

A Julia-Based Simulation Platform for Power System
Transients

A. Alsabbagh, M. Naïdjate, J. Mahseredjian, M. J. Matehkolaei

Abstract--This paper implements and tests an EMT-type
simulator, using Julia, a high-level and high-performance
programming language. The designed simulator is
compared with EMTP® in terms of accuracy and
performance. Several developments are applied to enhance
the performance of the designed Julia simulator. The
presented tests confirm its value for modeling and
simulation of electromagnetic transients.

Keywords: Electromagnetic transients, Julia high-performance
programming language, parallelization.

I. INTRODUCTION
Power system engineers heavily rely on computer-aided

analysis and simulation tools to conduct in-depth studies of
power networks, given the intricate nature of these systems. The
power system simulation tools are typically classified into two
main categories: Phasor-Domain (PD) and Electromagnetic
Transient (EMT) simulation tools, serving distinct purposes in
power system analysis. Traditional tools predominantly relied
on PD models (also known as dynamic models), offering
sufficient accuracy for classical stability studies. However, as
power systems integrate more power electronic converters and
inverter-based distributed generation, PD models lose precision
and reliability. In contrast, EMT simulation tools provide higher
accuracy but are computationally slower due to the complexity
of handling numerous EMT models. As a result, ongoing
research focuses on enhancing the speed and efficiency of EMT
simulators to address these limitations.

The EMT-type simulators are circuit-oriented and use
lumped models, which are mathematically represented by sets of
algebraic and differential equations [1]-[2]. Differential
equations undergo discretization using numerical integration
techniques to construct the equivalent companion model of the
elements. Two primary methods exist for formulating the
network equations: state-space-based and nodal-analysis-based.
For large-scale EMT-type simulations, nodal-analysis-based
methods (NAM) are favored due to their simplicity and
versatility compared to state-space-based methods. Within this
framework, a particularly efficient nodal-analysis formulation
known as Modified-Augmented-Nodal-Analysis (MANA) [3]-
[5] is applied in EMTP®.

The existing EMT-type simulation tools [2], such as EMTP®
[3]-[4], are implemented by compiled codes using compiled
programming languages, such as C++ and Fortran. While these
environments are highly powerful, they often pose challenges in

M. Naïdjate, A. Alsabbagh, J. Mahseredjian and M. J. Matehkolaei are with
Polytechnique Montréal, Department of Electrical Engineering, Montréal-
QC, H3T 1J4, Canada (mohammed.naidjate@polymtl.ca,
amro.alsabbagh@polymtl.ca, jean.mahseredjian@polymtl.ca, mohammad
.jafari-matehkolaei@polymtl.ca)

terms of modifiability and accessibility for researchers and
developers.

High-level programming can substantially decrease the time
required for research and development, all the while enhancing
code flexibility and robustness. Several studies in the literature
have explored the utilization of high-level programming to
simulate EMTs in power systems. Reference [6] used the
declarative-based Modelica language to build an EMT
simulator. Although Modelica is vastly high-level and
demonstrates a powerful methodology, it falls short in achieving
satisfactory performance compared to compiled code software.
Furthermore, the solvers in Open-Modelica and Dymola
environments are hardcoded, preventing modification or
adaptation. Another approach, detailed in Reference [7]
implemented an EMT simulator using m-files in MATLAB,
which enables high-level constructs, but delivers poor
performance. In reference [8], initial efforts were made to
develop an EMT-type tool using the Python programming
language. This tool suffers from a restricted set of components
and lacks thorough performance and accuracy comparisons with
established simulators. Similarly, in another study [9] Python
was employed for EMT simulation in power systems.
Nevertheless, the model's scope remains limited, with
transmission lines represented using a basic lumped pi model.
Moreover, to mitigate spurious oscillations generated by the
trapezoidal method, artificial resistances are introduced in
parallel or series with all inductors and capacitors, adversely
impacting simulation accuracy. While Python offers the
flexibility of dynamically typed languages, its interpreted nature
can compromise the performance of codes.

Considering the paramount importance of performance in
EMT-type simulations, it becomes imperative to investigate
programming languages capable of delivering both high
productivity and superior performance. In this perspective, Julia
emerges as a promising candidate for achieving a balance
between high-level abstraction and high-performance
computing. Known for its productivity, versatility, and a
plethora of features tailored for computational science and
numerical analysis, Julia presents as a compelling option for
developing EMT simulators [10]. One notable advantage of
Julia is its rich ecosystem of libraries, including KLU [11],
which provides efficient solutions for linear algebra problems
commonly encountered in power system simulation.
Additionally, Julia supports dynamic model exchange and co-

Paper submitted to the International Conference on Power Systems
Transients (IPST2025) in Guadalajara, Mexico, June 8-12, 2025

mailto:mohammed.naidjate@polymtl.ca
mailto:amro.alsabbagh@polymtl.ca
mailto:jean.mahseredjian@polymtl.ca
mailto:mohammad%20.jafari-matehkolaei@polymtl.ca
mailto:mohammad%20.jafari-matehkolaei@polymtl.ca

simulation through the functional mock-up interface (FMI) [12],
facilitating the integration of externally designed models into the
simulation environment.

Several Julia packages have emerged to tackle critical tasks
in power systems [13] or to handle phasor-domain approaches
for simulating power system electromechanical transients [14].
In [15], two simulation toolboxes of quasi-static phasor (QSP)
employing admittance matrix formulation and dynamic dq
formulation of reference [16] are presented for the dynamic
simulation of power systems. Despite their utility, both tools
employ phasor-domain-based methodologies, often neglecting
details such as harmonics and non-linearities. Furthermore,
these methods are typically limited to simulating positive
sequence mode and balanced networks. In [17], authors present
a Julia package dedicated to stability analysis, while [18] focuses
on load-flow and optimization studies. Others like [19] and [20],
lack standardized libraries to deal with EMT simulations in
power systems, and were not compared to reference tools.
TABLE I recapitulate various Julia based packages relevant to
power systems simulation.

This article aims to extend the works in the literature by
implementing an EMT simulator using high-level programming
languages. The proposed Julia package is named Julia Simulator
for Electromagnetic Transients (JSEMT). JSEMT results are
compared with EMTP® [21] using the IEEE 39-bus network as
a test case. To enhance JSEMT's performance, several
techniques are introduced and evaluated sequentially. These
include the utilization of the KLU library for sparse matrix
solving, and optimization of the re-factorization process to avoid
repeating symbolic phases. Additionally, parallelization
techniques are explored to enhance performance.

II. FORMULATION OF NETWORK EQUATIONS
The modified-augmented-nodal-analysis (MANA) method is

selected to formulate the power network equations due to its
ability to be expanded for diverse component models and to
handle arbitrary network topologies [3], [4]. MANA formulation
has a generic nonsymmetric system of equations:

 =Ax b (1)
in which the bold characters represent vectors and matrices, A
is the system coefficient matrix, x is the vector of unknown

variables, and b is the vector of known variables. An extended
view of this formulation is written as:

 n c n n

r d x x

     
=     

     

Y A V I
A A I V

 (2)

where Yn is the classical nodal admittance matrix; Ar, Ac, and Ad
are the augmented portions; Vn and Ix are the vectors of unknown
nodal voltages and component currents, respectively; In and Vx
are the vectors of known nodal currents and component voltages,
respectively. It is noticed that other types (not necessarily
voltages or currents) of unknowns can be directly included in
MANA.

Switch equations are explicitly incorporated in the
augmented part of MANA formulation, which allows MANA to
model the switch states without reformulation of the main nodal
equations i.e. Yn in (2). Notably, MANA allows for the direct
inclusion of various types of unknowns, not limited to voltages
or currents. Its versatility extends to both steady-state and time-
domain solutions [3]-[4].

A. Component Types and Models
The currently implemented models in JSEMT are RLC

branches, voltage sources, current sources, ideal transformers,
switches, nonlinear inductors, nonlinear resistors, dependent
sources, transmission lines, synchronous machines, and
synchronous machine controls. These components are
symbolized as RLC, Vsine, Isine, Trans, SW, Lnon, Rnon, TL,
SM and SMC, respectively. Based on these components,
nonlinear transformers and loads are implemented [7]. In
JSEMT, all the differential equations, including RLC elements,
non-linear inductor flux [7], synchronous machine equations and
control block diagrams [22], undergo discretization using the
trapezoidal integration method. For the nonlinear inductor,
capacitor, and resistor, piecewise linear representations (i.e.,
multiple segments) are used to linearize their functions. Norton's
companion model of each segment is used through an iterative
Newton solution [4] that guarantees operation on the proper
segment to achieve a simultaneous/accurate solution.

The transmission lines are frequency-independent distributed
parameter models. For modeling the losses, the line is separated
into two equal lossless lines with a halved propagation delay.

TABLE I
COMPARISON OF JULIA PACKAGES FOR ELECTRICAL ENGINEERING AND POWER SYSTEMS SIMULATION

Package name ElectricalEngine
ering

NREL
packages PowerDynamics PowerModels ElectricGrid Julia-based

EMT JSEMT

Reference [13] [14], [15] [17] [18] [19] [20] This paper

Formulation phasors State-space +
phasor + dq

ODE functions + dq-
model Phasors / NAM State-space NAM + latency

insertion MANA

Load-flow solver - yes no yes - - no
Steady-state solver yes yes yes yes yes - yes

Parallel computing no - no no no CPU-GPU co-
simulation CPU

Numerical Integration - Julia library DifferentialEquations
.jl package - - semi-implicit

method trapezoidal

Include Switch model no - no yes - no yes

Transmission lines model no Π-model static or dynamic
admittance, Π-model Π-model Π-model - Π-model, CP-

model
Machines with governors no yes no no yes no yes

Dependents sources no no no no no no yes

The synchronous machine (SM) model is of dq0-type [23]. In

the utilized model, machine equations are solved in the dq0-
domain and transferred to the abc frame with Park’s
transformation. These equations are then integrated into the
main network equation using Norton’s equivalent circuit. In this
method, machine terminal voltages and currents are calculated
based on the predicted speed of the machine. Consequently,
iterations are implemented in synchronous machine calculations
to improve [23]. The represented SM controls are the automatic
voltage regulator (AVR) and the governor. Namely, the exciter
ST1, the power system stabilizer PSS1A, and the governor-
turbine IEEEG1, are modeled as in [24].

III. IMPLEMENTATION OF JSEMT
The design of JSEMT follows an object-oriented approach,

offering numerous advantages for code development,
maintenance, and readability. Modern programming concepts
such as encapsulation and abstraction mitigate the risk of data
corruption and promote a transparent coding methodology. As
Julia is the chosen platform for constructing the simulator, this
framework capitalizes on its distinctive features tailored to
enhance EMT-type applications.

A. Advantages of Julia Programming Language
Julia is a free, open-source, high-level, and dynamic

programming language. Unlike several mainstream dynamic
languages like Python, Julia is uniquely crafted to deliver both
productivity and high-performance [25]. Essentially, it resolves
the "two language problem" by offering a high-level coding
syntax coupled with fast execution. As a just-in-time compiled
language, Julia automatically undergoes compilation upon the
initial code execution. Subsequent runs then call upon the
compiled code unless modifications have been made.

Julia has a special type of array called a static array [26],
optimized for fast array operations. Additionally, Julia
empowers users with macros, streamlining coding processes and
enhancing efficiency. Furthermore, Julia boasts a rich collection
of libraries facilitating direct visualization of simulation
outcomes, including "PlotlyJS," and seamless exportation to
other platforms, exemplified by the "MAT" library [27].

Julia offers a variety of valuable libraries for solving (1)
within JSEMT. The "SparseArrays" library facilitates the
handling of sparse vectors and matrices, while the
"LinearAlgebra" library provides native implementations of
algebraic operations, including matrix manipulations and
eigenvalue analysis. In addition to numerous sparse solvers, the
"KLU" library [11] stands out for its capacity to accelerate
circuit-type systems [28]. Moreover, it has several libraries to
implement CPU-based parallelization. All these features
collectively make Julia suitable for computational science and
numerical analysis [10], and for building JSEMT.

B. Configuration of JSEMT
The JSEMT simulator is structured across multiple Julia files,

organized into four distinct sections: the translator, Test Case
Data (TCD), solver engine and component structures. The
translator serves as standalone software dedicated to
constructing the TCD for JSEMT. Meanwhile, the solver engine

acts as the central computational core, orchestrating the
execution of other files. Within the "component structures"
folder reside all the modeled power components and associated
controls. Each file within this folder delineates the composition
of the component and its operational functions. Further
elaboration on these components is provided in subsequent
sections.

C. Building TCD
JSEMT serves as a simulation engine devoid of a graphical

user interface or schematic capture capability. Inputs are
accepted in the form of netlist text files formatted in Julia (.jl) or
component data lists in Excel files (.xlsx). Additionally, users
have the option to import circuits constructed in EMTP®
software using the Translator module. This module can be
configured to translate netlist data from various other EMT-type
software programs. The TCD is stored in JLD2 binary file
format, encapsulating power system information within Julia
data structures.

D. Solver Engine
The solver engine is the main code of JSEMT. It consists of

three stages: initialization, solution and visualization. In the first
stage, the engine imports the needed libraries to run the
simulation. The solution stage finds the steady-state solution of
the network starting from the load-flow solution. Currently, the
load-flow solution is imported from EMTP®, but in future
versions of JSEMT, it will be internally implemented. The
steady-state solution is obtained through frequency domain
formulation, utilizing (2). The primary aim of the steady-state
solution is to initialize network variables, minimizing the natural
response time during the start of time-domain simulation.
Following the steady-state solution, the time-domain solution is
obtained. The visualization phase then plots the results within
Julia or exports them to external tools.

Parts of the initialization and solution stages of the solver
engine in Julia syntax are shown in Fig. 1. The implemented
functions have indicative meanings, in which the prefix refers to
the procedure run by the component mentioned in the suffix. For
example, the function “adjacencyVsine!” means that Vsine sets
its adjacency matrix in (1). Note that in Julia, it is a convention
to append an exclamation mark to the names of functions that
modify their arguments. JSEMT utilizes some helpful macros
(start with @) that reduce the coding burden and keep the
visuality of the code. For example, “@view” is a defined macro
for slicing operations on arrays. It references the data of the
original array in place without making a copy, to improve
performance. JSEMT has also several efficiently designed
functions in high-level syntax that are frequently executed, such
as the two examples in Fig. 2. These examples are for updating
the history buffer associated with the CP-line (constant
parameter line or cable model with propagation delay) model.

E. Component Structures
Each file in the Component Structures assembles the

component model, which consists of the composition (structure)
definition and operating functions. Julia uses the keyword
“structure” to compose a component which is like a class in other

languages. This includes declarations about the set of fields that
define the component properties. These structures are followed
by operating function(s), i.e., applied method(s) to manipulate
their fields. Each component has a certain number of functions
based on its behavior.

An example of Julia's syntax for implementing the voltage
source component is illustrated in Fig. 3. As seen in the
component composition section, the name of the structure is
“VoltageSource” and it has six fields, namely “amplitude”,
“frequency” and “angle” that refer to the cosine waveform
parameters, “starttime” and “endtime” that define the active
duration time in the network, and “adjacency” which refers to
the location (connection) in the network. It should be noted that
these fields are implemented by two array types for speed
evaluation, namely dynamic and static arrays. The latter is
discussed in section IV. B. , in which “MVector
{nVsine,Float64}” constructs a vector of type Float64 and
length of “nVsine” that represents the number of voltage sources
in the power network. The “adjacencyVsine!” function sets the
locations of these voltage sources in A and “voltageVsine!”
updates their voltages in b. Another example of the high-level
syntax of Julia in implementing parallel computing will be
shown in section IV. D.

Load packages and structures
using SparseArrays,LinearAlgebra,KLU,StaticArrays,
ComponentStructures,ShiftedArrays
Load circuit data from "Test_Case_Data.jld2"
NodeList,Sim,RLC,Vsine,Isine,Trans,TL,SW,Rnon,Lnon,SM,IEEEG1,
PSS1A,ExciterST1= load("TCD.jld2")
Determine the number of each component
nNode=length(NodeList); nRLC=length(RLC);
nVsine=length(Vsine); nIsine=length(Isine);
nTrans=length(Trans); nTL=length(TL);
nSW=length(SW); nRnon=length(Rnon);
nLnon=length(Lnon); nSM=length(SM);
nIEEEG1=length(IEEEG1); nPSS1A=length(PSS1A);
nExciterST1=length(ExciterST1);
Define time-domain function
function timedomainSolution()
 # Build A, x, and b
 A=spzeros(nNode+nVsine+nTrans+nSW+nRnon+nLnon,nNode+nVsine+
 nTrans+nSW+nRnon+nLnon);
 b=zeros(nNode+nVsine+nTrans+nSW+nRnon+nLnon);
 x=zeros(nNode+nVsine+nTrans+nSW+nRnon+nLnon);
 # Fill in A and initialize SM Control
 adjacencyVsine!(nNode,nVsine,Vsine,A);
 adjacencyTrans!(NodeList,Trans,A);
 adjacencySW!(NodeList,SW,A);
 adjacencyRnon!(NodeList,Rnon,A);
 admitanceSM!(NodeList,SM,A);
 admitanceRLC!(NodeList,RLC,A);
 admitanceTL!(NodeList,TL,A);
 initilizecontrolSM!(ExciterST1,PSS1A,IEEEG1,SM,Sim.dt);
 for t in eachindex(Sim) # Sim.tmin:Sim.dt:Sim.tmax
 # Update A, x, and b
 controlSM!(ExciterST1,PSS1A,IEEEG1,SM,Sim.dt)
 nortonSM!(SM,@view(x[1:nNode]),A,@view(b[1:nNode]));
 currentIsine!(Isine,@view(b[1:nNode)],t)
 currentRLC!(@view(x[1:nNode]),@view(b[1:nNode]))
 currentTL!(@view(x[1:nNode]),TL,@view(b[1:nNode]))
 voltageVsine!(Vsine,@view(b[nNode+1:(nNode+nVsine)]),t)
 adjacencySW!(SW,A,t,Sim.dt)
 nortonLnon!(Lnon,@view(x[1:nNode]),A,b)
 nortonRnon!(Rnon,@view(x[1:nNode]),A,b)
 # Find solution
 x = A\b;
 end # for t in eachindex(Sim)
end # function timedomainSolution()
Call time-domain solution
timedomainSolution()

Part of Initialization Stage

Part of Solution Stage

Fig. 1. Julia syntax for parts of initialization and solution stages in the solver
engine.

#update! function is to update the non-zero values of the
Sparse Matrix “C” by The values of Vector "val"
function update!(C::SparseMatrixCSC, val::Vector{Float64})
 rows = rowvals(C)
 for j in axes(C, 2)
 for i in nzrange(C, j)
 C[rows[i],j] = val[rows[i]];
 end
 end
End

#spshiftl shifts the Sparse Matrix “C” to left by n digits
function spshiftl(C::SparseMatrixCSC, n::Int64)
 cnz=C.colptr[n+1]-1
 SparseMatrixCSC{Float64,Int64}(size(C)...,
ShiftedArray(C.colptr,-n, default=C.colptr[end]).-cnz,
 C.rowval[cnz+1:end], C.nzval[cnz+1:end])
end

Update of Sparse Matrix

Left-shift of Sparse Matrix

Fig. 2. Two implemented functions in JSEMT for updating the values of sparse
matrices and shifting their values to the left by n digits.

Define the structure
mutable struct VoltageSource

 amplitude:: Vector{Float64} MVector{nVsine,Float64}
 frequency:: Vector{Float64} MVector{nVsine,Float64}
 angle :: Vector{Float64} MVector{nVsine,Float64}
 starttime:: Vector{Float64} MVector{nVsine,Float64}
 endtime :: Vector{Float64} MVector{nVsine,Float64}
 adjacency::SparseMatrixCSC{Float64,Int64}
end # mutable struct VoltageSource
Define this structure Functions
function adjacencyVsine!(nNode::Int64,nVsine::Int64,

Vsine::VoltageSource,A::SparseMatrixCSC{Float64, Int64})
 @view(A[nNode+1:nNode+nVsine,begin:nNode]) .= Vsine.adjacency
 @view(A[begin:nNode,nNode+1:nNode+nVsine]) .= Vsine.adjacency'
End # function adjacencyVsine!()
function voltageVsine!(Vsine::VoltageSource,voltageVsine::
SubArray{Float64,1,Vector{Float64},Tuple{UnitRange{Int64}},true},
t::Float64)
 voltageVsine .= Vsine.amplitude .* cos.(2 .* Pi .* .* t
 Vsine.frequency .+ Vsine.angle)
end # function voltageVsine!()

Component Composition

Part of Operating Functions

For Dynamic Array For Static Array

Fig. 3. Julia syntax to implement a voltage source component.

IV. SIMULATION CASES
The simulation results of JSEMT are validated by

comparisons with EMTP® [3]. The IEEE 39-bus network is
adopted as a test case [29]. It has 357 nodes, 90 ideal
transformers, 273 RLC branches, 102 transmission lines, 15
ideal switches, 90 nonlinear inductors of nonlinear transformers,
54 loads, and 10 synchronous machines with controls. Each
control includes exciter ST1, stabilizer PSS1A, and governor-
turbine IEEEG1. The network is fully initialized, whereby the
load-flow solution is extracted from EMTP® and the simulation
begins from the steady-state condition. The simulation interval τ
is 600 ms with a time-step Δt = 25µs using the trapezoidal
integration method. A three-phase to ground fault occurs at the
m-end of the transmission Line_16_19 at t = 100ms followed by
an isolation at t = 200ms via breakers BRm and BRk after 6
cycles. The fault is cleared at t = 300 ms and the Line_16_19 is
reconnected at t = 50 ms, as illustrated in Fig. 4.

A. Accuracy Analysis
The three-phase voltage waveforms at the m-end of

Line_16_19 are presented in Fig. 5. As observed, the simulation
starts from steady-state until the occurrence of the fault. It can
be stated here that the results obtained from JSEMT match those
from EMTP®. An accuracy evaluation is shown in Fig. 6 by
calculating the relative errors of voltage waveforms in Fig. 5.

m-end

k-end

Load16

Load21

BRm

CP
+

Lin
e_

15
_1

6

CP
+

Lin
e_

16
_1

9

BRk
CP

+

Lin
e_

14
_1

5
Load15

CP
+

Lin
e_

16
_2

1

B14

B15 B21

B19

B16

SM
PowerPlant_04

A
V

R
+G

ov
-e

xs
t1

-p
ss

1a
-ie

ee
g1

1
2-3

0

Tr
an

sf
or

m
er

SM

B19

100ms|300ms
Fault

Fig. 4. Configuration of the assumed faulted in the IEEE 39-bus network.

600
Time (ms)

-1

0

1

V
ol

ta
ge

 (p
u)

Fault duration

5004003002001000

Va} EMTPVbVc{Va} JSEMTVbVc{

Line_16_19 disconnected

450 470 490

-0.5
0

0.5

Line_16_19 connected

Fig. 5. Voltage waveforms at the m-end of Line_16_19.

Re
la

tiv
e E

rro
r (

lo
g)

0 100 200 300 400 500 600
Time (ms)

10-12
10-10
10-8
10-6
10-4
10-2
100

VaVbVc{ }

Fig. 6. Relative errors of the voltages at the m-end of Line_16_19 by JSEMT.

The magnetization current-flux curve of the nonlinear
inductor of the transformer in PowerPlant_04 near the fault in
the interval of 448-454ms is shown in Fig. 7. As seen, the results
of JSEMT and EMTP are identical with no overshoot or
instabilities at the boundary points of the linear segments.

To check the behavior of the modeled SMs (generators here),
the nearest one to the fault in PowerPlant_04 on B19 is selected,
as seen in Fig. 4. The terminal current waveforms of this
generator’s stator are depicted in Fig. 8. It can be said again that
these results are identical between EMTP and JSEMT.

The operation of the studied SM controls is investigated here
as well. The output of the SM’s exciter that controls its field
voltage fdE changes largely after the fault, as shown in Fig. 9. a.

On the other hand, Fig. 9. b illustrates the output of the
generator’s governor that drives its mechanical power Pmech. The
rotor speed ωr is presented in Fig. 9. c. Although the speed is
increased during the fault, it is regulated to head back to its
reference value of 1pu . All the matched results between JSEMT
and EMTP prove the accuracy of JSEMT.

Fig. 7. Superimposition of nonlinear inductance results in the transformer of
PowerPlant_04, phase-c.

0 100 200 300 400 500 600
Time (ms)

-2

0

2

(a)

(c)

Line_16_19 connectedFault duration

Time (ms)

Cu
rre

nt
 (p

u)
Cu

rre
nt

 (p
u)

Cu
rre

nt
 (p

u)

100 110 120 130 140

-2

0

2

450 460 470 480 490

-2
-1
0
1
2

Ia} EMTPIbIc{Ia} JSEMTIbIc{

(b) Time (ms)

Line_16_19 disconnected

Fig. 8. (a): Terminal current waveforms of SM in PowerPlant_04 (b): close-up
view after the fault occurrence at Line_16_19 (c): close-up view after re-
connection of Line_16_19.

B. Performance Analysis
The performance of JSEMT is compared with EMTP®. This

analysis is carried out on a machine with the following
specifications: Intel (R) Core (TM) i7-10750H CPU, 2.60GHz
2.59 GHz, 6 cores (CPUs), and 32 GB RAM. Three criteria are
introduced for the comparison: the number of solution points in
the time-domain, CPU time for running the simulation, and CPU
time per time-point. As shown in TABLE II, EMTP is faster than
JSEMT by 10.58 times. JSEMT performance improvement is
presented in the following subsections.

C. Techniques to Improve JSEMT Performance
The techniques are applied sequentially on the first version of

JSEMT, which is named hereinafter JSEMT_v1. The improved
versions are named:

1. JSEMT_v2: JSEMT_v1 with StaticArrays library.
2. JSEMT_v3: JSEMT_v2 with KLU library.
3. JSEMT_v4: JSEMT_v3 with KLU fast re-factorization

of A matrix to avoid repeating the symbolic phase.
TABLE II

PERFORMANCE ANALYSIS BETWEEN EMTP AND JSEMT
 EMTP JSEMT_v1

No. of time points 24001 24001
CPU time per time-point (ms) 0.087 0.926

CPU Time (s) 2.10 22.22
Contrary to dynamic arrays, Julia can deal with special types

of vectors and matrices through the “StaticArrays” library that
permits a framework to build statically sized arrays. It can
provide fast implementations for common array and linear
algebra operations and thus can improve computational speed.
Utilizing this type for constructing the component structures (see
Fig. 3) results in having JSEMT_v2, which is faster by 1.2 times
when compared to JSEMT_v1, as listed in TABLE III.

The sparse solution of (1) in the previous versions of JSEMT
is calculated by LU factorization using the backslash function in
the “LinearAlgebra” library in Julia, as shown in Fig. 1. KLU is
another choice of sparse matrix solver that is successfully used
in [28], and it is available in Julia [11]. The updating JSEMT_v2
to include KLU results into JSEMT_v3 and a speedup of 2.75,
as reported in TABLE III.

Since some network models may modify A in the time-
domain loop, JSEMT_v3 must compute the KLU of A at each
modification. This process has several phases, and each one

-250 -200 -150 -100 -50 0

Current (A)

-1000

-800

-600

-400

-200

0

M
ag

ne
tiz

in
g

Fl
ux

 (W
b)

Magnetization Data

EMTP

JSEMT

consumes a certain amount of time. It is noticed that only the
switches as well as the nonlinear inductors and resistors can
modify the non-zero values of A. In other words, the KLU
symbolic analysis phase can be reserved and only the numerical
factorization needs to be updated, i.e., re-factorization of A (Â).
This is implemented in JSEMT_v3 to give JSEMT_v4. The
outcome of this work makes JSEMT_v4 faster than JSEMT_v3
by 2.77, as indicated in TABLE III. As can be seen, the
performance of JSEMT_v4 becomes comparable to EMTP
(TABLE II).

(b)
0 100 200 300 400 500 600

Time (ms)

0.59
0.60
0.61
0.62
0.63
0.64

M
ec

ha
ni

ca
l P

ow
er

 (p
u) } EMTP{ Pmech} JSEMT{ Pmech

0 100 200 300 400 500 600
Time (ms)

0.995
1

1.005

1.01

1.015
1.02

 S
pe

ed
 (p

u) } EMTP{ ωr} JSEMT{ ωr

Ro
to

r

Time (ms)(a)

Fi
el

d
Vo

lta
ge

 (p
u)

} EMTP{ Efd} JSEMTEfd{

(c)
Fig. 9. SM of PowerPlant_04 (a): field voltage (b): mechanical power (c):
rotor angular velocity.

TABLE III
PERFORMANCE SPEEDUP FOR DEVELOPED VERSIONS OF JSEMT

 JSEMT_v2 JSEMT_v3 JSEMT_v4
CPU Time (s) 18.50 6.71 2.42

Speedup 1.20 2.75 2.77
To perform a test with a larger grid, the IEEE-39 network is

independently reproduced 10 times with no connections
between them and hereinafter called the multiplied IEEE-39
network. Although this generated grid is not realistic, it becomes
a test for a grid size with 3704 nodes and 4854 equations. The
resulting CPU time for EMTP is 23.04s while for JSEMT-v4 it
is 26.54s, which shows a good performance for Julia. One reason
behind this is the fact that running the Julia code implies running
a compiled code as explained in the section III. A. This is a
clear advantage of Julia programming.

Note that in the following sections, JSEMT_v4 is considered
the reference simulator for performance comparisons with the
proposed and implemented techniques.

D. Parallelization of The KLU Sparse Matrix Solver
During the KLU symbolic analysis phase, row permutation

rP and column permutation cP matrices are computed. When
transmission lines with propagation delays exist in the simulated
network, these two permutation matrices can transform the A
matrix into a block diagonal form (BTF), in which the blocks are
independent submatrices.

 BTF r c=A P AP (3)
For the IEEE-39 case, 27 blocks are found in the pattern, in
which the smallest block size is 3×3 and the largest one is 75×75.
The latter block constitutes the limiting factor for parallelizing
the solver as it forms a dense network region that does not have
any transmission line. Note that the KLU symbolic analysis
phase to find BTFA is calculated only once. The other two
phases of numerical factorization and solution might need
recalculations, and they can be implemented in parallel during
their repetitive calls within the time-loop. The degree of
parallelization depends on the size of BTFA blocks as well as
the available CPU numbers in each computer. In this article, the
blocks are automatically and evenly distributed according to the
number of CPUs.

There are several libraries and directives in Julia to
implement CPU-based parallelization. After several tests, it was
found that the “@batch per=core” macro in “Polyester” library
is the most suitable one to implement the parallel solver in terms
of higher performance and lower memory allocations. Its
implementation is shown in Fig. 10, as an example of Julia's
syntax to implement a parallel task. The code within the
“@batch” block includes the re-factorization of A (if needed)
and the solution. It is executed in parallel by the pre-defined
number of threads (CPUs): nThreads. Here, /p q is the KLU
right/left permutation vector.

@batch per=core for i = 1:nThreads()
 if ς == true # Switch/nonlinear element
 klu!(KLUfactor[i], A_BTF.nzval[indexRangenzval[i]])
 end #if
 @views(x[q[i]]) .= KLU.solve(KLUfactor[i], copy!(b_work[i],
 @views(b[p[i]])))
End #@batch

Code of Parallel Solver

Fig. 10. Implementation of parallel solver in Julia syntax.

The speedup is listed in TABLE IV, for 10s of simulation time
with Δt = 25µs. When the network is relatively small, the
advantage of solving (1) in parallel is mitigated by the CPU
overheads and the consumed time for mapping between the
individual block arrays and the parent ones. However, the gain
is noticeable in larger networks, as in the multiplied network.
And it reaches the maximum of 1.5 with 3 CPUs.

TABLE IV
SPEEDUP COMPARISON BETWEEN SEQUENTIAL AND PARALLEL SOLVERS

Number
of CPUs

IEEE 39-bus Multiplied IEEE 39-bus
CPU Time (s) Speedup CPU Time (s) Speedup

1 CPU 48.63 - 865.07 -
2 CPUs 46.27 1.05 753.38 1.14
3 CPUs 47.67 1.02 575.01 1.50
4 CPUs 48.14 1.01 596.77 1.44
5 CPUs 54.06 0.89 614.22 1.40

E. Parallelization with component models
This is another parallelization technique, in which the

network is divided into several subnetworks through
transmission lines that can run individually on separate CPUs.
In our work, subnetworks are extracted from BTFA for
determining firstly the nodes that are in the same block, and then,
grouping all component equations that are connected to them. If
the number of these subnetworks is greater than the number of

mailto:Polyester.@batch%20per=core
mailto:Polyester.@batch%20per=core

available CPUs, some of them can be combined to ensure that
each aggregated subnetwork runs on a separate CPU.

This parallelization technique is implemented in Julia via
CPU-based directives, in which the “@threads” macro in
“Threads” library is found to be the most suitable one. The result
speedup by this parallelization utilizing several CPUs is listed in
TABLE V. As seen, the speedup here is higher than the one in
TABLE IV. This is because the parallelization here is not only
applied to the solution of (1), but also on the component
(models) equations. The speedup gains are higher than the
number of CPUs because each code running an aggregated
subnetwork can be cached in a CPU. Moreover, a segment
change in a nonlinear component necessitates iterating the
solution only within its aggregated network.

 TABLE V
SPEEDUP COMPARISON BETWEEN SEQUENTIAL AND PARALLEL NETWORKS

Number
of CPUs

IEEE 39-bus Multiplied IEEE 39-bus
CPU Time (s) Speedup CPU Time (s) Speedup

1 CPU 48.63 - 865.07 -
2 CPUs 44.49 1.09 292.04 2.96
5 CPUs 50.29 0.96 150.88 5.73

V. CONCLUSION
There is an increasing need for the creation of

electromagnetic transient (EMT) simulation tools developed
using modern programming languages that run on high-
performance architectures, employ high-level constructs, and
enable seamless manipulation of data and matrices. Since the
Julia programming language can support these features without
compromising performance, it was used in this article to
implement an EMT simulator, called JSEMT. It was
benchmarked against the EMTP® software and detailed
comparisons proved its accuracy and performance. This paper
serves as the foundation for constructing a comprehensive EMT
simulator using Julia. Future iterations will include an expanded
model library, a variable time-step solver, an adaptative
switching of integration method during runtime, GPU
parallelization, and an optimized CPU parallelization.

VI. REFERENCES
[1] J. Mahseredjian, V. Dinavahi, and J. A. Martinez, "Simulation tools for

electromagnetic transients in power systems: Overview and challenges,"
vol. 24, no. 3, pp. 1657-1669, 2009.

[2] A. Ametani, N. Nagaoka, Y. Baba, T. Ohno, and K. Yamabuki, Power
system transients: theory and applications. CRC Press, 2016.

[3] J. Mahseredjian, S. Dennetière, L. Dubé, B. Khodabakhchian, and L.
Gérin-Lajoie, "On a new approach for the simulation of transients in power
systems," Electric Power Systems Research, vol. 77, no. 11, pp. 1514-
1520, 2007.

[4] J. Mahseredjian, U. Karaagac, S. Dennetière, and H. Saad, "Simulation of
electromagnetic transients with EMTP-RV," Numerical Analysis of Power
System Transients and Dynamics, pp. 103-134, 2015.

[5] J. Mahseredjian, "Simulation des transitoires électromagnétiques dans les
réseaux électriques," Édition Les Techniques de l'Ingénieur, 2008.

[6] A. Masoom, J. Mahseredjian, T. Ould-Bachir, and A. Guironnet,
"MSEMT: An Advanced Modelica Library for Power System
Electromagnetic Transient Studies," IEEE Transactions on Power
Delivery, pp. 1-1, 2021.

[7] J. Mahseredjian and F. Alvarado, "Creating an Electromagnetic Transients
Program in MATLAB: MatEMTP," IEEE Transactions on Power
Delivery, vol. 12, no. 1, pp. 380-388, 1997.

[8] H. C. A. Tavante, B. D. Bonatto, and M. P. Coutinho, "Open Source
Implementations of Electromagnetic Transient Algorithms," in 2018 13th

IEEE International Conference on Industry Applications (INDUSCON),
2018, pp. 825-828.

[9] M. Xiong et al., "ParaEMT: An Open Source, Parallelizable, and HPC-
Compatible EMT Simulator for Large-Scale IBR-Rich Power Grids," in
IEEE Transactions on Power Delivery, vol. 39, no. 2, pp. 911-921, April
2024, doi: 10.1109/TPWRD.2023.3342715.

[10] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, "Julia: A fresh
approach to numerical computing," Society for Industrial and Applied
Mathematics (SIAM) Review, vol. 59, no. 1, pp. 65-98, 2017.

[11] T. A. Davis and E. Palamadai Natarajan, "Algorithm 907: KLU, a direct
sparse solver for circuit simulation problems," ACM Transactions on
Mathematical Software, vol. 37, no. 3, pp. 1-17, 2010.

[12] T. Thummerer, J. Kircher, and L. Mikelsons, "NeuralFMU: towards
structural integration of FMUs into neural networks," arXiv preprint, 2021.

[13] Electrical engineering package in Julia. Sep. 2022. [Online]. Available:
https://github.com/christiankral/ElectricalEngineering.jl

[14] Scalable integrated infrastructure planning initiative at the national
renewable energy laboratory. Sep. 2022. [Online]. Available:
https://github.com/NREL-Sienna

[15] J.D. Lara, R. Henriquez-Auba, M. Bossart, D.S. Callaway, and C. Barrows,
" PowerSimulationsDynamics. jl--An Open Source Modeling Package for
Modern Power Systems with Inverter-Based Resources," arXiv preprint
arXiv:2308.02921, 2023.

[16] F. Milano, "Complex Frequency," in IEEE Transactions on Power
Systems, vol. 37, no. 2, pp. 1230-1240, March 2022, doi:
10.1109/TPWRS.2021.3107501.

[17] A. Plietzsch, R. Kogler, S. Auer, J. Merino, A. Gil-de-Muro, J. Liße, C.
Vogel, and F. Hellmann, "PowerDynamics. jl—An experimentally
validated open-source package for the dynamical analysis of power grids,"
SoftwareX, 17, p.100861, 2022.

[18] C. Coffrin, R. Bent, K. Sundar, Y. Ng and M. Lubin, "PowerModels. JL:
An Open-Source Framework for Exploring Power Flow
Formulations," 2018 Power Systems Computation Conference (PSCC),
Dublin, Ireland, 2018, pp. 1-8, doi: 10.23919/PSCC.2018.8442948.

[19] O. Wallscheid, S. Peitz, J. Stenner, D. Weber, S. Boshoff, M. Meyer, V.
Chidananda, O. Schweins, "ElectricGrid.jl -A Julia-based modeling and
simulation tool for power electronics-driven electric energy grids," Journal
of Open Source Software, 8(89), 5616, 2023

[20] X. Yan, Q. Wang, Z. Zhong, T. Ren, and K. Wang, "Julia-based high-
performance electromagnetic transient simulation method and platform for
large power grid," in 2021 6th Asia Conference on Power and Electrical
Engineering (ACPEE), 2021, pp. 252-257.

[21] Electromagnetic transients program, Nov. 2022. [Online]. Available:
https://www.emtp.com/

[22] J. Mahseredjian, L. Dube, M. Zou, S. Dennetiere, and G. Joos,
"Simultaneous solution of control system equations in EMTP," IEEE
Transactions on Power Systems, vol. 21, no. 1, pp. 117-124, 2006.

[23] U. Karaagac, J. Mahseredjian, and O. Saad, "An efficient synchronous
machine model for electromagnetic transients," IEEE Transactions on
power delivery, vol. 26, no. 4, pp. 2456-2465, 2011.

[24] IEEE, "IEEE recommended practice for excitation system models for
power system stability studies," pp. 1-207, 2016.

[25] I. Balbaert, Getting started with Julia. Packt Publishing Ltd, 2015.
[26] Static array package in Julia. Sep. 2022. [Online]. Available:

https://github.com/JuliaArrays/StaticArrays.jl
[27] Data visualizations package in Julia. Sep. 2022. [Online]. Available:

https://www.analyticsvidhya.com/blog/2021/05/data-visualizations-in-
julia-using-plots-jl-with-practical-implementation/

[28] A. Abusalah, O. Saad, J. Mahseredjian, U. Karaagac, and I. Kocar,
"Accelerated Sparse Matrix-Based Computation of Electromagnetic
Transients," IEEE Open Access Journal of Power and Energy, vol. 7, pp.
13-21, 2020.

[29] A. Haddadi and J. Mahseredjian, "Power system test cases for EMT-type
simulation studies," CIGRE, Paris, France, Tech. Rep. CIGRE WG C, vol.
4, no. 2018, pp. 1-142, 2018.

https://github.com/christiankral/ElectricalEngineering.jl
https://github.com/NREL-Sienna
https://www.emtp.com/
https://github.com/JuliaArrays/StaticArrays.jl
https://www.analyticsvidhya.com/blog/2021/05/data-visualizations-in-julia-using-plots-jl-with-practical-implementation/
https://www.analyticsvidhya.com/blog/2021/05/data-visualizations-in-julia-using-plots-jl-with-practical-implementation/

	I. Introduction
	II. Formulation of Network Equations
	A. Component Types and Models

	III. Implementation of JSEMT
	A. Advantages of Julia Programming Language
	B. Configuration of JSEMT
	C. Building TCD
	D. Solver Engine
	E. Component Structures

	IV. Simulation cases
	A. Accuracy Analysis
	B. Performance Analysis
	C. Techniques to Improve JSEMT Performance
	D. Parallelization of The KLU Sparse Matrix Solver
	E. Parallelization with component models

	V. Conclusion
	VI. References

