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Abstract—Traveling-wave line models, such as the ULM, are 

widely used in time-domain EMT simulations for power systems. 
These models require the rational approximation of both the 
characteristic admittance matrix 𝐘𝐘𝐜𝐜, and the propagation matrix 
𝐇𝐇. Rational fitting of 𝐇𝐇 is challenging due to the inclusion of a 
mix of modal delays in all its elements. These delays must 
therefore be identified and extracted before proceeding to 
calculate the rational approximation. This paper proposes a new 
iterative method to estimate time delays employing all-pass filters 
and delay equalizations. Unlike other currently used methods, the 
one proposed here ensures causality and minimum-phase 
features in the synthesized 𝐇𝐇  model. Three test cases are 
included: 1) a synthetic transfer function, 2) a system of 
underground cables, and 3) the EMT response of an aerial line. 
The obtained results show that the proposed method maintains 
causality while achieving similar accuracies with fewer iterations 
compared to a state-of the art method based on rms-error 
minimization. 
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I.  INTRODUCTION 
HASE-DOMAIN line models, such as the Universal Line 
Model (ULM) [1], are widely used in the time-domain 

(TD) simulation of electromagnetic transients (EMT) in power 
systems. For each transmission line or cable under study, these 
models require that the associated matrices, 𝐘𝐘𝐜𝐜  of 
characteristic admittances and 𝐇𝐇 of propagation factors, be 
approximated by rational expressions leading to 
computationally efficient TD simulations. While rational fit of 
𝐘𝐘𝐜𝐜  is straightforward, the fitting of 𝐇𝐇 presents difficulties 
due to its elements involving delay factors associated with the 
modal velocities of the line or cable. Modal delays must 
therefore be identified and extracted from matrix 𝐇𝐇 for a 
proper rational fit. Vector Fitting (VF) is the adopted 
methodology for rational fittings in the ULM [2]. As an 
alternative, H can be adjusted rationally without prior 
knowledge of modal delays by means of the Bode-diagram 
method developed for the FDLine model in [3]; nevertheless, 
the rational approximations so obtained tend to be of much 
higher orders than those from VF. 
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To enable the application of VF to the fitting of 𝐇𝐇 , 
Gustavsen and Semlyen introduced in 1998 a method to 
estimate modal delays [4]. This method is based on an integral 
by Bode that relates the minimum phase angle response of the 
modal propagation functions Hm to their magnitude response 
[5]. These authors proposed obtaining a representative time 
delay for the entire function Hm by evaluating Bode integral 
at a single cutoff frequency Ω at which the magnitude of Hm 
decays to 0.1. However, it was found later that this may not 
work well in certain cases and modifications in the cutoff 
frequency evaluation have been proposed [6]-[7]. 
Nevertheless, the issue of determining a proper value for Ω 
has remained open. Additionally, the magnitude of Hm may 
not decay to the required value within the frequency range of 
analysis. 
To overcome the previous limitations, it has been proposed to 
first obtain an approximation of the delay, possibly using the 
Bode integral method, and then to conduct a search around it 
for a better value of the delay. The criterion for comparing 
time delay estimates is the rms-error of the synthesized 
function. Initially, a half-range search algorithm was 
employed [8] and, later, methods based on Golden Section 
search (GS) were adopted [7]-[9]. One issue with minimum 
rms-error methods is that they do not always guarantee the 
minimum error in the TD transient responses as it is 
demonstrated in [10]-[11]. Another problem with these 
methods is that the delay producing the minimum rms-error 
can lead to causality violations, i.e. traveling-wave velocities 
faster than the speed of light. This is demonstrated here in 
section IV.B. 

This paper proposes a time-delay estimation method that 
guarantees causality and minimum phase properties in the 
synthesized models of Hm. It is an iterative method based on 
the use of all-pass filters to counteract the appearance of 
positive (non-minimum phase) zeros at Hm realizations. This 
method can be considered a continuation and a substantial 
improvement of the research reported in [11]-[12]. To 
demonstrate its effectiveness, the proposed method is applied 
in three test cases. Its performance and accuracy are compared 
to those of the Bode integral and the GS methods. The first 
test case involves the identification of a constant delay in a 
synthetic transfer function. Comparisons are made and the 
improvement over its predecessor in [12] is demonstrated. The 
second test case involves delay identification for a system of 
three underground cables, each with four conducting layers. 
The third test compares the fitting and transient-response 
errors of an aerial line, modeled using the time delays being 
estimated by the Bode integral, the GS and the proposed all-
pass-filter (APF) methods. To evaluate the line transient 
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responses, these are compared with the one obtained with the 
Numerical Laplace Transform technique, which is used with 
215 samples and a tuned accuracy of 10-8 [13]. The three test 
cases show that the proposed method maintains causality, 
whereas GS method does not. These cases also show that the 
proposed method requires substantially fewer iterations than 
GS with comparable accuracy. 

II.  THEORY OVERVIEW 

A.  Transmission line representation in phase-domain. 
Fig. 1 shows the traveling-wave representation of a multi-

conductor transmission line where 𝐕𝐕𝟎𝟎 and 𝐕𝐕𝐥𝐥 represent the 
voltage vectors at the beginning and end of the line, 
respectively, while 𝐈𝐈𝟎𝟎 and 𝐈𝐈𝐥𝐥 are the corresponding current 
vectors. By applying the telegraph-equation solutions, the 
following expression is obtained for each side of the line, 

𝐈𝐈𝐢𝐢 = 𝐘𝐘𝐜𝐜𝐕𝐕𝐢𝐢 − 𝐇𝐇𝐈𝐈𝐫𝐫; (1) 

where subindices i and r denote local-incident and remotely 
reflected variables, respectively. For an n-conductor line, 𝐘𝐘𝐜𝐜 
and 𝐇𝐇 are frequency-dependent matrix functions with n × n 
elements. These are calculated from the series impedance 𝐙𝐙 
and the shunt admittance 𝐘𝐘 matrixes of the line, both in per 
unit of length. 

To obtain the rational approximation of 𝐇𝐇, it is separated 
into its modal components as follows: 

𝐇𝐇 = �𝐃𝐃𝐢𝐢Hm,i

n

i=1

; (2) 

where 𝐃𝐃𝐢𝐢 is the i-th idempotent of 𝐇𝐇 and Hm,i is the scalar 
propagation function for the i-th mode [14]. Hm,i is given in 
terms of its modal attenuation αi and modal phase βi: 

Hm,i = e−(αi+jβi)ℓ, (3) 

with ℓ being the length of the line. The phase-shift term βi 
can be separated into two components: one corresponding to 
the minimum phase and the other related to the modal delay, 
which can be obtained from the modal velocity [4]. Then, (3) 
can be rewritten as 

Hm,i = e−�αi+jβmin,i�le−jωτi; (4) 

where the i-th modal delay τi has been factored out from 
Hm,i. Afterwards, the substitution of (4) in (2) produces an 
expression where each mode is expressed as the product of a 
minimum phase function and a pure delay function: 

𝐇𝐇𝐦𝐦,𝐢𝐢 = 𝐃𝐃𝐢𝐢e−�αi+jβmin,i�le−jωτi = 𝐇𝐇𝐦𝐦𝐦𝐦𝐦𝐦,𝐢𝐢e−jωτi . (5) 

 
Fig. 1.  Traveling waves model of an aerial transmission line. 

In practice, modes with similar delays are grouped into a 
single delay group [1]; therefore, the approximation of 𝐇𝐇 can 
be expressed as follows: 

𝐇𝐇 ≅���
𝐑𝐑𝐢𝐢,𝐤𝐤

jω − pi,k

NH,i

k=1

� e−jωτi
Ng

i=1

; (6) 

where 𝐑𝐑𝐢𝐢,𝐤𝐤 and pi,k are the residue-matrixes and the poles of 
the rational synthesis, NH,i is the approximation order of the 
i-th modal delay-group and Ng is the number of these groups. 

Note that before computing each set of poles and residues 
in (6), the corresponding modal delays τi must be identified 
and extracted to ensure that the rational approximations are 
applied to the minimum-phase functions 𝐇𝐇𝐦𝐦𝐦𝐦𝐦𝐦,𝐢𝐢 in (5). 

B.  Delay estimation with the Bode integral method 
Delay estimation with the Bode integral begins with the 

calculation of the minimum-phase angle of Hm,i  at a 
previously determined cutoff frequency Ωi as follows:    

φmin,i(Ωi) =
1
π
�

d�log��Hm,i���
d(ui)

log�coth
|ui|

2
� dui

∞

−∞
, (7) 

where 

ui =
Ωi
ω

 . (8) 

Then, the obtained phase-angle is used to find the 
corresponding modal delay by applying the following formula 
[4]:   

τi =
l

υ(Ωi)
+
φmin,i(Ωi)

Ωi
, (9) 

where υ(Ωi) is the velocity of the i-th mode evaluated at Ωi. 

C.  Delay estimation with rms-error minimization 
The search for the delays with the lowest fitting error is 

based on the implementation of a minimization algorithm to 
repeatedly fit Hm,i, while varying τi, until the minimum rms-
error is obtained. The most used minimization algorithms are 
those based on the Golden Section search [7]-[9]. The 
frequency range for the search can be based on delays 
precomputed with the Bode integral (7), although this is not 
strictly necessary [7]-[15]. 

D.  Minimum phase systems and all-pass systems 
A minimum-phase system is a stable system whose inverse 

system is also stable. Since the rational representation of a 
stable system has all its poles on the left-hand-side of the 
complex s-plane, for this to be minimum-phase all its zeros 
must also lie on the left-hand-side of the s-plane [16]. On the 
other hand, a system is of all-pass type if its magnitude is 1, 
which implies that, in its rational form, all its zeros must be an 
exact mirror of its poles in the complex plane [17]. 
Consequently, an all-pass system cannot be a minimum-phase 
system and, if it is stable, all its zeros must lie on the right-
hand-side of the s-plane. 

Although all-pass systems do not change magnitudes, they 
certainly do affect the phase angles; so, they are often used as 



phase compensation systems. Due to these properties, an all-
pass system can be decomposed into a cascade of first- and 
second-order all-pass subsystems. In addition, any rational 
system can be decomposed into the following product 

H(jω) = Hmin (jω)Hap(jω), (10) 

where Hmin (jω) is a minimum phase system and Hap(jω) 
is an all-pass system [16]. 

In summary, on assuming stability any rational function 
with zeros on the right-hand-side of the s-plane can be 
compensated with an all-pass function containing these zeros, 
while the remainder becomes a minimum-phase function. 

E.  Delay functions and phase distortion 
A pure delay system is one that only applies a time shift in 

the TD. For this to hold true, its magnitude response must be a 
constant, and its phase response must be a linear function of 
the frequency. If a function has a non-linear phase response, it 
is said that it introduces a phase distortion [18]. A more 
convenient concept for analyzing phase distortion is the one of 
group delay, which allows the delay to be calculated as a 
function of the frequency. Given a continuous phase function 
ϕ(ω), its associate group delay τ(ω) is defined as:  

τ(ω) = −
dϕ(ω)

dω
. (11) 

Its deviation from a constant shows the amount of non-
linearity in the phase response of the system [16]. 

III.  PROPOSED METHOD 
The method proposed here is iterative and is based on the 

identification and extraction of the all-pass component Hap 
from a rational synthesis of the original function H, as well as 
on the assignment of a representative delay to the extracted 
all-pass component. This delay is used as correction term. The 
process is repeated until the synthesis of H becomes of the 
minimum-phase type. Fig. 2 provides the pseudocode for this 
process. Although the initial estimate for the time delay does 
not have to be accurate, closer estimates result in faster 
convergence. 

 
Fig. 2.  Pseudocode for the proposed delay identification method. 

A.  Representative delay for all-pass functions 
Clearly from Fig. 2, the most important step in the 

estimation process is the delay correction calculation at line 
11. Since there are many delay values that satisfy the 
minimum-phase condition, this stage is crucial for ensuring 
the method’s final accuracy. The delay correction ∆τ can be 
estimated by averaging the group delay values of the all-pass 
function and this is the approach used in [11]-[12]. However, 
the order of the complete all-pass function is expected to be 
high, leading to considerable phase distortion and 
consequently a large error in the determination of ∆τ. 

To improve the calculation of ∆τ, it is proposed here to 
decompose the all-pass function into first- and second-order 
cascaded filter functions that can be adequately characterized 
from their phase responses by applying delay equalization. 
Hence, this technique is called the all-pass-filter (APF) 
method. A comparison between APF and the approach of 
[11]-[12] is provided in Section V.A.  

B.  Delay correction with delay equalization 
Since rational approximations with VF produce only real or 

complex conjugated pairs of poles and residues, the 
corresponding zeros will also be either real or complex 
conjugate pairs [2]; therefore, the compensation of any zero in 
the right-side of the s-plane implies the synthesis of either a 
first- or a second-order all-pass function. Hence, to introduce 
the delay equalization strategy into the estimation process, the 
all-pass function is now represented as follows 

Hap(s) = �
(s − ar)
(s + ar)

N1

r=1

�
(s − zw)(s − zw∗ )
(s + zw)(s + zw∗ )

N2

w=1

 , (12) 

where ar  corresponds to the real zeros and zw  to the 
complex ones, along with their corresponding conjugates zw∗ . 
N1 is the number of real zeros and N2  is the number of 
complex-conjugate pairs of zeros. If a constant and 
representative delay is estimated for each first- or second-
order all-pas function, ∆τ can be obtained as the sum of all 
these contributions: 

∆τk = �τr
(1)

N1

r=1

+ � τw
(2)

N2

w=1

, (13) 

with τr
(1) being the representative delays for the first-order 

all-pass functions and τw
(2) being those for the second-order 

all-pass functions. 

C.  Representative delay for first-order all-pass 
functions 

Consider the following first-order all-pass function: 

Hap
(1)(s) =

s −ω0

s + ω0
 , (14) 

where ω0 is its cutoff frequency equivalent to ar in (12). 
The representative delay for expression (14) is established 
approximating its phase response to that of a pure delay e−sτ 
as follows: 



e−sτ =
e−sτ/2

esτ/2 ≈
1 − sτ 2⁄
1 + sτ 2⁄

 . (15) 

Note that the exponential terms in (15) have been 
approximated by the first two terms of their McLaurin series. 
It follows from (15) that the phase response of a first-order all-
pass filter, whose cutoff frequency is ω0 = −2 τ⁄ , approaches 
that of a pure delay with a time shift of τ. In fact, if phase 
responses of both functions are compared, it can be observed 
that they coincide at low frequencies. See for instance their 
comparison in Fig. 3, where ω0 = 6000 rad sec⁄ . 

The expression for the delay group of function (14) is 

τ(1)(ω) =
2 ω⁄

1 + (ω ω0⁄ )2 , (16) 

which also represents the slope of its phase response [17]. The 
highest phase coincidence between (16) and the pure delay 
occurs at frequency 0; hence, the representative delay value 
for the first-order function (14) corresponds to the initial decay 
slope, i.e., (16) being evaluated at ω = 0: 

τap
(1) ≈ τ(1)(0) =

2
ω0

 . (17) 

D.  Representative delay for second-order all-pass 
functions 

For the second-order case the all-pass function takes the 
following form: 

Hap
(2)(s) =

s2 − (ω0 Q⁄ )s + ω0
2 

s2 + (ω0 Q⁄ )s + ω0
2  , (18) 

where the characteristic frequency ω0 and the Q parameter 
are obtained from the coordinates of zw in the s-plane [19]. 

The phase response of a filter of type (18) decays to −2π 
drawing a curve that is initially concave and then becomes 
convex, with an inflexion point near ω0, where the group 
delay exhibits a maximum peak. Nevertheless, this response 
varies as a function of ω0 and Q. Specifically, the inflection 
point tends to approach frequency 0 as Q decreases, until it 
disappears [19]. Therefore, to properly characterize the phase 
response of (18), its group delay must first be obtained as a 
function of the normalized frequency Ω = ω ω0⁄ , resulting in 

τ(2)(Ω) =
2(1 + Ω2)

ω0Q�(1 − Ω2) + (Ω Q⁄ )2�
 . (19) 

 
Fig. 3.  Phase response comparison: all-pass and a pure delay function. Case 
for ω0 = 6000 rad sec⁄ . 

 

It follows from (18) that the minimum value of Q for which 
the inflexion point exists is 1 √3⁄ . This is obtained equating 
the slope of (19) to zero and solving the resulting equation 
[19]. Thus, in every case where Q < 1 √3⁄ , the phase 
response decays with a slope that progressively decreases in a 
similar form as in the first-order case. When Q ≥ 1 √3⁄ , the 
phase response decays with a maximum slope around ω0. 
Phase responses and group delays for Q > 1 √3⁄ , Q = 1 √3⁄  
and Q < 1 √3⁄  at normalized frequencies are shown in Fig 4. 

On the grounds of the previous analysis, it is proposed here 
to establish two cases for the delay estimation of second-order 
all-pass systems. The first case occurs when Q < 1 √3⁄ , 
where the representative delay is obtained as the initial phase 
decay slope; this is in much the same way as with the first-
order all-pass function. Thus, when evaluating (19) at ω = 0 
one obtains: 

τap
(2) ≈

2
ω0Q

 ; for Q <
1
√3

 . (20) 

The second case occurs when Q ≥ 1 √3⁄ , where the 
inflection point in the phase response must be considered. 
Here the representative delay is approximated by averaging 
the phase decay-slope [18]; i.e., the average of the group delay 
values: 

τap
(2) ≈

1
Ns

� τ(2)(ωm)
ωmax 

m=ωmin

 ; for Q ≥
1
√3

 , (21) 

where ωmin represents the first frequency sample, ωmax the 
last one, Ns is the number of frequency samples within the 
frequency range and τ(ωm) is the evaluation of (19) at ωm. 

 
Fig. 4.  Phase response and delay group of a second-order all-pass function:  
(a) for Q = 2 √3⁄ . (b) for Q = 1 √3⁄ . (c) for Q = 0.1. 



In conclusion, when pairs of complex conjugate zeros are 
obtained at the right-hand-side of the s-plane, (20) or (21) 
should be applied as appropriate. 

Note the differences between the proposed methodology 
(APF) and the previous one in [11]-[12]. Firstly, in APF, the 
phase function of each all-pass subsystem is adequately 
identified with exact formulas. Conversely, at the previous 
approach in [11]-[12], the phase function of the entire all-pass 
system is obtained as frequency samples; so, the group delay 
is computed through numerical differentiation which may 
introduce additional errors. Secondly, in APF, the number of 
operations to calculate the delay correction has been reduced. 
This is because the first-order case and the second-order case 
with Q < 1 √3⁄  are evaluated using expressions (17) and 
(20), which have a computational complexity of 𝒪𝒪(1) , 
whereas calculating and averaging the group delay as in [11]-
[12] requires 𝒪𝒪(Ns)  computer operations. Although the 
calculation of the second-order case with Q ≥ 1 √3⁄  requires 
the evaluation of (21) with an 𝒪𝒪(Ns) complexity, in these 
authors’ experience, this is a very rare case seldom occurring 
in practice. 

IV.  TEST CASES 

A.  Identification of a constant delay 
Consider the following transfer function that is based on a 

test case presented in [6]-[7]: 

Htest(s) = k0
(s + z1)(s + z2) … (s + z9)

(s + p1)(s + p2) … (s + z10) e−sτt , (22) 

where k0 = 41123.67  and τt = 4026.815687321 μs  is a 
constant delay. The poles and zeros of (22) are taken from 
Sec. III.A of [6]. Given that all poles and zeros of this function 
are located on the left-hand-side of the s-plane, the function 
without the delay is ensured to be of minimum phase.  

For this test, Htest(s) is represented with 4096 samples at 
logarithmically spaced frequencies, from 0.01 Hz to 100 MHz. 
The cut-off frequency for the Bode integral method is 
determined at the point where the magnitude of the function 
has decayed to 0.1. The initial delay 𝜏𝜏0 for the APF method, 
is set to 3800 µs. The search range for GS is defined between 
𝜏𝜏0 and 4100 µs with a tolerance of 1 × 10−12. For both GS 
and the APF methods, the same VF configuration is used, 
without applying any weighting to the samples and 
maintaining a fitting order equal to the number of poles in the 
function. The results obtained are presented in Table I, which 
displays the identified delays, the errors relative to the original 
delay τt and the number of iterations required. By comparing 
these results, it is evident that, for this case, the GS method is 
the most accurate followed by APF, with the Bode integral 
method exhibiting the highest error. It is also shown that the 
GS method requires significantly more iterations than APF. 

By using test function (22), the dependence of the APF 
method on the initial estimate 𝜏𝜏0 is investigated by assigning 
to it 500 linearly spaced values between 3000 µs and 4020 µs. 

 
 

TABLE I 
CONSTANT DELAY IDENTIFICATION RESULTS. 

 Bode Integral Golden Search APF method 
Delay (µs)  3977.12 4026.8156 4026.8150 
Rel. Error 0.01234081 4.5 × 10−11 1.66 × 10−7 
Iterations 1 41 8 

As a result of this experiment, Fig. 5 is produced by plotting 
for both methods, APF and the previous one in [11]-[12], the 
relative errors in the final estimate of the delay as functions of 
the initial values 𝜏𝜏0. The results in Fig. 5 show that the APF 
method maintains a consistent error level regardless of the 
initial delay estimate, whereas the previous approach of [11]- 
[12] does not. 

B.  Modal delays for an underground cable system 
For the second test case consider the underground 

transmission cable shown in Fig. 6 whose modeling data are 
taken from Table I at [20]. The amours are eliminated to 
create a 9-conductor system. All fittings are made using 20 
poles. Propagation modes with almost identical speeds are 
grouped into three groups and resulting in the identification of 
three delays. 

Results for the identification of modal delays are presented 
in Table II, where similarities are observed between the Bode 
integral and the APF methods, while GS reports the lowest 
fitting errors. It is evident that the fitting of modal groups 2 
and 3 is a challenging task. Furthermore, GS attains a better fit 
in modal group 2 than the other two methods. However, a 
detailed observation of the delay value identified by GS 
reveals that it is an anti-causal and physically incorrect delay, 
as it corresponds to a modal velocity exceeding the speed of 
light. Fig. 7 shows the fitting results for modal group 2, where 
the greatest deviation occurs around 10kHz, and where GS, 
using the anti-causal delay, achieves the best fit. Conversely, 
with APF, a causal delay is always obtained, even if an initial 
delay much lower than the light travel time is used. 

A.  Simulation of an aerial transmission line. 
To investigate the effects of the delay estimation methods 

on rational fittings and on TD transient responses, the case of 
a 100 km long overhead line is considered with the geometry 
and data shown in Fig 8. Phase conductors are arranged in 
bundles of three sub-conductors, each with a radius of 2.035 
cm and a DC resistance of 0.0321 Ω/km. Ground wires have a 
radius of 0.905 cm and a DC resistance of 0.4443 Ω/km. After 
eliminating the ground wires, a 3-conductor system is formed. 

 
Fig. 5.  Relative error as a function of the initial delay for test case A 



 
Fig. 6.  Underground cable system for test case B. 

TABLE II 
MODAL DELAYS IDENTIFIED IN A THREE PHASE CABLE SYSTEM 

Modal group Bode Integral Golden Search APF method 

1 
Delay (µs)  234.315 180.220 263.061 
rms error 1.759 × 10−7 3.936 × 10−9 9.344 × 10−7 

2 
Delay (µs)  82.788 39.733 96.429 
rms error 0.0309 0.0055 0.0391 

3 
Delay (µs)  142.840 101.377 143.257 
rms error 0.1622 0.1028 0.1638 

 
Fig. 7.  Fitting results for modal group 2. Underground cable case.  

    1)  Delay identification and rational fitting results: In this 
part of the experiment, 1001 logarithmically spaced samples 
from 1Hz to 10MHz are used in the rational fitting of the 
corresponding modal propagation functions and all the fittings 
are performed using 20 common poles. The obtained delays 
and fitting errors are provided in Table III. Note that the fitting 
errors are listed first for the modal domain and then for the 
phase domain. These results indicate that, although the APF 
method presents higher fitting errors in the modal domain, it 
provides the rational model with the lowest peak fitting error 
in the phase domain. Furthermore, the Bode integral method 
presents the highest fitting errors in mode 3 due to the 
magnitude of this mode decaying very slowly and thus 
affecting the selection of the cut-off frequency. 

The deviations of the three rational models synthesized 
with each method are shown in Fig. 9. 𝐇𝐇 calculated in the 
phase domain is used as a reference. It is observed that when 
using the APF method, the model presents less deviation in the 
low and medium frequencies, while with GS, the errors are 
lower at high frequencies. 

 

 
Fig. 8.  Aerial transmission line for test case C. 

TABLE III 
DELAYS AND FITTING ERRORS FOR THE AERIAL LINE CASE 

Modal domain Bode Integral Golden Search APF method 

1 
Delay (µs)  335.52384 332.75558 336.36206 
rms error 2.778 × 10−6 2.129 × 10−6 1.898 × 10−5 

 max deviation 5.710 × 10−6 6.182 × 10−6 4.226 × 10−5 

2 
Delay (µs)  333.62785 333.26810 333.64826 
rms error 1.521 × 10−4 2.917 × 10−5 3.130 × 10−4 

 max deviation 6.553 × 10−4 8.235 × 10−5 1.889 × 10−3 

3 
Delay (µs)  333.57321 333.41130 333.56795 
rms error 1.474 × 10−3 1.001 × 10−5 1.536 × 10−4 

 max deviation 1.439 × 10−2 3.944 × 10−5 1.220 × 10−3 
Phase domain Bode Integral Golden Search APF method 

- 
avr. deviation 2.761 × 10−4 1.003 × 10−4 1.567 × 10−4 
max deviation 1.666 × 10−2 3.522 × 10−3 2.825 × 10−3 

  

 
Fig. 9.  Fitting results in phase domain for the aerial line case. 
 

    2)  Time domain results: The three rational models 
synthesized in the previous phase are simulated in the TD 
using recursive convolutions. For this simulation, an 
integration step of 4.88 µs and an observation window of 0.04 
seconds are established. The simulation case involves a 
simultaneous closure at 16.6667 ms, applying a three-phase 
voltage at 60 Hz, with a Line-Ground peak voltage of 187.77 
kV, and taking the open circuit voltage at the end of the line as 
the output. 

The voltage waves obtained with each model and with the 
NLT are shown in Fig. 10. At first glance, no significant 
differences can be observed between the three methods. 

The relative deviations of the three models from the 
response obtained with the NLT are shown in Fig. 11. It can 
be observed that the model with the highest peak error is the 
one obtained with GS, while the one with the lowest peak 
error is that with the APF model. 
 



 
Fig. 10.  Voltage at line end computed with the 3 evaluation models in TD. 

 
Fig. 11.  Relative deviations of the TD response with respect to NLT. 

V.  CONCLUSIONS 
In this paper, a delay estimation method that guarantees the 

synthesis of rational models from minimum-phase functions 
has been proposed. This method is accurate and guaranties 
obtaining causal models. 

The proposed method demonstrates significantly higher 
computational efficiency compared to methods based on rms-
error minimization. In all cases, the maximum number of 
iterations required for the proposed method to converge was 
nine, whereas the GS algorithm typically required more than 
twice as many iterations. Additionally, the proposed method 
necessitates only a single rational approximation per iteration, 
in contrast to the GS algorithm, which requires at least two. 
This advantage is particularly beneficial when modeling 
multiple instances of transmission lines or cables. 

The accuracy of the proposed method at identifying a 
constant delay is validated with the first test case at Secc. 
IV.A, showing that the accuracy of the estimation is not 
compromised even if the estimate changes. The results of this 
paper also show that the use of delay equalizations to obtain 
delay corrections ∆τ  within the estimation process is a 
substantial improvement over its predecessor in [11]-[12]. 

The results obtained at case 2 indicate that delay estimation 
based solely on the minimum rms-error can produce non-
causal models. Conversely, the proposed method guarantees 
obtaining causal delays. 

The results for the aerial line case corroborate that 
obtaining lower fitting errors in the modal domain does not 
necessarily produce smaller errors in both the phase domain 
and the TD. Through the simulation of the TD response, it has 

been demonstrated that the proposed identification method is 
reliable for its use in ULM implementations. 
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