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Abstract—This paper explores and evaluates various
approaches to accelerate Electromagnetic Transient (EMT)
simulations of power systems using Graphical Processing Units
(GPUs). Existing EMT simulation methods face computational
challenges in systems with extensive renewable energy sources
due to the complexity and switching dynamics of the system.
The paper focuses on simulation methods based upon specialized
GPU solvers to handle simulations of large and complicated
power systems (e.g., with extensive switching components)
with computational efficiency. Results from benchmark systems
show significant speedups, particularly for large networks with
high-frequency switching events.
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I. INTRODUCTION

LECTROMAGNETIC Transient (EMT) simulators are
Enecessary tools to model modern power systems [1],
due to their accuracy in representing fast transients. The
escalating adoption of inverter-based resources (IBRs) has
resulted in significant presence of power-electronic converters
leading to the erosion of system inertia and the need for EMT
modeling and simulations of uncommonly large networks; this
has exposed crippling computational limitations of current
EMT solvers. Substantial efforts are underway to develop new
algorithms, solution methods, and platforms to enable EMT
simulation of exceedingly large and complex networks [2]—[4].

In EMT simulations node voltages are calculated using
current injections as inputs to network equations. Normally
these are done in sequence, resulting in computational
inefficiencies. Various factorization methods, e.g., the KLU
method (particularly suited for large networks) [5] [6], are
used to to solve network equations efficiently. Sequential
solutions, which have inherent computational deficiencies, can
be avoided by using parallel computing. Although distributed
parallel computing scales well, its communication overhead,
required at each time step, drastically slows the simulation
[2]. The distributed parallel model created in [2] has an
exponential increment in the communication time as the
number of sub-networks increases, which effectively nullifies
any reduction in calculation time due to smaller sub-networks;
the computational burden of EMT simulations is impacted by
both the network size and complexity [3].
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A shared-memory implementation of the network
solution is presented in [7]; a recent study [8] introduces
a parallel-in-time equation (re-)grouping technique for
CPU-based parallelization with KLU factorization. Since load
balancing is needed if the (re-)grouping blocks are more than
the number of processors [7], an inefficient hardware scaling
of shared memory implementation will occur. Otherwise,
this approach might be sub-optimal when modeling practical
power systems.

Perhaps the most promising approach to accelerating
network simulation is the use of graphics processing units
(GPUs). Specifically, the sizes of networks encountered in
practice (even large networks), combined with the ability
to implement the entire network solution on the GPU
(eliminating communication between the host CPU and the
device GPU), make GPUs well-suited to the application.
While the work presented in [9] addresses basic acceleration
using GPUs, it does not develop a fully-fledged GPU-based
EMT solver. The authors of [10] present timing and speedup
gains, using GPUs, but do not address how classical network
equations can be solved efficiently, nor do they compare
results to existing serial algorithms, e.g., KLU [5]. Primitive
techniques, such as pre-inverting the admittance matrix [4],
may enhance the simulation (serial or GPU implementation),
however, switching devices, which are exceedingly common
and abundant in modern power systems, pose significant
challenges to such methods as the matrix needs to be altered
frequently. The GPU-based pre-inversion of the matrix is
shown in [4] although no comparison of KLU with direct
sparse techniques is given.

This paper delves into GPU-based computations for EMT
solutions, and compares the performance of several GPU and
CPU-based solution methods with the aim to determine the
most suited algorithm for GPU-based solution large systems.
The overall goal is to present an efficient EMT simulator
that runs entirely on the GPU. Section II discusses several
existing solution methods, e.g., KLU factorization, Cholesky
decomposition [11], the Woodbury implementation [12], and
the compensation method. Their potential for solving large
networks are discussed in Section III. Section IV discusses
the GPU-based solver developed and shows a number of
examples.

II. EXISTING METHODS OF SOLVING NETWORK
EQUATIONS

EMT simulations involve solving for node voltages, v(t), in
(1), where Y (t) is the network’s admittance matrix and ()



is the vector of current injections to the nodes from dynamic
devices and history current terms in the companion models of
network elements [1].

Y(Oo(t) = i(t) (1)

The solution proceeds on a discretized time axis, and
involves factorization (or inversion) of Y (¢). For networks
whose admittance matrix does not change, one may factor
(or invert) Y'(t) and use it throughout the simulation.
Frequent changes in the network arising from faults, and more
commonly from switching power electronic converters, require
repetitive re-factorizations of Y'(¢), which rapidly becomes
computationally taxing, especially in large and sophisticated
networks. With the expansion of IBRs and diminishing
system inertia, the solution of large networks with significant
high-frequency switching converters has become a crippling
challenge for existing EMT solvers.

Since the companion circuit theory [1] converts all elements
to current sources and resistors, Y (t) becomes a real-valued
matrix. In the remaining Sections of this paper, the time
dependence of Y is suppressed for brevity.

EMT equations are commonly solved using numerical
methods such as LU factorization. Furthermore, techniques
such as Cholesky decomposition and LDL can be used to
handle matrices with symmetry. These techniques are briefly
reviewed next.

A. KLU Factorization

The LU decomposition method [13] is commonly used
to solve (1); however, it is advantageous to use the KLU
method [5] for factorization of large admittance matrices.
Here the matrix is permuted to result in a block triangular
form. The approximate minimum degree method and nested
dissection [5] are used to minimize filling. As per [14] and
[5], the KLU factorization method improves computational
performance; KLU factorization and its improved variations
are used in EMT simulators [6], [15] for circuits with a large
number of nodes. KLU factorization is used as a benchmark
CPU-based algorithm in this paper.

B. Cholesky Decomposition

While in many EMT models the admittance matrix is not
symmetric, a network comprising of typical power system
devices will result in a symmetric admittance matrix. Taking
symmetry into account, the Cholesky factorization [16] offers
performance benefits, as it can be applied to symmetric
positive definite (SPD) matrices. The Cholesky factorization
is currently used in EMT solvers, e.g., [17].

Improvements come from representing the SPD matrix
factorization in terms of a single lower triangular matrix
L such that Y = LL7, ideally reducing time and memory
requirements by half. KLU supports Cholesky decompositions
[5] through the CHOLMOD library [18].

C. The Woodbury Formula

The Woodbury formula [12] accounts for modifications to
the Y matrix without inverting (or solving) the entire matrix
when there is a change in the network. Assuming that k entries

in the admittance matrix change, the Woodbury formula can
be stated as follows.

(Y +UVvT)' =

2
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where

¢ Y is the original n X n admittance matrix,
e U is an n x k matrix,

e Iis a k x k identity matrix,

e V is a n x k matrix.

The product UVT is an n x n matrix of rank at most
k, which represents the changes of the admittance matrix.
The columns of U correspond to the modified rows and
the columns of V' correspond to the modified columns. For
example if a 5 x 5 admittance matrix has three changes at

(3,4), (2,2) and (4,1), U and V are be defined as:
0 00 0 0 A
0 10 0 Ay O
U=1|1 00, v=|0 0 0],
0 0 1 A; 0 0
0 00 0 o0 o0

where the A values are the numerical changes made
to the matrix. When changes occur, the k£ x k matrix
(I +VTY~1U) needs to be evaluated and inverted.
Assuming the n x k matrix Y ~!U has been pre-computed
and that V' is sparse, the cost to construct the matrix is O(k"™)
and the cost to invert it is O(k®) where k << n.

D. Compensation Method

Unlike the previous numerical methods, which may be
applied to any linear system of equations, the compensation
method is a circuits solution technique. This method [19]-[21]
was developed as a result of Kron’s Diakoptics as per [22].
The main idea of the algorithm is to solve a large network by
partitioning it in to smaller pieces. Each sub-network may be
solved in parallel with the rest, while other sub-networks are
represented using Thevenin equivalents. The method allows
network segmentation at arbitrary locations without relying
on long transmission lines. Collecting all switching nodes of
a large network into one block of the Y matrix also allows
for further computational advantage, by combining it with
the Woodbury formula. The efficiency of the compensation
method is evaluated in Section III together with the Woodbury
formula and GPU implementation of network solution.

III. PERFORMANCE OF ALGORITHMS

With the goal of developing an efficient EMT simulator
entirely on the GPU, this Section first explores various
GPU-based methods for solving (1). CPU-based methods
are also tested to establish a baseline for computational
comparisons. For all tests, two Y matrices were examined.
The first matrix, with a size of 81x 81, represents the
IEEE 39-bus benchmark system [23]; note that transformers,
generators, and m-sections models of transmission lines
increase the number of nodes to 81 per-phase. Simulations



in Section IV.C consider a three-phase representation of
the system. The second matrix is 10000 x 10000 with all
the properties of an actual admittance matrix but without
stemming from a particular network.

CPU implementation methods (i) Eigen/Sparse [24], (ii)
PARDSIO [25], and (iii) various MATLAB solver approaches
including the backslash operator [26] are considered first. Note
that these solvers are generally multi-threaded shared memory
implementations. In addition to these standard CPU-based
libraries, Compute Unified Device Architecture (CUDA)
functions that run on the CPU are considered. CUDA is a
parallel computing platform and programming model created
by Nvidia that is generally designed to execute user functions
on an Nvidia GPU. However, CUDA libraries for solving
systems of equations provide functionality that can execute
on either the CPU or the GPU, and some CUDA-based
CPU (host) implementations are evaluated. For the GPU-based
solutions, CUDA-based GPU (device) implementations are
considered exclusively. Both the CUDA Solver package
(cuSOLVER) [27], and the more recent CUDA Direct Sparse
Solve (cuDSS) [28] are included in the testing.

The properties of the cuSOLVER function that is used are
deciphered according to the following naming convention:

e cusolver: library name

e Sp: denotes Sparse matrix

o D: denotes data type is double

e csr: denotes the matrix is stored in compressed row

format

« Isv: denotes it is a linear solver

e chol/lu: denotes whether Cholesky or LU factorization is

used

« Host: denotes the function is executed on the Host instead

of the GPU.

Table I presents the computational times associated with
solving the two test systems using the various solvers. The
time presented in the table only includes the solution time
and excludes the data transfer time.

Comparing the cuSOLVER’s device (GPU) and host (CPU)
implementation it is conclusive that the GPU implementation
consumed more time than the host implementation. Using
the Cholesky factorization for the 81 x 81 matrix, the
GPU implementation consumed 1.2 ms whereas the CPU
implementation for the same matrix consumed 84 us. Based on
these timing results, the cuSOLVER library was not considered
further for admittance matrix equation solutions.

Nvidia introduced cuDSS [28] to solve Ax = b in cases
when the matrix is sparse and when there are multiple
right hand vectors. This provides great speedup compared
to any of the algorithms mentioned earlier. This algorithm
initially determines a symbolic factorization (identifying where
the filing occurs in the factorization); afterwards values are
arithmetically calculated. While, the symbolic factorization
takes time the numerical solution is relatively fast. For
completeness it should be note that it may be possible to
achieve similar results with the cuSPARSE [29] library, though
improving performance depends largely on user optimization.
cuDSS, on the other hand, outperforms cuSPARSE as it is
highly tuned for the factorization and solution phases without

TABLE I
TIMING OF VARIOUS SOLVING ALGORITHMS

Algorithm Name Size of Matrix Timing
(ms)

Eigen/Sparse library (CPU) 81 x 81 6

cusolverSpDcsrlsvchol (GPU) 81 x 81 1.2

MATLAB Backslash (CPU) 81 x 81 0.102

cuDSS solver (including symbolic 81 x 81 0.089

factorization) (GPU)

cusolverSpDcsrlsvluHost (CPU) 81 x 81 0.088

cusolverSpDcsrlsvcholHost (CPU) 81 x 81 0.084

cuDSS solver (excluding symbolic 81 x 81 0.022

factorization) (GPU)

cusolverSpDcsrlsvluHost (CPU) 10000 x 10000 12.73 min

cusolverSpDcsrlsvcholHost (CPU) 10000 x 10000 4.25 min

PARDISO (real and structurally 10000 x 10000 18000

symmetric type) (CPU)

MATLAB Inversion and 10000 x 10000 12000

multiplication (CPU)

MATLAB sparse LU 10000 x 10000 9806

decomposition (CPU)

PARDISO (real and symmetric 10000 x 10000 9000

positive definite type) (CPU)

cuDSS solver (including symbolic 10000 x 10000 5216

factorization) (GPU)

cusolverSpDcsrlsvchol (Device 10000 x 10000 5000

implementation) (GPU)

MATLAB Backslash (CPU) 10000 x 10000 1302

cuDSS solver (excluding symbolic 10000 x 10000 0.030

factorization) (GPU)

requiring user optimization. While the cuDSS factorization
phases took 5.2 s for the 10000 x 10000 system, this costs
would be encountered only when the system is initially
factored or changes. In cases where switching is present,
the matrix structure does not change and the symbolic
factorization can be reused. Once factored, solving takes only
30 ws, which includes the numerical factorization and the
forward and backwards substitution passes, which suggests
that cuDSS is a good candidate for EMT simulations.

A. Implemented Algorithm using Woodbury formula

While implementing the Woodbury formula, testing was
done for storing Y ! explicitly versus storing the matrix
factorization. Testing on a 30000 x 30000 example resulted
in a 10-fold increase in speed when storing the inverted
matrix, and so the implementation of the Woodbury algorithm
correspondingly adopts the matrix inversion approach.

The GPU implementation of the Woodbury formula is
provided in Algorithm 1. Line 3 shows multiplication of
the inverted admittance matrix with the currents. Only
the lower part of the impedance matrix is stored as the
matrix is symmetrical. Line 4 evaluates the k X k matrix
(I + VITY~1U); line 5 factors the matrix enabling the
evaluation of line 6. As briefly discussed in Section II,
C =Y U is computed once at the beginning of the
simulation and stored, and serves as an input to the Woodbury
implementation.



Algorithm 1 Algorithm to Develop the Woodbury Formula

1: Input: V7' C,Y~! // Here C =Y 'U.

2. Initialize: i(¢t), V7 (t) // Current vector i and the change of admittance VT are initialized

at time t.

3: CUBLASDSPMV(Y ™!, 4, v) // Calculating v from Y 1§

vt D

»

CUBLASDGEMM(C,
I=1I+VvTo)

® W

// The identity matrix is updated to the inner calculation

CUSOLVERDNDGETRF(I + VTC) // LU factorization of matrix (I + VTC)
CUSOLVERDNDGETRS(I+VTC, VT, E) // Forward and backward substitution E = (I +VTC)~1vT
CUBLASDGEMM(C, E) // Multiplication of the two matrices

CUBLASDSPMV( CE, v) // The final value for v is calculated v =v — ECv

The cuBLAS [30] library provides GPU implementations
of matrix multiplication (and other basic linear algebra
subroutines) and is combined with cuSOLVER [27] to
implement the Woodbury solution. Since (I + VTY ~1U)
is generally a small £ x k£ matrix (with dimensions equal to
the number of changes), cuSOLVER is an appropriate choice.

B. GPU Performance Results

In this section an evaluation is conducted to test the
performance of i) cuDSS, ii) the Woodbury implementation,
and iii) the compensation technique, by evaluating their
speedup compared to the serial KLU factorization. Results
shown in Fig. 1 evaluate the speedup as a function of matrix
size from 2200 x 2200 to 42100 x 42100, which are generated
as per the code shown in [31]. The matrices are symmetrical
positive definite and sparse. Furthermore, they are near block
diagonal, making it easier to separate them into two parts
when evaluating the compensation method. The matrices have
25 linking branches, and the top block of the matrix has
k = 400 changes (i.e., 100 changes in the network, equal
to 400 changes in the matrix) dictating the size of U and
V in the Woodbury implementation. The two blocks of the
matrix are equal in size, and the changes are to emulate the
switching of the network. The results of this testing lead to
adopt cuDSS as the GPU solver of choice in the developed
GPU-based EMT solver.

The speedup results provided in Fig. 1 show that the best
performance is obtained by using the cuDSS solver. This result
is despite the fact that the Woodbury timing does not include
pre-computing the factorization or evaluating Y ~1U (both of
which are excluded from the timing). The bottleneck in the
Woodbury implementation appears to be the factorization of
the dense matrix I + VTY ~1U, which has a complexity
of O(k3). For k = 400 changes, the number of operations
required are in the order of 104, which is in the same order
as the number of non-zeros in the original admittance matrix.
Additional research and testing must be devoted to testing the
relationship between the Woodbury timing and the number
of changes, k; however, for the examples considered this
complexity supersedes that of the cuDSS.

The compensation method [19], [20] requires two additional
equations to be solved serially to link the two sub-networks
once each one has been solved independently. This step
further reduces the speedup over the CPU serial baseline.
Furthermore, only the numerical factorization is considered

in cuDSS as the structure of the admittance matrix does not
change throughout the simulation.

I I
cuDSS Implementation

- — - Woodbury Implementation

Compensation Technique

100 |-

Speed up

50 |-

Matrix size .10%

Fig. 1. Speedup of GPU implementations relative to serial KLU as a function
of matrix size.

IV. cuDSS FOR EMT SIMULATIONS

In the process of developing a fully fledged GPU
implementation of an EMT model three systems are
considered. The first is a simple two-source system as shown
in Fig. 2. The second system is the IEEE 39-bus network [23]
and the last one is the 2000-bus Texas synthetic grid [32], [33].
The first two systems are modeled in both PSCAD/EMTDC
and the GPU-based EMT solver. The cuDSS solver is used
to solve the network equations. The computer used for
CPU-based simulations had a 14-core, 2.1 GHz, Intel Core i7
processor and 32 GB of RAM. For GPU-based simulations,
an NVIDIA Tesla V100-PCIE-16GB GPU was utilized. The
next Subsection describes the algorithm developed.

A. The Solution Methodology

The typical EMT simulation scheme of [1] is used in the
developed parallel solver. Generators are modeled using the
conventional model as per [34] and [35]. A CUDA kernel
(function executed on a GPU device) is developed to solve
the synchronous generators independently from one other.
Transmission lines are modeled as w-sections and loads are
only LRC elements. Furthermore, mutual inductors are present
in transformers. All these elements are solved in a separate
CUDA kernel enabling them to calculate the history current
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gorithm 2 Simplified EMT Simulation Algorithm on GPU

1:
2:

Input: System data, Admittance matrix data, Time step dt
Initialize: Simulation time t < 0, flag for events flag < 0, locked rotor state S2M < 0

Step 1: Allocate and copy data to GPU memory

3: Allocate memory for system data, Admittance matrix, currents, and voltages on GPU
4: Copy input data (system parameters and admittance matrix) from host (CPU) to GPU

Step 2: Factorize the Admittance matrix Y
5: Compute symbolic structure of Y’
6: Perform numerical factorization of Y’
7: while ¢t < T,,,- do
8 if ¢t <t1 then
9

S2M < 0 // Locked rotor mode enabled until tl seconds

10: else

11: S2M <1 // Enable mechanical dynamics after tl seconds
12: end if
Step 3: Update and solve the system at each time step
13: Update current sources in the system (GPU implemented kernel)
14: Solve generator model equations using previous voltages (GPU implemented kernel)
15: Update currents for passive elements (e.g., inductors, capacitors) (GPU implemented kernel)
16: Prepare the system equations (RHS vector) for solving (GPU implementation)
17: if System fault or clearance conditions occur then
18: if Fault is applied (¢t > t2 and flag=1) then // A fault is applied at t2 time
19: Update faulted conductance matrix Y and re-factorize
20: flag «+ 2
21: else if Fault is cleared (t > t3 and flag = 0) then // The fault is cleared at t3 time
22: Update cleared conductance matrix Y and re-factorize
23: flag 1
24: end if
25: end if
26: Solve for node voltages using forward/backward substitution
27: Compute the present time step currents for passive elements (post-processing) (GPU implemented kernel)

28: L t+dt
29: end while
30: End Algorithm

terms independently. Algorithm 2 shows the GPU based EMT
solver.

The Cholesky factorization is used to solve the network
equations. Line 5 shows the symbolic factorization of Y and
line 6 shows the numerical factorization on the GPU. The
main time-stepping loop starts on line 7. The generators start
off without the rotor dynamics. The rotor dynamics of the
generators are released after some time, denoted as t = ¢;.

Line 13 of the algorithm updates the current sources (in
parallel) that are not having their dynamics modeled. This
is followed by the generator kernel. Here, the machine data,
fluxes, direct- and quadrature-axis currents, and w are given
to the kernel as inputs together with the terminal voltages.
The kernel outputs the present time-step current by solving
the conventional generator equations. This is followed by
line 15, which solves the inductors, mutual circuits and the
capacitors of the network and returns the current values. The
right-hand-side of the network equations is updated in line
16. It should be noted that the block sizes of these kernels
(lines 13 to 15) are dispatched in multiples of CUDA warps
[36], in an effort to seek maximum effective use of the GPUs
streaming multiprocessors.

Lines 17 to 25 are used in this case of a fault or a
change in the admittance matrix. Once a change occurs,
numerical re-factorization is required. However, a symbolic
re-factorization is unnecessary at this point as the structure
of the matrix remains intact. Once factorization is done
(numerical factorization is not done if the matrix does not
change), line 26 applies forward and backward substitution
to obtain the new voltage values. Finally, in line 27 the
present time-step current injection is determined and the
right-hand-side of the network equations is set to zero.

B. Single Generator, Single Current-Source Model

The system shown in Fig. 2 is modeled both in the
developed program and in PSCAD/EMTDC to determine the
accuracy of the results. Here a variable resistance bank at node
4 is changed from 1 MQ to 0.1 mQ at t = 75 s and is set to 1
M() again at t = 76 s to emulate a fault. Voltages from various
nodes of the system computed by the PSCAD/EMTDC and by
the GPU-based, cuDSS-based solver are compared to verify
the accuracy of the solution. Table II shows the system data
and Fig. 3 shows the voltage of node 3 at the inception of the



fault and after recovery; the traces show complete conformity,
thus confirming the accuracy of the solution.

2 3

Fig. 2. Schematic diagram of the test system.

TABLE II
IMPLEMENTED SYSTEM DATA

Generator Data

Rating: 120 MVA Terminal Voltage: 13.8 kV  Frequency: 60 Hz

H:2s Xj: 0.17 pu Xq4: 1.4 pu

Xiq: 0.152 pu X14: 0.0437 pu Xq: 0.92 pu
Xigq: 0.106 pu X2q: 0.0942 pu Ry: 0.004 pu
Rgg: 0.0007 pu Ryq: 0.0051 pu Rig: 0.00842 pu
Ryq: 0.00819 pu Ry : 0.001 Q

Transformer Data
Voltage: 13.8/115 kV
Magnetizing Current: 1%

Rating: 100 MVA
Copper Loss: 0.001 pu

Leakage Reactance: 0.1 pu

Transmission Line Data

Base Voltage: 230 kV Base MVA: 100 MVA R: 0.000038 pu

X:0.00713 pu B: 0.3989 pu
Load Data
Ry: 3.174 Q L;: 8.42 mH

Current Source Data

Current RMS: 10 kA Frequency: 60 Hz Rs: 0.001 Q2

C. Modeling of IEEE 39-Bus System

The IEEE 39-bus system [31] was simulated for 101 s
with a time step of 50 us, using synchronous generators and
m-section transmission line models. The developed GPU-based
code completed the simulation in 220 s versus 260 s for
the PSCAD/EMTDC model. Although GPU speed-up may
appear modest, this is partly due to PSCAD/EMTDC’s
approach of skipping admittance matrix updates when the
network is unchanged, while the developed parallel code
performs numerical factorization at each time step, emulating
switching occurring in each time step, which is unrealistic
in practice but shows the worst-case scenario. Moreover,
while detailed control systems (AVR and governors) and
magnetization effects were not modeled explicitly, their
inclusion would have minimal impact on performance since
generator control complexity scales as O(}%) where g is the
number of generators and p is the number of processors.
This complexity will effectively be effectively O(1) given
typical generator counts; magnetization can be handled via
a low-complexity compensation current source. It should be
also noted that timings reflect only the simulation runtime
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Fig. 3. Simulation results of the system in Fig. 2 (a) voltage fluctuation at the start
of the fault, (b) voltage fluctuation at recovery with a magnified view of the transient
portion.

(including iterative network solution steps) and exclude
initialization or compilation overhead.

D. Modeling of Texas Synthetic Grid with 2000 Buses

The synthetic grid with 2000 3-phase buses [32]- [33] is
simulated using the developed parallel EMT solver. The Y
matrix of the system has a dimension of 15618 x 15618, due to
the m-section modeling of transmission lines and the generator
and transformer models. In conventional EMT simulations,
systems of this size are handled by separating them into
subsystems, and by taking advantage of the latency of long
transmission lines. This approach is intentionally avoided in
this paper to create a single, large admittance matrix in order to
assess the computational performance of the developed parallel
solver. The system comprised of 306 synchronous generators
and 125 independent current sources.

A 5-s GPU-based simulation of this network with a time
step of 50 pus took 51 s (510 us per time step) to complete
whereas the same simulation conducted on PSCAD/EMTDC



took 2,016 s (20.16 ms per time step) showing a speed-up
factor of 39.5 in favor of the GPU-based solver. Similar to the
IEEE 39-bus system, the numerical factorization was applied
at each step for worst-case performance metrics. In most cases
PSCAD/EMTDC separates subsystems to solve the network
which has presently prevented, from testing an equivalent
single-system solution approach in PSCAD/EMTDC for
timing comparisons. However, results of the single-machine
model, the IEEE 39-bus system, and the 2000-bus Texas
synthetic grid show that a fully GPU-based EMT simulator
is achievable. Furthermore, the developed EMT simulator is
both accurate and fast, and can handle more than 10000 nodes
in a single subsystem than partitioning the network using
transmission lines.

V. CONCLUSIONS

The paper analyzed existing factorization methods
commonly used for network solutions. The KLU factorization
was compared with other GPU-based solution techniques and
speedups were compared for matrices of different sizes. It
was shown that the cuDSS solver with Cholesky factorization
can offer meaningful computational improvements over KLU
factorization. The merits of using the compensation algorithm
were also assessed and it was shown that even though modest
speedups were obtained, the method did not surpass the
benefits of cuDSS, due to dense matrix solutions and having
to solve the matrix twice within one time step. The cuDSS
method was used to develop a GPU-based EMT solver, which
was validated against the PSCAD/EMTDC. Currently, the
results shows the promise of developing a GPU-based EMT
simulator.

The developed simulator did not use line latency to
form smaller subsystems, making a single large admittance
matrix. Though currently such matrices are circumvented in
EMT simulators using line latency, with the integration of
microgrids, network tearing may be more difficult and solution
methods suitable for large systems will be necessary. Future
work will focus on tuning the newly developed GPU-based
EMT simulator for improved speedup over a wide range of
problem types and sizes, including practical networks with
intensive IBRs.
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