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Abstract—The proliferation of converter-based renewable
energy sources is expected to cause a significant reduction in the
inertial support normally provided by conventional synchronous
generators. Although grid-forming control strategies allow for
inverters to provide inertia support, the extent of this support
depends on the converter ratings and controller parameters,
which are often black-boxed by the equipment manufacturers.
Therefore, it is important for system operators to assess the
available inertia capability of the system. A pragmatic solution
proposed in the literature is to estimate the inertia characteristics
of such converters using probing signal injections. This approach
uses the steady-state deviations in active power and virtual
speed due to probing voltage/current injections. However, the
virtual speed signal is often an internal variable in a black-boxed
controller and not externally available due to proprietary
issues. The proposed approach provides a practical solution
for evaluating the inertia characteristics of converter-based
systems without requiring access to internal variables such as
the virtual speed signal. It proposes a new algorithm that
obtains a measurement of frequency by passing the measured bus
voltage waveform through a Phase-Locked Loop (PLL). Detailed
Electro-Magnetic Transient (EMT) simulations are presented to
validate the applicability of the proposed approach.

Keywords—Inverter-based Resources (IBRs), Online inertia
measurement, Electromagnetic transient (EMT) simulation,
Virtual Synchronous Generator, Grid Forming Control.

I. INTRODUCTION

Modern power systems are undergoing rapid transitions
towards renewable energy resources, such as wind and solar
energy-based generation, to replace conventional synchronous
generators. Voltage Sourced Converters (VSC) have become
the popular choice for these cases because of their ability to
precisely control the power flow in the network. However,
the reduction of conventional synchronous generators will
reduce the inherent inertia provided by these systems. This
is important because the overall inertia is a measure of the
ability of the system to resist sudden changes in the system
frequency due to generation-load imbalances. To address
this issue, grid-forming (GFM) control strategies [1], [2]
such as Droop-based GFM [3]-[5] and Virtual Synchronous
Generator (VSG) [6]-[9] have been developed to replicate the
characteristics of synchronous generators to offer inertia.

Inertia estimation methods can be broadly categorized into
four main types: dispatch-based, event-based, ambient-based,
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and probing-based [10]. Dispatch-based methods [11] utilize
Energy Management System data to aggregate the inertia
contributions of all dispatched synchronous generators.
However, they do not consider the inertia contributions of
IBRs, which are becoming an important component in modern
grids. Event-driven inertia estimation methods [12]-[14]
utilize recorded events from wide-area monitoring systems.
The system inertia is estimated based on the knowledge of the
event and the initial Rate of Change of Frequency (RoCoF)
calculated from measurements [15], [16]. However, accurately
estimating RoCoF is complex, requiring signal processing to
filter frequency measurements [17], [18]. Additionally, these
methods are dependent on the occurrence of major events and
their accurate information. Therefore, these methods are not
suitable for real-time monitoring of system inertia.

To address these limitations, ambient measurement-based
and probing-based inertia estimation methodologies have
been proposed in the literature. Ambient measurement-based
methods [19], [20] rely on identifying the system model
between load changes and frequency variations using the
ambient noise behaviour in active power and frequency
measurements. The system inertia is then estimated based on
the step response of the identified model. However, accurately
extracting ambient noise from the measurements is challenging
and therefore, affects the accuracy of the estimated inertia.
Unlike ambient-based methods, probing-based methods
actively inject excitation signals into the system and attempts
to identify a linear system model between the probing input
and the measured outputs [21], [22]. Data pre-processing
techniques, such as filtering and down-sampling, are necessary
to refine the measurements. A significant concern is that these
methods often require careful design of excitation signals to
ensure accurate parameter estimation.

A recently introduced probing-based approach is presented
in [23], in which the inertia is estimated from the steady-state
active power and virtual speed to determine deviations due to
sinusoidal voltage/current injection of a certain frequency. This
approach has been tested for the classical model of generators
and IBRs emulating classical generator models. To estimate
the inertia contribution of grid-forming IBRs, the emulated
electrical frequency in the converter controller is used in [23].
A limitation of this approach is its inherent dependence on the
converter internal speed signal, which may not be available
if the controller has been provided by the manufacturer in a
"black-boxed" form, i.e., the internal structure and parameters
are not accessible. Although the use of nearby synchronously
connected generators has been proposed to estimate the
virtual speed deviation for grid-following converters, this



is particularly challenging when the inertia capability of
asynchronously connected converters needs to be estimated.

Motivated by these concerns, this paper investigates the
applicability of the bus voltage frequency signal as a
suitable replacement of the virtual speed signal which is
externally accessible and eliminates the need for proprietary
internal signals for calculating the inertial characteristics
of converter-based systems. This distinction makes our
method particularly valuable for black-boxed commercial
controllers and asynchronously connected converters. The
probing signal injection can be used as an excitation to
the system. The inertia of the IBR/synchronous generator
under test is then estimated using the measured active
power and the bus frequency at its terminals. This scheme
alleviates the need to access the converter internal speed
signal. The bus frequency can be measured using a Phase
Locked Loop (PLL), whose bandwidth must be sufficiently
high to capture the steady-state deviations accurately in the
frequency range of interest. Using the well-known classical
model of synchronous generators, the paper first derives the
analytical relationship to understand whether the bus frequency
deviations can replicate the behavior of the rotor speed
signal accurately. These analytical results are validated using
detailed Electro-Magnetic Transient (EMT) simulation studies
involving synchronous generators and IBRs endowed with
synchronous generator characteristics. The simulation results
indicate that the proposed scheme gives accurate results for
appropriate injection frequencies.

II. PROBING SIGNAL BASED INERTIA MEASUREMENT

The electro-mechanical dynamics of a synchronous
generator are characterized by its inertia constant H, which
is a measure of the stored kinetic energy in its rotating mass.
This stored energy helps to impede frequency changes during
disturbances such as sudden changes in power generation
or consumption. The electro-mechanical dynamics of the
classical model of a synchronous generator can be represented
using the well-known “swing” equation, as given in (1).
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where 6 and w, denote the electrical angle (with respect
to a reference axis) and the electrical speed of the rotor,
respectively. The variables w, and wp denote the steady-state
electrical frequency of the system (in rad/s) and the base
frequency (in rad/s), respectively. 7,, and 7. represent
the mechanical torque and electrical torque (in per unit),
respectively, and D denotes the damping of the machine. Since
the synchronous generator frequency is usually very close to
the steady-state frequency (i.e. w, =~ w,), then T}, and T,
can be substituted by the mechanical power P,, and electrical
power P, of the machine respectively, in per unit.

For small-signal analysis, the system can be linearized about
the quiescent operating point. The mechanical power can be
assumed to be constant since the associated turbine is much
slower compared to the electrical power variations. Therefore,

the transfer function between the electrical power deviation
AP,(s) and the speed variation Aw,(s) of a synchronous
machine is as follows:

Aw,(s) -1

APE(S) = %S+D (2)

At a certain frequency s = j(2, the frequency response satisfies
the following relationship.

wB |APe(]Q)| _
20| A, (92

Note that (3) refers to the frequency response of the
synchronous machine when excited by a modulating signal
of frequency (). This can be achieved either by injecting a
small amplitude modulating voltage V}, or a current signal I},
of frequency €, = (w, —§2), as shown in Fig. 1. The injected
voltage and/or current signals are in superposition to the
quiescent voltage and/or current sources in the circuit (usually
50/60 Hz) and therefore should be small enough to avoid
non-linearities in the response.
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Fig. 1. Probing frequency injection (a) Voltage injection (b) Current injection

For synchronous machines, D is usually very small and
therefore, the inertia estimate H,, calculated using (3) gives
the inertia constant with reasonable accuracy i.e. H,, ~ H.
If the damping term D is not negligible, the inertia constant
H can be calculated accurately by doing two independent
measurements at two different injection frequencies [23]. If the
measured inertia is H,,; at an injection frequency of f; Hz,
and the inertia measurement is H,,s at injection frequency
f2 Hz, then the inertia H can be calculated as follows [23]:

D2w? D?w?
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Hp = H 4(2rAf1)2’ Hopp = H™ 421 Af5)2
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where Afy = (f, — f1) Hz, Afs = (f, — f2) Hz and
w

fo = =2 Hz. In practice, the terminal voltage of the machine
is regu?a?ed using an automatic voltage regulator [24]. The
injection of a probing “voltage” signal at the terminals (point
of voltage regulation) of the machine creates an inconsistency,
resulting in an erroneous inertia measurement.

Mlustrative Example: A 100 MVA, 15 kV synchronous




generator is connected to a 132 kV three-phase ac source
through a 15/132 kV transformer, whose parameters and the
quiescent operating condition are shown in Fig. 2. To test this
probing frequency injection method, the system is simulated
at this operating point in an EMT program [25]. The inertia
measurement is done using the current injection method, with
a current source of magnitude I;, = 0.05 kA.
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Fig. 2. Schematic for inertia measurement of synchronous generator

The inertia measurement is done for different values of
the mechanical damping and for different quiescent operating
conditions. To account for the effect of the damping, the
inertia is calculated using two different frequencies, as given
in (4). These results are reported in Table I along with the
combination of injection frequencies.

TABLE I
INERTIA MEASUREMENT FOR CLASSICAL GENERATOR MODEL

Second injection frequency (A f2 in Hz)
Dampin Quiescent

(in pu/I;ad%s) power (Pp) 0.2 Hz 1 5 10 20
0.1 pu 2.99 299 | 299 | 2.99 3.00

D = 0.026 0.5 pu 2.99 299 | 299 | 2.99 3.00
0.9 pu 2.99 299 [ 299 | 2.99 3.00

0.1 pu 3.00 299 | 299 | 2.99 3.00

D = 0.053 0.5 pu 3.00 299 | 299 | 2.99 3.00
0.9 pu 3.00 299 | 299 | 2.99 2.99

For all cases, the first injection frequency was Af; = 0.5 Hz.

As an illustrative example consider the case with damping
D =0.026 pu/rad/s and active power P, = 0.9 pu. The injected
frequency components are fr; = 59.5 Hz and fro = 59 Hz
ie. Aff = 0.5 Hz and Af, = 1 Hz. In steady-state,
for Afi, the amplitudes of the active power deviation is
|AP.1(j2)] = 0.00008 pu and the rotor speed deviation
is |Awr1(52)] = 0.00141 rad/s. Similarly, with injection
frequency Af; we obtain |AP.(j2)] = 0.00041 pu and
|Awr2(7€2)] = 0.00395 rad/s. The inertia values are calculated
using (3) as follows.

wp X |AP.1(59)|
2% 27 x AF) (Do ()]
wp X |AP62(jQ)|
2 x (21 X Afa) [Awra(5Q)]
The inertia constant H is evaluated from these measurements
using (4) and is given as follows.

H,y = =339

Ho = =3.10s
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The inertia measurement approach uses the steady-state
variations in the generator rotor speed due to the external

=2.99 s

injections. However, this necessitates that the inertia of
every generator needs to be evaluated separately and
the generator rotor speed measurements be available. For
grid-forming IBRs emulating classical model characteristics,
this approach will require access to the emulated virtual
speed. This is particularly challenging since real-life IBR
controllers are usually black-boxed by the manufacturers.
An alternative signal to the virtual speed can be the bus
voltage frequency, which can be directly obtained from the
network measurements. The following section investigates the
applicability of the bus frequency measurement instead of the
virtual speed for inertia estimation.

III. MODELLING OF BUS FREQUENCY MEASUREMENT
SCHEME FOR INERTIA ESTIMATION

An important aspect that needs to be analyzed is how to
measure the bus frequency. One of the ways to measure the
frequency of the measured voltage signal is to use a Phase
Locked Loop (PLL). However, it is important to understand
how the PLL affects the accuracy of the bus frequency
measurement, which in turn affects the inertia measurement.
For three-phase voltage measurements, the D-Q based PLL is
a suitable choice and is analyzed here.

The block diagram of a three-phase D-Q based PLL is
shown in Fig. 3. The D-Q transformation in (5) transforms
the a-b-c variables to the D-Q-o variables, and v = w,t + &,
& being an arbitrary constant.

vD cos(y)  cos(y = Z)  cos(y+ H) v,
vQ | = \/g sin(y) - sin(y = 55)  sin(y + 55 | op | )
Vo ﬁ ﬁ 7 Ve

The frequency used in the D-Q transformation w, is taken
to be the prevailing steady-state frequency so that the D-Q
variables are constants in the steady state.

The PLL consists of a low-pass de-noising filter to mitigate
noise and other high-frequency components in the voltage
measurements and provide a clean reference for the PLL [26].
The filtered D-component is then regulated using a P-I
controller, whose output determines the measured frequency
wp,. The following analysis derives the small-signal model of
the PLL shown in Fig. 3 to understand the dynamic behavior
of the PLL.
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Fig. 3. Schematic of three-phase PLL

Consider the voltages at the PLL input be given as follows.

Vg (%) 5 sin(wot + @)
up(t) | = \/> x V x |sin (wot + ¢ — 2F) (6)
V() 3 sin (wot + o+ %ﬂ)



The D-Q components are generated using the PLL angle ~.
At equilibrium, the PLL will lock on to the input voltage
waveforms, and therefore the equilibrium value of w,, will
be w,. The D-Q voltages can then be written as follows.

vp = Vsin(gp — &), vg =Veos(p — &), y=wot +& (7)

It is easy to verify that at the equilibrium point, £, = ¢,,
where ¢, is the equilibrium value of the voltage phase angle.
The small-signal model of the PLL at this operating point can
then be represented as follows.

Axd -1 0 A Al‘d Yo O
d T T T A
A€ K, K, 0 A 0o of v

The frequency response of the system between the input A¢
and the output A¢ can then be written as follows.

- (SKP + Kz)
Alls) = s2(1+ sT) + sK, + K;

The frequency Aw,, and the bus frequency Aw are related to
the PLL output angle £ and the bus voltage angle ¢ as follows.
dA¢ dA¢
Aw,, = o Aw=—p O]
The overall PLL. model between the measured frequency w,,
and the input signal frequency w can then be obtained by
substituting (9) in (8) and can be written as follows.

Ag(s) @®)

- (sK, + K;)
Awp(s) = $2(1+ sT) + sK, + K; Aw(s) (10)
= Guu(s) = Awp(s) (sF8y 1K)

Aw(s)  s2(1+sT) + sK, + K;

For accurate inertia estimation, the PLL parameters must be
carefully chosen so that the frequency response of the PLL is
close to 1/0° in the injection frequency range.
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Fig. 4. Frequency response of three-phase PLL parameters

To demonstrate the accuracy of the estimation, the following
PLL parameters are chosen: K, = 20,K; = 500, and
T = 0.001 s. The frequency response of the PLL, denoted
by Gpu(s) in (10), is shown in Fig. 4 to determine whether
the PLL has sufficient bandwidth to accurately measure the
steady-state frequency deviations. Note that the selected PLL
parameters are appropriate for measurement up to about 1 Hz,
which is sufficient for the proposed scheme.

To verify this, the PLL is connected to a balanced
three-phase voltage source of nominal frequency 60 Hz. The

source frequency is modulated by a small-amplitude signal,
which is given as: f(t) = 60+ 0.05 x sin(27 x Af x t) Hz.
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Fig. 5. Steady-state behaviour of PLL frequency measurement

The PLL output along with the source frequency is shown
in Fig. 5 for two different modulating frequencies of 0.1 Hz
and 0.5 Hz. As expected from the frequency response,
these PLL parameters can accurately capture the steady-state
perturbations in the input voltage frequency signal. Using
this approach, the following section presents the relationship
between the bus frequency and the rotor speed of the classical
model of a synchronous generator.

IV. BUS FREQUENCY-BASED INERTIA MEASUREMENT OF
CLASSICAL GENERATOR MODEL WITH PROBING SIGNAL

The electro-mechanical dynamics of the classical model of
a synchronous generator is shown in Fig. 6. Note that x,
denotes the equivalent impedance of the system, including
the generator internal impedance z; and the external network
impedance z;. The generator internal voltage F, is constant
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Fig. 6. Schematic of classical generator connected to infinite bus

for the classical model. The electro-mechanical dynamics of
the classical generator model are defined as follows.
dé
at = (W — WO)
2H dw,
wp dt

E /6 — jag(iq + jip) = vg + jup

(1L

+ D (wy —wo) =T — (Vpip +v0iQ)

Note that H and D denote the inertia constant and the
equivalent damping of the generator. The equilibrium values
are denoted by the subscript o e.g. (, is the equilibrium value
of the variable (. Without loss of generality, it is assumed that
the equilibrium values of the terminal voltages are vg, = V,
and vp, = 0. This can be arranged by aligning the D-Q
transformation angle with the quiescent terminal voltage phase



angle. The dynamical model given in (11) is linearized around
the equilibrium point and can be written as follows.

d{Aé}— VEO (85) ! [A(S}—i—
e e (12)

VoEg O 0 A'UD
Mz, [cos(d,) —sin(d,)| |Avg

where M = % The probing signal I;, will cause steady-state
perturbations of the injection frequency in the input signals
Awvp and Avg. The D-Q components of the voltage are related
to their respective polar components as follows.

vp = Vsin(¢), vg = V cos(¢) (13)

Linearizing, we get

Avp] . [As AV
|:A’UQ:| = VD |:AVn:| 5 AVn = 77A9 = A()Jdt (14)

o

where Aw denotes the bus frequency deviation. Applying
Laplace transform in (12) and substituting (14), we get

VoEg cos(d,)
= A
Muxzys? + Dxgs + V,E4 cos(d,) w(s)

A(s)
B VoEgsin(d,)
Muzgs? + Dxgs + VoEg cos(6,)

The deviation in bus frequency Aw is related to the rotor
speed deviation Aw, through the transfer function A(s).
Note that if the internal reactance of the model were small,
ie., r4 ~ 0, then A(s) = 1, indicating that the terminal
voltage frequency deviation would be a good approximation
of the rotor speed deviation. This substitution ensures that
our proposed method remains robust even when direct rotor
speed measurements are unavailable. This is illustrated with
the following numerical case study.

Aw,(s)

AV, (s)

A. Numerical Case Study

Consider a synchronous generator connected to an infinite
bus through an external impedance, as given in (11). The
equilibrium values of the terminal voltage V, and the internal
voltage F/; are both 1 pu. The steady-state frequency f, is
60 Hz and the classical model parameters are H = 3 s
and D = 0.5 pu/rad/s. The transformer leakage reactance is
2; = 0.1 pu and the generator is injecting 0.8 pu active power
into the network. The frequency response of A(s) is plotted
in Fig. 7 for different values of z/,. Note that the frequency
response of the transfer function A(s) is approximately 1/0°
for frequencies less than 0.4 Hz for both values of z/,.
However, at higher frequencies, the deviation is much larger
for higher /;, indicating that the rotor speed deviations may
not be accurately captured in the bus frequency measurements.
The bandwidth of the PLL and the frequency range of the
injected signal should therefore cover the frequencies over
which A(s) ~ 1.

To validate this, the classical model-based system is
simulated in an EMT platform and the system is probed with
a current injection as shown in Fig. 1 using the approach
described in Section II. The PLL parameters selected here are
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Fig. 7. Frequency response of A(s) for different values of z’d

as follows: K, = 20, K; = 500,T = 0.001 s. The injection
frequency is Af = 0.3 Hz, and the steady-state waveforms
of the generator terminal voltage frequency w and the rotor
speed w, are shown in Fig. 8 for different values of x7,.
As expected, the mismatch is quite significant when 2/, is
higher, which will cause the inertia estimation to be inaccurate.
To overcome this limitation, a compensation strategy for the
internal impedance is proposed, which is now explained.
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Fig. 8. Comparison of terminal voltage frequency and rotor speed waveforms
for classical synchronous machine model

B. Internal Impedance Compensation

Since the phase angle of the internal voltage § of the
classical model relates to the rotor angle, it is expected that the
electrical frequency of the internal voltage E; can accurately
capture the behavior of the rotor speed signal w,. Although
the internal voltage is not measurable, the internal voltage
can be calculated using the terminal voltage and current
measurements, as given in (16).

Eyo +jEgp = v + juip —|—j332l(iQ —|—jiD) (16)

The D-Q components of the voltages and currents are
calculated using the D-Q-o transformation given in (5). The
D-Q components of the internal voltage are then converted
back to the phase variables and are given as inputs to the PLL,
as illustrated in Fig. 9. The frequency of this signal (measured
using a PLL) is then used for inertia measurement, as
described in Section II. To ensure that the internal voltage I,
is obtained appropriately w.r.t. the terminal voltage, the D-Q
transformations are done with the same transformation angle ~y
as shown in Fig. 9. The frequency of the transformation is



taken to be the steady-state frequency i.e. 60 Hz. The accuracy
of this approach is verified with the following case study.
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Fig. 9. Schematic of internal voltage measurement approach

The inertia estimation is done with and without
compensating for the internal impedance of the generator with
x’d = 0.8 pu. As described earlier, the inertia is measured
using two different injection frequencies. The measured
inertia values for different injection frequencies are reported
in Table II. As expected, there is a significant error in the
inertia measurement at higher loading levels when the internal
impedance compensation is not done. However, with the
compensation, the inertia estimation is quite accurate.

TABLE I
INERTIA MEASUREMENT FOR CLASSICAL GENERATOR MODEL

Injection frequency (A f2 in Hz)
Compensation Quiescent

included? power (Po) 0.1 0.25 0.3 0.4 0.5
0.1 pu 299 | 296 | 296 | 2.94 | 2.92

Yes 0.5 pu 299 [ 296 | 296 | 294 | 2.92

0.9 pu 298 | 296 | 296 | 2.94 | 2.92

0.1 pu 3.1 3.14 | 3.16 | 322 | 3.29

No 0.5 pu 314 1 317 | 321 | 327 | 3.35

0.9 pu 332 | 339 | 341 | 347 | 3.56

For all cases, the first injection frequency was A f; = 0.2 Hz

The results presented in this section are useful to understand
the behaviour of the classical model of synchronous
generators and, therefore, also for inverters emulating such
characteristics. The following section presents the inertia
estimation of grid-forming inverters emulating classical
synchronous generator models, commonly referred to as
“Virtual Synchronous Generators” (VSG).

V. INERTIA MEASUREMENT OF GRID-FORMING
INVERTERS WITH VSG CONTROL

The higher bandwidth of power-electronic converters
allows to emulate the dynamics of conventional synchronous
machines, also known as the VSG control strategy. The control
structure of a VSG is illustrated in Fig. 10. The swing equation
in (1) is implemented in the power synchronization loop. The
emulated angle € is used as the reference angle for the voltage
and current control loops of the VSC inverter. In addition
to these components, the controller also includes overcurrent
limiters to prevent excessive fault currents.

The schematic of the power circuit of a two-level VSC
with VSG-based control is shown in Fig. 11. The inverter
is connected to an LCL filter to filter out the switching
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Fig. 10. VSG control structure

frequency components. The converter is interfaced to the
external ac system through a step-up transformer at the Point
Of Interconnection (POI), as shown in the figure. The voltage
and current measurements V; and I, respectively, are used by
the controller to generate the switching pulses.
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Fig. 11. Power circuit schematic of VSC-based inverter

The inertia measurement approach described in Section II
is utilized to measure the inertia capability of VSG-based
converters in [23]. The steady-state deviations in the measured
active power P, and the frequency of the internal voltage is
used instead of the converter speed signal w,sy to estimate
the emulated inertia H. Although the VSG could have
different parameters from the real synchronous generator, their
structures and transfer functions are the same. Therefore,
the treatment used for the classical generator models in the
previous section can directly be extended to the VSG case.

The proposed approach uses the fundamental relationship
between power and frequency to estimate inertia and applies
to any control mode or type of converter e.g., GFM, Grid
Following (GFL), etc. Any control method that changes the
power order as a function of frequency affects the virtual
inertia and can be detected by this method. Since the approach
is based on steady-state measurements, the inertia estimation
is not expected to be influenced by over-current limiting
strategies such as virtual impedance compensation [27],
[28], which is primarily active during short-circuit faults
and overload conditions. Although experimental results are
presented here for specific control modes, the proposed method
is versatile and can be applied to other control modes as well.

Since the converter control regulates the low voltage side



of the transformer V;, this voltage is analogous to that of
the internal voltage F, of a classical synchronous machine.
Therefore, the frequency of this “internal” voltage can serve
as a better representative of the converter speed signal w, 4.
As a straightforward extension of the approach presented in
the previous section, this internal voltage can either be directly
measured or can be obtained using the compensation approach
presented earlier. The frequency of this internal voltage can
be measured using the PLL, which is used for the inertia
measurement. The accuracy of this approach is now presented
using a numerical case study.

Case Study: A two-level 200 MVA, 230 kV VSG is
considered here. The circuit parameters of the VSG along
with the controller parameters are given in Table III. The
VSC converter is connected to a 230 kV ac system. The
emulated inertia constant and damping are H = 3 s and
D = 0.05 pu/(rad/s), respectively. For the inertia estimation,
a probing current signal of magnitude 0.02 kA is applied at
the POI. The inertia is first calculated for different quiescent
operating conditions using the virtual speed signal w,s, and
is given in Table IV. Since D # 0, the inertia is calculated
using two injection frequencies as explained in Section II. As
expected, the converter virtual speed signal provides a very
accurate estimate of the emulated inertia constant.

TABLE III
VSG CONVERTER SYSTEM PARAMETERS
Converter reactance (xf) 0.335 mH
Filter capacitance (C'f) 700 pF
Converter transformer 737 winding voltage 0.69/13.8 kV
Converter transformer 74 leakage reactance (zr1) 0.0375 pu
Converter transformer 77 rating 200 MVA
POI transformer winding voltage 13.8/230 kV
POI transformer 75 rating 200 MVA
POI transformer 7> leakage reactance (zr2) 0.125 pu
Network reactance (zr,) 0.014 pu
DC link voltage 1.45 kV
Voltage loop controller gains (Kyvp, Kyi) (10,10)
Current loop controller gains (Kp, Ki;) (0.5,100)

TABLE IV
INERTIA MEASUREMENT OF VSG CONVERTER WITH wysg SIGNAL
Second injection frequency (A f2 Hz)
Damping Quiescent
(in pu/radls) apparent power | 0.3 | 0.4 | 0.6 | 0.7 0.8
(P +jQo)

0.1 pu 3.03 | 3.02 | 3.01 | 3.00 3.00

D =0.05 0.5 pu 3.02 1299 ]296 | 296 2.95
0.9 pu 2.88 ] 2.88 | 2.87 288 2.88

(0.25+ 50.5) pu | 3.04 [ 3.02 | 3.00 | 2.99 2.98

(0.74 70.25) pu | 2.97 [ 295 2.93 | 2.93 2.92

For all cases, the first injection frequency was A f; = 0.5 Hz.

To evaluate the accuracy of the bus frequency-based
approach, the bus voltage and current are measured, as shown
in Fig. 11. The frequency of the terminal voltage are measured
by the PLL and is used for inertia measurement (without
internal impedance compensation). The PLL parameters are:
K, = 10,K; = 500,Ty = 0.001 s. The calculated inertia
values for different operating scenarios are shown in Table V.
The steady-state deviations in the internal voltage are then

calculated by compensating for the impedance zr;. The
frequency of this signal is then measured using the same
PLL. The estimated inertia (for same D and H values)
with the PLL-based frequency measurements (along with
the relative errors) are presented in Table VI for the same
operating conditions. Comparing the results of Tables V
and VI, the internal impedance compensation improves the
inertia estimate, as was indicated in Section IV. An interesting
observation is that the inertia estimate is more accurate when
the VSC operates at a higher power injection level. The
accuracy of the measured inertia is acceptable when the
injection frequency is up to about 1 Hz, which is within the
bandwidth of the PLL.

TABLE V
INERTIA MEASUREMENT OF VSG CONVERTER WITH BUS FREQUENCY
(WITHOUT INTERNAL IMPEDANCE COMPENSATION)

Quiescent power injection (P, + jQo) pu
Injection (0.1+ | (0.54 | (0.9+ | (0.25+ | (0.7+
(Afs Hz) J0) Jj0) J0) J0.5 | j0.25)
0.3 Inertia (s) | 3.49 33 2.82 3.42 3.14
’ Error (%) | 16.3 10 6 14 4.66
0.4 Inertia (s) | 3.47 3.27 3.0 3.4 3.14
’ Error (%) | 15.7 9 0 13.3 5
0.6 Inertia (s) | 3.48 3.27 3.04 3.4 3.15
’ Error (%) 16 9 1.33 133 5
07 Inertia (s) | 3.48 3.28 3.05 3.41 3.19
’ Error (%) 16 9.33 1.66 13.6 6.33
0.8 Inertia (s) | 3.29 3.29 3.07 3.42 32
’ Error (%) | 9.66 | 9.66 2.33 14 6.66
For all cases, the first injection frequency was A f; = 0.5 Hz

TABLE VI
INERTIA MEASUREMENT OF VSG CONVERTER WITH BUS FREQUENCY
(WITH INTERNAL IMPEDANCE COMPENSATION)

Quiescent power injection (P, + jQo) pu
Injection (0.14 | (0.5+ | (0.94 | (0.254 | (0.7+
(Afz Hz) J0) J0) J0) J0.5 | 40.25)
0.3 Inertia (s) | 3.33 3.15 2.84 3.27 3.02
’ Error (%) 11 5 5.33 9 0.66
0.4 Inertia (s) | 3.29 3.12 | 2.86 3.23 3.00
’ Error (%) | 9.66 4 4.66 7.66 0
0.6 Inertia (s) | 3.24 | 3.07 2.85 3.18 2.97
’ Error (%) [ 2.33 5 6 1
0.7 Inertia (s) | 3.21 3.04 | 2.85 3.15 2.94
: Error (%) 7 1.33 5 5 2
0.8 Inertia (s) | 3.18 3.01 2.81 3.12 2.92
’ Error (%) 6 0.33 6.33 4 2.66
For all cases, the first injection frequency was Af; = 0.5 Hz

Effect of variation in operating conditions: To verify the
accuracy of the inertia estimation during change in operating
condition, the active power reference of the GFM converter
of the test system is increased. Fig. 12 illustrates this point
by considering the case where a power order change from
0.1 to 0.2 pu is applied at ¢ = 7.1 s as shown by Fig. 12
(a). The injected power follows the reference input and the
steady-state power waveform has an oscillatory component,
whose frequency is same as that of the injection frequency
for inertia measurement. After a short period (approximately
4 s), the estimated inertia value stabilizes and converges to its
pre-disturbance value, as shown in Fig. 12 (b).
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Fig. 12. Effect of active power Change on inertia estimation

VI. CONCLUSIONS

This paper presents a probing-based inertia measurement
approach using the bus frequency signal for grid-forming
inverters  emulating  virtual = synchronous  generator
characteristics. The frequency of the internal voltage
provides an accurate estimation of the virtual speed, thereby
improving the accuracy of the inertia measurement. The
steady-state deviations in the bus frequency signal are utilized
to calculate the emulated inertia of these inverters. A major
advantage of the proposed approach is that it can be applied
even when only black-boxed models of the IBR are available.
Although earlier approaches utilizing controller signals can
provide very accurate inertia measurement (< 3% error),
they rely on the availability of controller internal signals.
The proposed approach also provides reasonably accurate
inertia estimation (< 5% error except for very low loading
conditions). This validates the practicality of our approach,
particularly in cases where proprietary constraints prevent
access to converter internal signals. EMT-based numerical
case studies are presented to validate the accuracy of the
proposed approach.
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