUCTION 
HE T-equivalent circuit has been widely used for modeling 
three-winding power transformers [1]. Determining 

parameters of the positive-sequence T-equivalent circuit is 
straightforward, since three independent positive-sequence 
short-circuit tests can be used to obtain the three impedances 
forming the positive-sequence T-circuit. For zero-sequence T-
equivalent circuit on the other hand, if a tertiary delta-winding 
is installed, results will be impacted by circulating currents. 
Hence, a total of four zero-sequence tests can be applied, two 
of which are not independent. In fact, in the IEEE standard [2], 
all four zero-sequence tests are defined, with one of them 
considered to be redundant and can be used as a check on the 
test results [3].  

In this paper, we show that ignoring one out of four possible 
zero-sequence tests may be an over-simplification, since the 
two dependent tests may lead to an overdetermined system of 
equations with no unique solution. Subsequently, we provide 
practical solutions based on the available data and the expected 
physical behavior of a transformer in the presence of a tertiary 
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delta winding in short-circuit simulations. 

II.  PROBLEM STATEMENT 
Transformer factory acceptance tests (FAT) are typically 

performed once a transformer is built. For three-phase three-
winding transformers that have a tertiary delta winding, such as 
star-star-delta (Y-Y-Δ) and auto-star-delta (Auto-Y-Δ) 
transformers, this means that the FATs are performed with the 
tertiary Δ winding and its connections in place. For positive-
sequence tests, this does not impact the results. However, the 
zero-sequence short-circuit impedance tests are impacted by the 
circulating currents formed in the Δ winding. The zero-
sequence T-equivalent circuit for such a transformer is depicted 
in Fig. 1 [3]. 

 
Fig. 1. Zero-sequence T-equivalent circuit with a tertiary Δ winding. As a result 
of the circulating currents formed in the Δ winding, Z3 must be grounded.  

Since it is common for the tertiary Δ winding to be 
inaccessible, the zero-sequence tests are typically performed by 
energizing the primary and secondary windings. This requires 
four different scenarios, as shown in Fig. 2.  

 
Fig. 2 T-equivalent circuits for typical zero-sequence short-circuit tests. 

The results of these four zero-sequence tests are typically 
reported in the datasheet of a Y-Y-Δ or Auto-Y-Δ transformer 
(𝑍𝑍0′12,𝑍𝑍0′21,𝑍𝑍0′13,𝑍𝑍0′23)1 where:  

• 𝑍𝑍0′12 is the measured primary-to-secondary zero-sequence 

 
1 Primed notation is used for the typically measured zero-sequence 
impedances (𝑍𝑍0′12,𝑍𝑍0′21,𝑍𝑍0′13,𝑍𝑍0′23 ), indicating that they cannot be 
directly used in the transformer T-equivalent model. 
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impedance (Fig. 2a), 
• 𝑍𝑍0′21 is the measured secondary-to-primary zero-sequence 

impedance (Fig. 2b), 
• 𝑍𝑍0′13  is the measured primary-to-tertiary zero-sequence 

impedance (Fig. 2c), 
• 𝑍𝑍0′23 is the measured secondary-to-tertiary zero-sequence 

impedance (Fig. 2d). 

However, from the modeling viewpoint, this is not directly 
applicable since the T-circuit should take a more general form 
to accommodate accessing all terminals: not only the primary 
and secondary windings, but also the tertiary winding, as shown 
in Fig. 3. 

 
Fig. 3. Zero-sequence T-equivalent circuit, assuming that the tertiary winding 
is interrupted and, thus, no circulating current can form in it. 

For such a circuit, which implies that the tertiary winding 
connections are removed or the delta loop is left open, if the 
primary winding is energized and the secondary winding is 
shorted (and vice versa), no circulating current forms in the 
tertiary winding during zero-sequence tests. This directly 
corresponds to the positive-sequence T-equivalent model which 
has the same circuit as Fig. 3 [4]. Therefore, unlike typical zero-
sequence tests in which two different tests are required for these 
conditions (Fig. 2a and Fig. 2b), the zero-sequence T-circuit of 
Fig. 3 requires only one test for these conditions since (𝑍𝑍012 =
𝑍𝑍021 ) 2 . Therefore, three tests are sufficient to obtain the 
impedances (𝑍𝑍012,𝑍𝑍013,𝑍𝑍023), as shown in Fig. 4. 

 
Fig. 4. T-equivalent circuits for the desired zero-sequence short-circuit tests.  

It is now evident that the impedances obtained from the typical 
four zero-sequence tests in Fig. 2 (𝑍𝑍0′12,𝑍𝑍0′21,𝑍𝑍0′13,𝑍𝑍0′23) 
should be transformed into the three impedances that would be 
obtained from the desired three zero-sequence tests in Fig. 4 
(𝑍𝑍012,𝑍𝑍013,𝑍𝑍023 ). This would correspond to zero-sequence 
tests performed prior to forming the delta connection when the 
three legs are interrupted, and no current can circulate between 
them. The need for this transformation is more pronounced in 
the following two scenarios: 

• When the difference between 𝑍𝑍0′12  and 𝑍𝑍0′21  exceeds 

                     
2 Unprimed notation is used for the desired zero-sequence impedances 
( 𝑍𝑍012,𝑍𝑍013,𝑍𝑍023 ), indicating that they can be directly used in the 
transformer T-equivalent model. 

the anticipated measurement errors (e.g., >0.5%).  
• When only three measurement values are available, 

specifically 𝑍𝑍0′13  and 𝑍𝑍0′23 , but only one of 𝑍𝑍0′12  or 
𝑍𝑍0′21 is available.  

In such instances, there can be deviations between 𝑍𝑍0′12 and 
𝑍𝑍0′21  that are not solely due to measurement or round-off 
errors. Rather, they are caused by circulating currents in the 
delta winding and should be considered in the computations. 
The resulting impedances can be used directly in a computer 
model based on the T-equivalent zero-sequence circuit 
simulation tool such as [5]. In this article, we derive 
formulations for such a transformation. 

III.  FORMULATION 

A.  Obtaining the T-Equivalent Zero-Sequence 
Impedances 

The conversion involves calculating the T-equivalent zero-
sequence impedances of Fig. 3 (𝑍𝑍1,𝑍𝑍2,𝑍𝑍3). It is then easy to 
calculate the desired three inter-winding zero-sequence 
impedances as 

Primary-to-secondary impedance: 𝑍𝑍012 = 𝑍𝑍1 + 𝑍𝑍2, 
Primary-to-tertiary impedance: 𝑍𝑍013 = 𝑍𝑍1 + 𝑍𝑍3, 

Secondary-to-tertiary impedance: 𝑍𝑍023 = 𝑍𝑍2 + 𝑍𝑍3. 
(1) 

According to the tests defined in Fig. 2, the three parameters 
𝑍𝑍1, 𝑍𝑍2, and 𝑍𝑍3 should be calculated such that the following 
four equations are satisfied: 

𝑍𝑍0′12  =  𝑍𝑍1  +  (𝑍𝑍2  ∥ 𝑍𝑍3) (Equation I), 
𝑍𝑍0′21  =  𝑍𝑍2  +  (𝑍𝑍1  ∥ 𝑍𝑍3) (Equation II), 
𝑍𝑍0′13  =  𝑍𝑍1  +  𝑍𝑍3       (Equation III), 
𝑍𝑍0′23  =  𝑍𝑍2  +  𝑍𝑍3       (Equation IV). 

(2) 

There are more equations than unknowns in the above system 
of equations, which leads to an overdetermined system. This 
requires simplification. This will be handled depending on the 
available test data as discussed in the following subsections. 
    1)  Assuming 𝑍𝑍0′12, 𝑍𝑍0′21, 𝑍𝑍0′13, and 𝑍𝑍0′23 Are 
Available 

Usually, primary-to-secondary 𝑍𝑍0′12 and secondary-to-
primary 𝑍𝑍0′21  impedances are more important than the 
primary-to-tertiary 𝑍𝑍0′13  and secondary-to-tertiary 𝑍𝑍0′23 
impedances in short-circuit simulations. Therefore, we take 
Equation I, Equation II, and Equation III with Equation IV of 
(2) to form a system of independent equations, as follows: 

 

𝑍𝑍0′12  =  𝑍𝑍1  + 𝑍𝑍2⋅𝑍𝑍3
𝑍𝑍2+𝑍𝑍3

 , 

𝑍𝑍0′21  =  𝑍𝑍2  + 𝑍𝑍1⋅𝑍𝑍3
𝑍𝑍1+𝑍𝑍3

, 
𝑍𝑍0′13 + 𝑍𝑍0′23  =  𝑍𝑍1  +  𝑍𝑍2 + 2𝑍𝑍3. 

(3) 

By solving the above system, we expect that 𝑍𝑍0′12 and 𝑍𝑍0′21 
are enforced accurately, while 𝑍𝑍0′13  and 𝑍𝑍0′23  will be as 
accurate as any test data discrepancies or round-off errors allow 
(this is a result of having an overdetermined system of 
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equations). This leads to quadratic equations, and thus, it has 
two sets of solutions. The solutions are as follows: 

• Solution #1 

 𝑍𝑍1  = 𝑎𝑎𝑎𝑎+𝑎𝑎𝑎𝑎+�𝑎𝑎𝑎𝑎(−𝑎𝑎𝑎𝑎−𝑎𝑎𝑎𝑎+𝑐𝑐2−𝑐𝑐𝑐𝑐+2𝑐𝑐𝑐𝑐−𝑏𝑏𝑏𝑏+𝑑𝑑2)
𝑎𝑎+𝑏𝑏

 , (4) 

 𝑍𝑍2  = 𝑐𝑐𝑐𝑐+𝑏𝑏𝑏𝑏+�𝑎𝑎𝑎𝑎(−𝑎𝑎𝑎𝑎−𝑎𝑎𝑎𝑎+𝑐𝑐2−𝑐𝑐𝑐𝑐+2𝑐𝑐𝑐𝑐−𝑏𝑏𝑏𝑏+𝑑𝑑2)
𝑎𝑎+𝑏𝑏

 , (5) 

 𝑍𝑍3  = −�−𝑎𝑎𝑎𝑎(𝑐𝑐+𝑑𝑑)(𝑎𝑎−𝑐𝑐+𝑏𝑏−𝑑𝑑)
𝑎𝑎+𝑏𝑏

. (6) 

• Solution #2 

 𝑍𝑍1  = 𝑎𝑎𝑎𝑎+𝑎𝑎𝑎𝑎−�𝑎𝑎𝑎𝑎(−𝑎𝑎𝑎𝑎−𝑎𝑎𝑎𝑎+𝑐𝑐2−𝑐𝑐𝑐𝑐+2𝑐𝑐𝑐𝑐−𝑏𝑏𝑏𝑏+𝑑𝑑2)
𝑎𝑎+𝑏𝑏

 , (7) 

 𝑍𝑍2  = 𝑐𝑐𝑐𝑐+𝑏𝑏𝑏𝑏−�𝑎𝑎𝑎𝑎(−𝑎𝑎𝑎𝑎−𝑎𝑎𝑎𝑎+𝑐𝑐2−𝑐𝑐𝑐𝑐+2𝑐𝑐𝑐𝑐−𝑏𝑏𝑏𝑏+𝑑𝑑2)
𝑎𝑎+𝑏𝑏

 , (8) 

 𝑍𝑍3  = �−𝑎𝑎𝑎𝑎(𝑐𝑐+𝑑𝑑)(𝑎𝑎−𝑐𝑐+𝑏𝑏−𝑑𝑑)
𝑎𝑎+𝑏𝑏

 . (9) 

where: 

𝑎𝑎 = 𝑍𝑍0′12, 𝑏𝑏 = 𝑍𝑍0′21, 𝑐𝑐 = 𝑍𝑍0′13, 𝑑𝑑 = 𝑍𝑍0′23 (10) 

Both solutions are mathematically valid, but we should only 
select one of them. Section III-B explains how this selection can 
be made.  
    2)  Assuming 𝑍𝑍0′12, 𝑍𝑍0′13, and 𝑍𝑍0′23 Are Available, but 
𝑍𝑍0′21 Is Not Available 

In this case, we can simply drop Equation II from (2) and 
solve the resulting (3×3) system of equations. The solutions are 
as follows: 

• Solution #1 
 𝑍𝑍1  = 𝑐𝑐 − �𝑑𝑑(𝑐𝑐 − 𝑎𝑎) , (11) 
 𝑍𝑍2  = 𝑑𝑑 − �𝑑𝑑(𝑐𝑐 − 𝑎𝑎) , (12) 
 𝑍𝑍3  = �𝑑𝑑(𝑐𝑐 − 𝑎𝑎) . (13) 
• Solution #2 

 𝑍𝑍1  = 𝑐𝑐 + �𝑑𝑑(𝑐𝑐 − 𝑎𝑎) , (14) 
 𝑍𝑍2  = 𝑑𝑑 + �𝑑𝑑(𝑐𝑐 − 𝑎𝑎) , (15) 
 𝑍𝑍3  = −�𝑑𝑑(𝑐𝑐 − 𝑎𝑎) . (16) 

where a, c, and d are defined in (10), and the correct solution is 
selected based on the physical grounds explained in Section III-
B. 

It is worth noting that, due to the symmetry in both circuits 
of Fig. 1 and Fig. 3, the same expressions are applicable if 
𝑍𝑍0′21 is available instead of 𝑍𝑍0′12. Simply swap the primary 
and secondary winding locations in the T-circuit, and the rest of 
the procedure applies as is. 

B.  Selecting a Solution 
    1)  Selecting a Solution Based on Positive-Sequence 
Impedances 

First, we compute two sets of inter-winding zero-sequence 
impedances (|𝑍𝑍012|, |𝑍𝑍013|, |𝑍𝑍023|) for each solution using (1) 
where 𝑍𝑍1,𝑍𝑍2,𝑍𝑍3  are obtained from (4)-(9) or (11)-(16) 
depending on the available test data. Then, we compare the 
magnitude of these results with that of the magnitude of the 
positive-sequence impedances (|𝑍𝑍112|, |𝑍𝑍113|, |𝑍𝑍123|). The set 
of solutions that has the smaller differences is selected and used 

in the computer model that is based on the zero-sequence T-
circuit. The difference is computed as (||𝑍𝑍012| − |𝑍𝑍112|| +
||𝑍𝑍013| − |𝑍𝑍113|| + ||𝑍𝑍023| − |𝑍𝑍123||)  for each set of inter-
winding zero-sequence impedances. This is because the 
positive- and zero-sequence impedances of the three branches 
of a T-equivalent circuit of a typical transformer are expected 
to be of the same order of magnitude. 
    2)  Selecting a Solution Based on the Computed 𝑍𝑍3 

Let us begin with Equation III of (2). Solving for 𝑍𝑍1, we get: 

 𝑍𝑍1  =  𝑍𝑍0′13 −  𝑍𝑍3. (17) 

Similarly, using Equation IV of (2), we can write: 

 𝑍𝑍2  =  𝑍𝑍0′23 −  𝑍𝑍3. (18) 

By adding (17) and (18), we get: 

 𝑍𝑍1 + 𝑍𝑍2  =  𝑍𝑍0′13 + 𝑍𝑍0′23 −  2𝑍𝑍3. (19) 

From (6) and (9), we conclude that 𝑍𝑍3 is either a positive or 
negative reactance, ignoring the small resistive component. 
Now, from physical principles (we are measuring the series 
impedance of a three-winding transformer for the 
corresponding tests), 𝑍𝑍0′13 and 𝑍𝑍0′23 will always have large 
positive reactances compared with other measured transformer 
impedances. Therefore, it is reasonable to expect 𝑍𝑍1 + 𝑍𝑍2 (i.e., 
the high-low impedance of the transformer with the delta 
tertiary interrupted) to be smaller than the sum of the relatively 
large high-to-tertiary 𝑍𝑍0′13  and low-to-tertiary 𝑍𝑍0′23 
impedances. 

 𝑍𝑍1 + 𝑍𝑍2 <  𝑍𝑍0′13 + 𝑍𝑍0′23. (20) 

From (19) and (20), it is shown that we must choose the solution 
set that results in a positive value for the 𝑍𝑍3 reactance. Once 
the correct set of solutions for 𝑍𝑍1,𝑍𝑍2,𝑍𝑍3 is selected, (1) is used 
to calculate the desired zero-sequence impedances that can be 
directly used in the T-circuit-based computer model. 

IV.  SIMPLIFIED SOLUTIONS 
By comparing the circuits in Fig. 2c and Fig. 2d with those 

of Fig. 4b and Fig. 4c, respectively, it is clear that the typical 
zero-sequence tests and desired zero-sequence tests are 
identical when the tertiary winding is short-circuited. Thus, we 
have 

 𝑍𝑍013 = 𝑍𝑍0′13,      𝑍𝑍023 = 𝑍𝑍0′23. (21) 

Hence, the measured zero-sequence primary-to-tertiary and 
secondary-to-tertiary impedances (𝑍𝑍0′13,𝑍𝑍0′23) may be 
directly used in the model. Again, results will be as accurate as 
any test data discrepancies or round-off errors. When all 𝑍𝑍0′12, 
𝑍𝑍0′21 , 𝑍𝑍0′13 , and 𝑍𝑍0′23  are available, the primary-to-
secondary impedance is calculated as 

𝑍𝑍012 = 𝑍𝑍1 + 𝑍𝑍2 = 

(𝑍𝑍0′13 + 𝑍𝑍0′23)  ± 

2 ��𝑍𝑍0΄12𝑍𝑍0΄21[(𝑍𝑍0΄13+𝑍𝑍0΄23)2−(𝑍𝑍0΄12+𝑍𝑍0΄21)(𝑍𝑍0΄13+𝑍𝑍0΄23)]�

𝑍𝑍0΄12+𝑍𝑍0΄21
. 

(22) 

When 𝑍𝑍0′21 is not available, the primary-to-secondary 
impedance is obtained as 



𝑍𝑍012 = 𝑍𝑍1 + 𝑍𝑍2 = 

(𝑍𝑍0′13 + 𝑍𝑍0′23)  ± 2 ��𝑍𝑍0′23(𝑍𝑍0′13 − 𝑍𝑍0′12)�. 
(23) 

Depending on the available data, results for both signs can be 
computed in (22) or (23). Subsequently, the computed complex 
value whose magnitude is closer to the magnitude of the 
positive-sequence primary-to-secondary impedance 𝑍𝑍112 (see 
Section III-B1) should be chosen. Alternatively, the solution 
based on the calculated winding impedance 𝑍𝑍3  (see Section 
III-B2) should be selected. 

V.  NUMERICAL RESULTS 
As mentioned earlier, the methodology is applicable to Y-Y-

Δ and Auto-Y-Δ configurations. For conciseness, we only 
present numerical results for the Y-Y-Δ case. It is expected that 
similar results are produced for a transformer with Auto-Y-Δ 
configuration. 

TABLE I provides details of the transformer under study. 
Such data is typically provided by the manufacturer (e.g., FAT 
report, nameplate, etc.). Using all parameters given in TABLE I 
is straightforward in a T-circuit-based computer model, except 
for the measured zero-sequence impedances highlighted in the 
table. In this section, we apply the presented methodology to 
this example by first computing the pertinent inter-winding 
impedances and using them in a computer model to produce 
expected short-circuit simulation results. 

TABLE I 
DETAILS OF THE Y-Y-Δ TRANSFORMER UNDER CONSIDERATION. 

Three-phase power rating P 150 MVA 
Primary winding (Y) rated voltage V1 220 kV 

Secondary winding (Y) rated voltage V2 115 kV 
Tertiary winding (Δ) rated voltage V3 14 kV 

Positive-sequence primary-to-
secondary impedance 𝑍𝑍112 0.21 + 11.12j % 

Positive-sequence primary-to-tertiary 
impedance 𝑍𝑍113 0.315 + 8.77j % 

Positive-sequence secondary-to-
tertiary impedance 𝑍𝑍123 0.32 + 4.3j % 

Measured zero-sequence primary-to-
secondary impedance 𝑍𝑍0′12 0.34 + 9.5j % 

Measured zero-sequence secondary-
to-primary impedance 𝑍𝑍0′21 0.18 + 5.7j % 

Measured zero-sequence primary-to-
tertiary impedance 𝑍𝑍0′13 1.1 + 26.3j % 

Measured zero-sequence secondary-
to-tertiary impedance 𝑍𝑍0′23 0.77 + 15.2j % 

Excitation current Iexc 0.14 % 
No-load loss NLL 32000 W 
Vector group YNyn0d1 

Core type Three-limb 

A.  Calculating the Desired Zero-Sequence Impedances 
𝑍𝑍012,𝑍𝑍013,𝑍𝑍023 

We apply the presented methods and calculate the desired 
three zero-sequence parameters (𝑍𝑍012,𝑍𝑍013,𝑍𝑍023) that can be 
used in the zero-sequence T-equivalent circuit model. Results 
are tabulated in TABLE II. All methods have produced similar 
results, with small deviations. It is worth noting that both 
selection methods introduced in Section III-B lead to the same 

decisions in all cases.  
TABLE II 

CALCULATED ZERO-SEQUENCE IMPEDANCES USING THE PRESENTED METHODS.  
Applied 
Method Section III-A1 Section III-A2 Eq. (22) Eq. (23)  

𝑍𝑍012 0.345 + 9.511j 0.337 + 9.539j 0.345 + 
9.511j 

0.337 + 
9.539j % 

𝑍𝑍013 1.209 + 25.93j 1.1 + 26.3j 1.1 + 
26.3j 

1.1 + 
26.3j % 

𝑍𝑍023 0.660 + 15.56j 0.77 + 15.2j 0.77 + 
15.2j 

0.77 + 
15.2j % 

B.  Simulating the Zero-Sequence Short-Circuit Tests  
To study the impact of the differences between the 

calculated zero-sequence impedances in TABLE II, we model 
the four short-circuit zero-sequence tests shown in Fig. 2 in the 
HIFREQ computation module of the CDEGS-MultiFields 
software package [5]. However, it is expected that the same 
procedure is applicable to any T-circuit-based computer model 
as long as both the positive-sequence and zero-sequence 
scenarios are included in the computer model. Note that the T-
equivalent impedances (in %) are converted to series resistance 
(in Ω) and inductance (in Henry) branches in the computer 
model using Z=R+jωL where ω=2πf is the angular frequency. 

The simulated impedances are calculated as 𝑍𝑍 = 𝑉𝑉/𝐼𝐼 , 
where 𝑉𝑉 is the single-phase rated winding voltage and 𝐼𝐼 is 
the longitudinal current in the conductor connected to the 
energized winding. Results are given in TABLE III where 
percentage of the magnitude of the impedances are reported to 
facilitate easier comparison. 

TABLE III 
RESULTS OF THE ZERO-SEQUENCE TESTS SIMULATED IN HIFREQ USING THE 

CALCULATED ZERO-SEQUENCE IMPEDANCES GIVEN IN TABLE II.  
  

TABLE 
I 

Section 
III-A1 

Section 
III-A2 Eq. (22) Eq. (23) 

 

|𝑍𝑍0′12| 9.506 9.508 9.508 9.478 9.508 % 
|𝑍𝑍0′21| 5.702 5.708 5.509 5.492 5.509 % 
|𝑍𝑍0′13| 26.32 25.98 26.36 26.36 26.36 % 
|𝑍𝑍0′23| 15.21 15.62 15.26 15.26 15.26 % 

All models have produced satisfactory results when compared 
with the results of TABLE I as the reference solution. In fact, 
for most practical purposes, all four models can be used 
interchangeably. However, it is worth noting that the method of 
Section III-A1 (highlighted column) has produced more 
accurate results for |𝑍𝑍0′12|  and |𝑍𝑍0′21|  but less accurate 
results for |𝑍𝑍0′13| and |𝑍𝑍0′23|. This is expected, since this 
model enforces both primary-to-secondary and secondary-to-
primary parameters, while taking the average of the primary-to-
tertiary and secondary-to-tertiary parameters (3). Therefore, the 
most suitable method can be selected based on the available 
data and which inter-winding impedance is more important for 
a particular study. 

VI.  CONCLUSION 
The paper covers the mathematical formulation and 

application of different techniques to obtain T-equivalent zero-
sequence impedances from typical zero-sequence test data. 
Results can be directly used in a computer model based on the 



T-equivalent circuit model featuring both zero-sequence and 
positive-sequence T-equivalent circuits. Numerical results 
demonstrate the validity of the method both in calculating the 
equivalent inter-winding zero-sequence impedances as well as 
reproducing the results of the typical zero-sequence short-
circuit tests.  
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