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Abstract--This paper implements and tests an EMT-type 
simulator, using Julia, a high-level and high-performance 
programming language. The designed simulator is 
compared with EMTP® in terms of accuracy and 
performance. Several developments are applied to enhance 
the performance of the designed Julia simulator. The 
presented tests confirm its value for modeling and 
simulation of electromagnetic transients. 
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I.  INTRODUCTION 
Power system engineers heavily rely on computer-aided 

analysis and simulation tools to conduct in-depth studies of 
power networks, given the intricate nature of these systems. The 
power system simulation tools are typically classified into two 
main categories: Phasor-Domain (PD) and Electromagnetic 
Transient (EMT) simulation tools, serving distinct purposes in 
power system analysis. Traditional tools predominantly relied 
on PD models (also known as dynamic models), offering 
sufficient accuracy for classical stability studies. However, as 
power systems integrate more power electronic converters and 
inverter-based distributed generation, PD models lose precision 
and reliability. In contrast, EMT simulation tools provide higher 
accuracy but are computationally slower due to the complexity 
of handling numerous EMT models. As a result, ongoing 
research focuses on enhancing the speed and efficiency of EMT 
simulators to address these limitations. 

The EMT-type simulators are circuit-oriented and use 
lumped models, which are mathematically represented by sets of 
algebraic and differential equations [1]-[2]. Differential 
equations undergo discretization using numerical integration 
techniques to construct the equivalent companion model of the 
elements. Two primary methods exist for formulating the 
network equations: state-space-based and nodal-analysis-based. 
For large-scale EMT-type simulations, nodal-analysis-based 
methods (NAM) are favored due to their simplicity and 
versatility compared to state-space-based methods. Within this 
framework, a particularly efficient nodal-analysis formulation 
known as Modified-Augmented-Nodal-Analysis (MANA) [3]-
[5] is applied in EMTP®. 

The existing EMT-type simulation tools [2], such as EMTP® 
[3]-[4], are implemented by compiled codes using compiled 
programming languages, such as C++ and Fortran. While these 
environments are highly powerful, they often pose challenges in 
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terms of modifiability and accessibility for researchers and 
developers.  

High-level programming can substantially decrease the time 
required for research and development, all the while enhancing 
code flexibility and robustness. Several studies in the literature 
have explored the utilization of high-level programming to 
simulate EMTs in power systems. Reference [6] used the 
declarative-based Modelica language to build an EMT 
simulator. Although Modelica is vastly high-level and 
demonstrates a powerful methodology, it falls short in achieving 
satisfactory performance compared to compiled code software. 
Furthermore, the solvers in Open-Modelica and Dymola 
environments are hardcoded, preventing modification or 
adaptation. Another approach, detailed in Reference [7] 
implemented an EMT simulator using m-files in MATLAB, 
which enables high-level constructs, but delivers poor 
performance. In reference [8], initial efforts were made to 
develop an EMT-type tool using the Python programming 
language. This tool suffers from a restricted set of components 
and lacks thorough performance and accuracy comparisons with 
established simulators. Similarly, in another study [9] Python 
was employed for EMT simulation in power systems. 
Nevertheless, the model's scope remains limited, with 
transmission lines represented using a basic lumped pi model. 
Moreover, to mitigate spurious oscillations generated by the 
trapezoidal method, artificial resistances are introduced in 
parallel or series with all inductors and capacitors, adversely 
impacting simulation accuracy. While Python offers the 
flexibility of dynamically typed languages, its interpreted nature 
can compromise the performance of codes. 

Considering the paramount importance of performance in 
EMT-type simulations, it becomes imperative to investigate 
programming languages capable of delivering both high 
productivity and superior performance. In this perspective, Julia 
emerges as a promising candidate for achieving a balance 
between high-level abstraction and high-performance 
computing. Known for its productivity, versatility, and a 
plethora of features tailored for computational science and 
numerical analysis, Julia presents as a compelling option for 
developing EMT simulators [10]. One notable advantage of 
Julia is its rich ecosystem of libraries, including KLU [11], 
which provides efficient solutions for linear algebra problems 
commonly encountered in power system simulation. 
Additionally, Julia supports dynamic model exchange and co-
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simulation through the functional mock-up interface (FMI) [12], 
facilitating the integration of externally designed models into the 
simulation environment. 

Several Julia packages have emerged to tackle critical tasks 
in power systems [13] or to handle phasor-domain approaches 
for simulating power system electromechanical transients [14]. 
In [15], two simulation toolboxes of quasi-static phasor (QSP) 
employing admittance matrix formulation and dynamic dq 
formulation of reference [16] are presented for the dynamic 
simulation of power systems. Despite their utility, both tools 
employ phasor-domain-based methodologies, often neglecting 
details such as harmonics and non-linearities. Furthermore, 
these methods are typically limited to simulating positive 
sequence mode and balanced networks. In [17], authors present 
a Julia package dedicated to stability analysis, while [18] focuses 
on load-flow and optimization studies. Others like [19] and [20], 
lack standardized libraries to deal with EMT simulations in 
power systems, and were not compared to reference tools. 
TABLE I recapitulate various Julia based packages relevant to 
power systems simulation. 

This article aims to extend the works in the literature by 
implementing an EMT simulator using high-level programming 
languages. The proposed Julia package is named Julia Simulator 
for Electromagnetic Transients (JSEMT). JSEMT results are 
compared with EMTP® [21] using the IEEE 39-bus network as 
a test case. To enhance JSEMT's performance, several 
techniques are introduced and evaluated sequentially. These 
include the utilization of the KLU library for sparse matrix 
solving, and optimization of the re-factorization process to avoid 
repeating symbolic phases. Additionally, parallelization 
techniques are explored to enhance performance. 

II.  FORMULATION OF NETWORK EQUATIONS 
The modified-augmented-nodal-analysis (MANA) method is 

selected to formulate the power network equations due to its 
ability to be expanded for diverse component models and to 
handle arbitrary network topologies [3], [4]. MANA formulation 
has a generic nonsymmetric system of equations: 

 =Ax b  (1) 
in which the bold characters represent vectors and matrices, A
is the system coefficient matrix, x  is the vector of unknown 

variables, and b  is the vector of known variables. An extended 
view of this formulation is written as: 
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where Yn is the classical nodal admittance matrix; Ar, Ac, and Ad 
are the augmented portions; Vn and Ix are the vectors of unknown 
nodal voltages and component currents, respectively; In and Vx 
are the vectors of known nodal currents and component voltages, 
respectively. It is noticed that other types (not necessarily 
voltages or currents) of unknowns can be directly included in 
MANA. 

Switch equations are explicitly incorporated in the 
augmented part of MANA formulation, which allows MANA to 
model the switch states without reformulation of the main nodal 
equations i.e. Yn in (2). Notably, MANA allows for the direct 
inclusion of various types of unknowns, not limited to voltages 
or currents. Its versatility extends to both steady-state and time-
domain solutions [3]-[4]. 

A.  Component Types and Models 
The currently implemented models in JSEMT are RLC 

branches, voltage sources, current sources, ideal transformers, 
switches, nonlinear inductors, nonlinear resistors, dependent 
sources, transmission lines, synchronous machines, and 
synchronous machine controls. These components are 
symbolized as RLC, Vsine, Isine, Trans, SW, Lnon, Rnon, TL, 
SM and SMC, respectively. Based on these components, 
nonlinear transformers and loads are implemented [7]. In 
JSEMT, all the differential equations, including RLC elements, 
non-linear inductor flux [7], synchronous machine equations and 
control block diagrams [22], undergo discretization using the 
trapezoidal integration method. For the nonlinear inductor, 
capacitor, and resistor, piecewise linear representations (i.e., 
multiple segments) are used to linearize their functions. Norton's 
companion model of each segment is used through an iterative 
Newton solution [4] that guarantees operation on the proper 
segment to achieve a simultaneous/accurate solution. 

The transmission lines are frequency-independent distributed 
parameter models. For modeling the losses, the line is separated 
into two equal lossless lines with a halved propagation delay. 

TABLE I 
COMPARISON OF JULIA PACKAGES FOR ELECTRICAL ENGINEERING AND POWER SYSTEMS SIMULATION 

Package name ElectricalEngine
ering 

NREL 
packages PowerDynamics PowerModels ElectricGrid Julia-based 

EMT JSEMT 

Reference [13] [14], [15] [17] [18] [19] [20] This paper 

Formulation phasors State-space + 
phasor + dq 

ODE functions + dq-
model  Phasors / NAM State-space NAM + latency 

insertion  MANA 

Load-flow solver - yes no yes - - no 
Steady-state solver yes yes yes yes yes - yes 

Parallel computing no - no no no CPU-GPU co-
simulation CPU  

Numerical Integration - Julia library DifferentialEquations
.jl package - - semi-implicit 

method trapezoidal 

Include Switch model no - no yes - no yes 

Transmission lines model no Π-model static or dynamic 
admittance, Π-model Π-model Π-model - Π-model, CP-

model 
Machines with governors no yes no no yes no yes 

Dependents sources no no no no no no yes 



 
The synchronous machine (SM) model is of dq0-type [23]. In 

the utilized model, machine equations are solved in the dq0-
domain and transferred to the abc frame with Park’s 
transformation. These equations are then integrated into the 
main network equation using Norton’s equivalent circuit. In this 
method, machine terminal voltages and currents are calculated 
based on the predicted speed of the machine. Consequently, 
iterations are implemented in synchronous machine calculations 
to improve [23]. The represented SM controls are the automatic 
voltage regulator (AVR) and the governor. Namely, the exciter 
ST1, the power system stabilizer PSS1A, and the governor-
turbine IEEEG1, are modeled as in [24]. 

III.  IMPLEMENTATION OF JSEMT 
The design of JSEMT follows an object-oriented approach, 

offering numerous advantages for code development, 
maintenance, and readability. Modern programming concepts 
such as encapsulation and abstraction mitigate the risk of data 
corruption and promote a transparent coding methodology. As 
Julia is the chosen platform for constructing the simulator, this 
framework capitalizes on its distinctive features tailored to 
enhance EMT-type applications. 

A.  Advantages of Julia Programming Language 
Julia is a free, open-source, high-level, and dynamic 

programming language. Unlike several mainstream dynamic 
languages like Python, Julia is uniquely crafted to deliver both 
productivity and high-performance [25]. Essentially, it resolves 
the "two language problem" by offering a high-level coding 
syntax coupled with fast execution. As a just-in-time compiled 
language, Julia automatically undergoes compilation upon the 
initial code execution. Subsequent runs then call upon the 
compiled code unless modifications have been made. 

Julia has a special type of array called a static array [26], 
optimized for fast array operations. Additionally, Julia 
empowers users with macros, streamlining coding processes and 
enhancing efficiency. Furthermore, Julia boasts a rich collection 
of libraries facilitating direct visualization of simulation 
outcomes, including "PlotlyJS," and seamless exportation to 
other platforms, exemplified by the "MAT" library [27]. 

Julia offers a variety of valuable libraries for solving (1)
within JSEMT. The "SparseArrays" library facilitates the 
handling of sparse vectors and matrices, while the 
"LinearAlgebra" library provides native implementations of 
algebraic operations, including matrix manipulations and 
eigenvalue analysis. In addition to numerous sparse solvers, the 
"KLU" library [11] stands out for its capacity to accelerate 
circuit-type systems [28]. Moreover, it has several libraries to 
implement CPU-based parallelization. All these features 
collectively make Julia suitable for computational science and 
numerical analysis [10], and for building JSEMT. 

B.  Configuration of JSEMT 
The JSEMT simulator is structured across multiple Julia files, 

organized into four distinct sections: the translator, Test Case 
Data (TCD), solver engine and component structures. The 
translator serves as standalone software dedicated to 
constructing the TCD for JSEMT. Meanwhile, the solver engine 

acts as the central computational core, orchestrating the 
execution of other files. Within the "component structures" 
folder reside all the modeled power components and associated 
controls. Each file within this folder delineates the composition 
of the component and its operational functions. Further 
elaboration on these components is provided in subsequent 
sections. 

C.  Building TCD 
JSEMT serves as a simulation engine devoid of a graphical 

user interface or schematic capture capability. Inputs are 
accepted in the form of netlist text files formatted in Julia (.jl) or 
component data lists in Excel files (.xlsx). Additionally, users 
have the option to import circuits constructed in EMTP® 
software using the Translator module. This module can be 
configured to translate netlist data from various other EMT-type 
software programs. The TCD is stored in JLD2 binary file 
format, encapsulating power system information within Julia 
data structures. 

D.  Solver Engine 
The solver engine is the main code of JSEMT. It consists of 

three stages: initialization, solution and visualization. In the first 
stage, the engine imports the needed libraries to run the 
simulation. The solution stage finds the steady-state solution of 
the network starting from the load-flow solution. Currently, the 
load-flow solution is imported from EMTP®, but in future 
versions of JSEMT, it will be internally implemented. The 
steady-state solution is obtained through frequency domain 
formulation, utilizing (2). The primary aim of the steady-state 
solution is to initialize network variables, minimizing the natural 
response time during the start of time-domain simulation. 
Following the steady-state solution, the time-domain solution is 
obtained. The visualization phase then plots the results within 
Julia or exports them to external tools. 

Parts of the initialization and solution stages of the solver 
engine in Julia syntax are shown in Fig. 1. The implemented 
functions have indicative meanings, in which the prefix refers to 
the procedure run by the component mentioned in the suffix. For 
example, the function “adjacencyVsine!” means that Vsine sets 
its adjacency matrix in (1). Note that in Julia, it is a convention 
to append an exclamation mark to the names of functions that 
modify their arguments. JSEMT utilizes some helpful macros 
(start with @) that reduce the coding burden and keep the 
visuality of the code. For example, “@view” is a defined macro 
for slicing operations on arrays. It references the data of the 
original array in place without making a copy, to improve 
performance. JSEMT has also several efficiently designed 
functions in high-level syntax that are frequently executed, such 
as the two examples in Fig. 2. These examples are for updating 
the history buffer associated with the CP-line (constant 
parameter line or cable model with propagation delay) model. 

E.  Component Structures 
Each file in the Component Structures assembles the 

component model, which consists of the composition (structure) 
definition and operating functions. Julia uses the keyword 
“structure” to compose a component which is like a class in other 



languages. This includes declarations about the set of fields that 
define the component properties. These structures are followed 
by operating function(s), i.e., applied method(s) to manipulate 
their fields. Each component has a certain number of functions 
based on its behavior. 

An example of Julia's syntax for implementing the voltage 
source component is illustrated in Fig. 3. As seen in the 
component composition section, the name of the structure is 
“VoltageSource” and it has six fields, namely “amplitude”, 
“frequency” and “angle” that refer to the cosine waveform 
parameters, “starttime” and “endtime” that define the active 
duration time in the network, and “adjacency” which refers to 
the location (connection) in the network. It should be noted that 
these fields are implemented by two array types for speed 
evaluation, namely dynamic and static arrays. The latter is 
discussed in section IV.  B.  , in which “MVector 
{nVsine,Float64}” constructs a vector of type Float64 and 
length of “nVsine” that represents the number of voltage sources 
in the power network. The “adjacencyVsine!” function sets the 
locations of these voltage sources in A and “voltageVsine!” 
updates their voltages in b. Another example of the high-level 
syntax of Julia in implementing parallel computing will be 
shown in section IV.  D.   

# Load packages and structures
using SparseArrays,LinearAlgebra,KLU,StaticArrays,
ComponentStructures,ShiftedArrays
# Load circuit data from "Test_Case_Data.jld2"
NodeList,Sim,RLC,Vsine,Isine,Trans,TL,SW,Rnon,Lnon,SM,IEEEG1, 
PSS1A,ExciterST1= load("TCD.jld2")
# Determine the number of each component
nNode=length(NodeList); nRLC=length(RLC);
nVsine=length(Vsine); nIsine=length(Isine);
nTrans=length(Trans); nTL=length(TL);
nSW=length(SW); nRnon=length(Rnon); 
nLnon=length(Lnon); nSM=length(SM);
nIEEEG1=length(IEEEG1); nPSS1A=length(PSS1A);
nExciterST1=length(ExciterST1); 
# Define time-domain function
function timedomainSolution()
  # Build A, x, and b
  A=spzeros(nNode+nVsine+nTrans+nSW+nRnon+nLnon,nNode+nVsine+
  nTrans+nSW+nRnon+nLnon);
  b=zeros(nNode+nVsine+nTrans+nSW+nRnon+nLnon);
  x=zeros(nNode+nVsine+nTrans+nSW+nRnon+nLnon);
  # Fill in A and initialize SM Control
  adjacencyVsine!(nNode,nVsine,Vsine,A);
  adjacencyTrans!(NodeList,Trans,A);
  adjacencySW!(NodeList,SW,A);
  adjacencyRnon!(NodeList,Rnon,A);
  admitanceSM!(NodeList,SM,A);
  admitanceRLC!(NodeList,RLC,A);
  admitanceTL!(NodeList,TL,A);
  initilizecontrolSM!(ExciterST1,PSS1A,IEEEG1,SM,Sim.dt);
  for t in eachindex(Sim) # Sim.tmin:Sim.dt:Sim.tmax
    # Update A, x, and b
    controlSM!(ExciterST1,PSS1A,IEEEG1,SM,Sim.dt)
    nortonSM!(SM,@view(x[1:nNode]),A,@view(b[1:nNode]));
    currentIsine!(Isine,@view(b[1:nNode)],t)
    currentRLC!(@view(x[1:nNode]),@view(b[1:nNode]))
    currentTL!(@view(x[1:nNode]),TL,@view(b[1:nNode]))
    voltageVsine!(Vsine,@view(b[nNode+1:(nNode+nVsine)]),t)
    adjacencySW!(SW,A,t,Sim.dt)
    nortonLnon!(Lnon,@view(x[1:nNode]),A,b)
    nortonRnon!(Rnon,@view(x[1:nNode]),A,b)
    # Find solution
    x = A\b;
  end # for t in eachindex(Sim)
end # function timedomainSolution()
# Call time-domain solution
timedomainSolution()

Part of Initialization Stage

Part of Solution Stage

 
Fig. 1. Julia syntax for parts of initialization and solution stages in the solver 
engine. 

#update! function is to update the non-zero values of the 
Sparse Matrix “C” by The values of Vector "val"
function update!(C::SparseMatrixCSC, val::Vector{Float64})
  rows = rowvals(C)
  for j in axes(C, 2)
    for i in nzrange(C, j)
      C[rows[i],j] = val[rows[i]];
    end
  end
End

#spshiftl shifts the Sparse Matrix “C” to left by n digits
function spshiftl(C::SparseMatrixCSC, n::Int64)
  cnz=C.colptr[n+1]-1
  SparseMatrixCSC{Float64,Int64}(size(C)..., 
ShiftedArray(C.colptr,-n, default=C.colptr[end]).-cnz,
  C.rowval[cnz+1:end], C.nzval[cnz+1:end])
end

Update of Sparse Matrix

Left-shift of Sparse Matrix

 
Fig. 2. Two implemented functions in JSEMT for updating the values of sparse 
matrices and shifting their values to the left by n digits. 

# Define the structure
mutable struct VoltageSource

  amplitude::  Vector{Float64}  MVector{nVsine,Float64}
  frequency::  Vector{Float64}  MVector{nVsine,Float64}
  angle    ::  Vector{Float64}  MVector{nVsine,Float64}
  starttime::  Vector{Float64}  MVector{nVsine,Float64}
  endtime  ::  Vector{Float64}  MVector{nVsine,Float64}
  adjacency::SparseMatrixCSC{Float64,Int64}
end # mutable struct VoltageSource
# Define this structure Functions
function adjacencyVsine!(nNode::Int64,nVsine::Int64,

Vsine::VoltageSource,A::SparseMatrixCSC{Float64, Int64})
  @view( A[nNode+1:nNode+nVsine,begin:nNode] ) .= Vsine.adjacency
  @view( A[begin:nNode,nNode+1:nNode+nVsine] ) .= Vsine.adjacency'
End # function adjacencyVsine!()
function voltageVsine!(Vsine::VoltageSource,voltageVsine::
SubArray{Float64,1,Vector{Float64},Tuple{UnitRange{Int64}},true},
t::Float64)
  voltageVsine .= Vsine.amplitude .* cos.(2 .* Pi .* .* t 
  Vsine.frequency .+ Vsine.angle)
end # function voltageVsine!()

Component Composition

Part of Operating Functions

For Dynamic Array For Static Array

 
Fig. 3. Julia syntax to implement a voltage source component. 

IV.  SIMULATION CASES 
The simulation results of JSEMT are validated by 

comparisons with EMTP® [3]. The IEEE 39-bus network is 
adopted as a test case [29]. It has 357 nodes, 90 ideal 
transformers, 273 RLC branches, 102 transmission lines, 15 
ideal switches, 90 nonlinear inductors of nonlinear transformers, 
54 loads, and 10 synchronous machines with controls. Each 
control includes exciter ST1, stabilizer PSS1A, and governor-
turbine IEEEG1. The network is fully initialized, whereby the 
load-flow solution is extracted from EMTP® and the simulation 
begins from the steady-state condition. The simulation interval τ 
is 600 ms with a time-step Δt = 25µs using the trapezoidal 
integration method. A three-phase to ground fault occurs at the 
m-end of the transmission Line_16_19 at t = 100ms followed by 
an isolation at t = 200ms via breakers BRm and BRk after 6 
cycles. The fault is cleared at t = 300 ms and the Line_16_19 is 
reconnected at t = 50 ms, as illustrated in Fig. 4. 

A.  Accuracy Analysis 
The three-phase voltage waveforms at the m-end of 

Line_16_19 are presented in Fig. 5. As observed, the simulation 
starts from steady-state until the occurrence of the fault. It can 
be stated here that the results obtained from JSEMT match those 
from EMTP®. An accuracy evaluation is shown in Fig. 6 by 
calculating the relative errors of voltage waveforms in Fig. 5. 
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Fig. 4. Configuration of the assumed faulted in the IEEE 39-bus network. 
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Fig. 5. Voltage waveforms at the m-end of Line_16_19. 
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Fig. 6. Relative errors of the voltages at the m-end of Line_16_19 by JSEMT. 

The magnetization current-flux curve of the nonlinear 
inductor of the transformer in PowerPlant_04 near the fault in 
the interval of 448-454ms is shown in Fig. 7. As seen, the results 
of JSEMT and EMTP are identical with no overshoot or 
instabilities at the boundary points of the linear segments. 

To check the behavior of the modeled SMs (generators here), 
the nearest one to the fault in PowerPlant_04 on B19 is selected, 
as seen in Fig. 4. The terminal current waveforms of this 
generator’s stator are depicted in Fig. 8. It can be said again that 
these results are identical between EMTP and JSEMT. 

The operation of the studied SM controls is investigated here 
as well. The output of the SM’s exciter that controls its field 
voltage fdE changes largely after the fault, as shown in Fig. 9. a. 

On the other hand, Fig. 9. b illustrates the output of the 
generator’s governor that drives its mechanical power Pmech. The 
rotor speed ωr is presented in Fig. 9. c. Although the speed is 
increased during the fault, it is regulated to head back to its 
reference value of 1pu . All the matched results between JSEMT 
and EMTP prove the accuracy of JSEMT. 

 
Fig. 7. Superimposition of nonlinear inductance results in the transformer of 
PowerPlant_04, phase-c. 
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Fig. 8. (a): Terminal current waveforms of SM in PowerPlant_04 (b): close-up 
view after the fault occurrence at Line_16_19 (c): close-up view after re-
connection of Line_16_19. 

B.  Performance Analysis 
The performance of JSEMT is compared with EMTP®. This 

analysis is carried out on a machine with the following 
specifications: Intel (R) Core (TM) i7-10750H CPU, 2.60GHz 
2.59 GHz, 6 cores (CPUs), and 32 GB RAM. Three criteria are 
introduced for the comparison: the number of solution points in 
the time-domain, CPU time for running the simulation, and CPU 
time per time-point. As shown in TABLE II, EMTP is faster than 
JSEMT by 10.58 times. JSEMT performance improvement is 
presented in the following subsections. 

C.  Techniques to Improve JSEMT Performance 
The techniques are applied sequentially on the first version of 

JSEMT, which is named hereinafter JSEMT_v1. The improved 
versions are named: 

1. JSEMT_v2: JSEMT_v1 with StaticArrays library. 
2. JSEMT_v3: JSEMT_v2 with KLU library. 
3. JSEMT_v4: JSEMT_v3 with KLU fast re-factorization 

of A matrix to avoid repeating the symbolic phase. 
TABLE II 

PERFORMANCE ANALYSIS BETWEEN EMTP AND JSEMT 
 EMTP JSEMT_v1 

No. of time points 24001 24001 
CPU time per time-point (ms) 0.087 0.926 

CPU Time (s) 2.10 22.22 
Contrary to dynamic arrays, Julia can deal with special types 

of vectors and matrices through the “StaticArrays” library that 
permits a framework to build statically sized arrays. It can 
provide fast implementations for common array and linear 
algebra operations and thus can improve computational speed. 
Utilizing this type for constructing the component structures (see 
Fig. 3) results in having JSEMT_v2, which is faster by 1.2 times 
when compared to JSEMT_v1, as listed in TABLE III. 

The sparse solution of (1) in the previous versions of JSEMT 
is calculated by LU factorization using the backslash function in 
the “LinearAlgebra” library in Julia, as shown in Fig. 1. KLU is 
another choice of sparse matrix solver that is successfully used 
in [28], and it is available in Julia [11]. The updating JSEMT_v2 
to include KLU results into JSEMT_v3 and a speedup of 2.75, 
as reported in TABLE III. 

Since some network models may modify A in the time-
domain loop, JSEMT_v3 must compute the KLU of A at each 
modification. This process has several phases, and each one 
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consumes a certain amount of time. It is noticed that only the 
switches as well as the nonlinear inductors and resistors can 
modify the non-zero values of A. In other words, the KLU 
symbolic analysis phase can be reserved and only the numerical 
factorization needs to be updated, i.e., re-factorization of A (Â). 
This is implemented in JSEMT_v3 to give JSEMT_v4. The 
outcome of this work makes JSEMT_v4 faster than JSEMT_v3 
by 2.77, as indicated in TABLE III. As can be seen, the 
performance of JSEMT_v4 becomes comparable to EMTP 
(TABLE II). 
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Fig. 9. SM of PowerPlant_04 (a): field voltage (b): mechanical power (c): 
rotor angular velocity. 

TABLE III 
PERFORMANCE SPEEDUP FOR DEVELOPED VERSIONS OF JSEMT 

 JSEMT_v2 JSEMT_v3 JSEMT_v4 
CPU Time (s) 18.50 6.71 2.42 

Speedup 1.20 2.75 2.77 
To perform a test with a larger grid, the IEEE-39 network is 

independently reproduced 10 times with no connections 
between them and hereinafter called the multiplied IEEE-39 
network. Although this generated grid is not realistic, it becomes 
a test for a grid size with 3704 nodes and 4854 equations. The 
resulting CPU time for EMTP is 23.04s while for JSEMT-v4 it 
is 26.54s, which shows a good performance for Julia. One reason 
behind this is the fact that running the Julia code implies running 
a compiled code as explained in the section III.  A.   This is a 
clear advantage of Julia programming. 

Note that in the following sections, JSEMT_v4 is considered 
the reference simulator for performance comparisons with the 
proposed and implemented techniques. 

D.  Parallelization of The KLU Sparse Matrix Solver 
During the KLU symbolic analysis phase, row permutation 

rP and column permutation cP  matrices are computed. When 
transmission lines with propagation delays exist in the simulated 
network, these two permutation matrices can transform the A
matrix into a block diagonal form (BTF), in which the blocks are 
independent submatrices. 

 BTF r c=A P AP  (3) 
For the IEEE-39 case, 27 blocks are found in the pattern, in 
which the smallest block size is 3×3 and the largest one is 75×75. 
The latter block constitutes the limiting factor for parallelizing 
the solver as it forms a dense network region that does not have 
any transmission line. Note that the KLU symbolic analysis 
phase to find BTFA  is calculated only once. The other two 
phases of numerical factorization and solution might need 
recalculations, and they can be implemented in parallel during 
their repetitive calls within the time-loop. The degree of 
parallelization depends on the size of BTFA  blocks as well as 
the available CPU numbers in each computer. In this article, the 
blocks are automatically and evenly distributed according to the 
number of CPUs. 

There are several libraries and directives in Julia to 
implement CPU-based parallelization. After several tests, it was 
found that the “@batch per=core” macro in “Polyester” library 
is the most suitable one to implement the parallel solver in terms 
of higher performance and lower memory allocations. Its 
implementation is shown in Fig. 10, as an example of Julia's 
syntax to implement a parallel task. The code within the 
“@batch” block includes the re-factorization of A (if needed) 
and the solution. It is executed in parallel by the pre-defined 
number of threads (CPUs): nThreads. Here, /p q  is the KLU 
right/left permutation vector. 

@batch per=core for i = 1:nThreads()
  if ς == true # Switch/nonlinear element
    klu!(KLUfactor[i], A_BTF.nzval[indexRangenzval[i]])
  end #if
  @views(x[q[i]]) .= KLU.solve(KLUfactor[i], copy!(b_work[i],
    @views(b[p[i]])))
End #@batch

Code of Parallel Solver

 
Fig. 10. Implementation of parallel solver in Julia syntax. 

The speedup is listed in TABLE IV, for 10s of simulation time 
with Δt = 25µs. When the network is relatively small, the 
advantage of solving (1) in parallel is mitigated by the CPU 
overheads and the consumed time for mapping between the 
individual block arrays and the parent ones. However, the gain 
is noticeable in larger networks, as in the multiplied network. 
And it reaches the maximum of 1.5 with 3 CPUs. 

TABLE IV 
SPEEDUP COMPARISON BETWEEN SEQUENTIAL AND PARALLEL SOLVERS 

Number 
of CPUs 

IEEE 39-bus Multiplied IEEE 39-bus 
CPU Time (s) Speedup CPU Time (s) Speedup 

1 CPU 48.63 - 865.07 - 
2 CPUs 46.27 1.05 753.38 1.14 
3 CPUs 47.67 1.02 575.01 1.50 
4 CPUs 48.14 1.01 596.77 1.44 
5 CPUs 54.06 0.89 614.22 1.40 

E.  Parallelization with component models 
This is another parallelization technique, in which the 

network is divided into several subnetworks through 
transmission lines that can run individually on separate CPUs. 
In our work, subnetworks are extracted from BTFA  for 
determining firstly the nodes that are in the same block, and then, 
grouping all component equations that are connected to them. If 
the number of these subnetworks is greater than the number of 

mailto:Polyester.@batch%20per=core
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available CPUs, some of them can be combined to ensure that 
each aggregated subnetwork runs on a separate CPU. 

This parallelization technique is implemented in Julia via 
CPU-based directives, in which the “@threads” macro in 
“Threads” library is found to be the most suitable one. The result 
speedup by this parallelization utilizing several CPUs is listed in 
TABLE V. As seen, the speedup here is higher than the one in 
TABLE IV. This is because the parallelization here is not only 
applied to the solution of (1), but also on the component 
(models) equations. The speedup gains are higher than the 
number of CPUs because each code running an aggregated 
subnetwork can be cached in a CPU. Moreover, a segment 
change in a nonlinear component necessitates iterating the 
solution only within its aggregated network. 

 TABLE V 
SPEEDUP COMPARISON BETWEEN SEQUENTIAL AND PARALLEL NETWORKS  

Number 
of CPUs 

IEEE 39-bus Multiplied IEEE 39-bus 
CPU Time (s) Speedup CPU Time (s) Speedup 

1 CPU 48.63 - 865.07 - 
2 CPUs 44.49 1.09 292.04 2.96 
5 CPUs 50.29 0.96 150.88 5.73 

V.  CONCLUSION 
There is an increasing need for the creation of 

electromagnetic transient (EMT) simulation tools developed 
using modern programming languages that run on high-
performance architectures, employ high-level constructs, and 
enable seamless manipulation of data and matrices. Since the 
Julia programming language can support these features without 
compromising performance, it was used in this article to 
implement an EMT simulator, called JSEMT. It was 
benchmarked against the EMTP® software and detailed 
comparisons proved its accuracy and performance.  This paper 
serves as the foundation for constructing a comprehensive EMT 
simulator using Julia. Future iterations will include an expanded 
model library, a variable time-step solver, an adaptative 
switching of integration method during runtime, GPU 
parallelization, and an optimized CPU parallelization. 
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