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Abstract—In this paper, the theory and application of dynamic
phasors (DPs) to model and simulate electrical circuits are
revisited. The paper reveals foundational conditions that must
be in place so that DPs are able to offer computational
benefits that are commonly, yet incorrectly, attributed to them
as universal characteristics. Following a companion model-based
approach using DPs, eigenvalue and steady-state analyses are
conducted to assess the precision of EMT and DP modeling
methods as a function of the simulation time step. Through
a case study of the IEEE 9-bus system, the effects of large
time-steps on simulation accuracy are illustrated. The findings
demonstrate that while DP-based modeling can accurately
represent steady-state behavior of circuits with large time-steps,
its accuracy is limited during transients conditions, highlighting
the importance of judicious time-step selection for accurate
simulations.

Keywords—Dynamic phasors (DP), electromagnetic transient
(EMT) simulations, companion circuit, eigenvalues.

I. INTRODUCTION

SEVERAL methods with varying degrees of accuracy
and computational complexity exist for modeling and

simulation of power systems [1]–[3]. For instance, transient
stability (TS) programs ignore the fast dynamics of
the electrical network, focusing instead on the relatively
slow electromechanical interactions in large, interconnected
systems. TS-type solvers benefit from large simulation
time-steps (in the milliseconds range), thereby reducing the run
time. Electromagnetic Transients (EMT) solvers, on the other
hand, capture the fast dynamics of circuits, e.g., switching
transients, in great detail [4], [5]. EMT solvers typically
require small time-steps (in the microseconds range), which
significantly extend the run time, especially for large power
system with sophisticated components such as high-frequency
power-electronic converters.

One approach to bridge the gap between the accuracy of
an EMT solver and the computational efficiency of a TS
solver is to use the concept of dynamic phasors, in which
frequency-shifting is used to focus on the low-frequency
content of a band-pass signal [6], [7]. In this approach,
the circuit’s natural quantities, i.e., branch voltages and
currents, are assumed to be sinusoidal but modulated with a
low-frequency signal that characterizes the dynamics of the
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power system. Mathematically, an arbitrary voltage or current,
x(t), is assumed to take on the form

x(t) = X(t)ejω0t (1)

where X(t) is the dynamic phasor, and ejω0t represents
the sinusoidal signal of the base (i.e., shift) frequency ω0.
Dynamic phasor analysis is based upon solving for the
dynamic phasors of a network’s voltages and currents, whereas
an EMT simulator solves the circuit for its natural quantities.

This approach has been applied to a wide range of systems,
including line-commutated and modular multilevel converters
(LCCs and MMCs) [8]–[10], flexible AC transmission systems
(FACTS) [11], [12], induction machines [13], [14], and
hybrid simulations [15]–[18]. Dynamic phasors have also
been utilized to expand the frequency bandwidth of TS-type
simulations [19].

Dynamic phasors are widely believed to substantially
reduce the computational burden of discrete-time EMT-type
simulations. This belief stems from the notion that simulating
circuits to find a low-frequency signal, i.e., the dynamic phasor
or X(t), does not require the small time-steps that an EMT
solver needs to use to capture the natural signal. Thus, larger
time-steps can be used to speed up the simulation [3], [6], [20],
[21]. However, as this paper demonstrates, this statement is not
universally valid and is subject to specific conditions that are
imposed by the circuit that is modeled. In particular, the paper
shows that the eigenvalues of the circuit play a crucial role in
whether or not modeling in the DP domain may offer benefits
without considerable loss of accuracy.

A generalized theory of dynamic phasors is developed in
Section II using the concept of an integrating factor. It is
demonstrated that the commonly-used term ejω0t is a special
case where the shift frequency remains constant over time.
Additionally, a generalized continuous-time companion circuit
is developed in this section. Section III presents the shift
in eigenvalues using state-space analysis and the steady-state
accuracy of both EMT and DP formulations are compared
against the analytical solution of a second-order RLC circuit.
In Section IV, a case study of the IEEE 9-bus system is
presented, demonstrating the core contributions of this work.
Section V concludes the paper.

II. A GENERAL THEORY OF DYNAMIC PHASORS

Let x(t) be a natural signal that represents a voltage or a
current in a circuit. This signal can be written as the product
of two signals as follows:

x(t) = µ(t)X(t) (2)



where µ(t) is an arbitrary unit-less signal, and X(t) is called a
transformed version of x(t). To ensure bounded signals both in
the original and transformed domains, the multiplying signal
µ(t) must satisfy the following conditions:

µ(t) ̸= 0,±∞ ∀t (3)

Additionally, to maintain identical initial conditions for x(t)
and X(t), the values of µ(t) at t = 0 is considered to be unity:

µ(0) = 1 (4)

Hereinafter, the following notation is used to show the
correspondence between x(t) and X(t):

x(t)←→ X(t) (5)

An important feature of the above transformation is the
derivative property, which can be readily expressed as follows:

dx(t)
dt
←→ dX(t)

dt
+

µ
′
(t)

µ(t)
X(t) (6)

where µ
′
(t) is the time derivative of µ(t). Note that the term

µ
′
(t)

µ(t) is in Hz; accordingly a new variable, s(t), which implies
time-dependent frequency, may be defined as follows.

s(t) ≜
µ

′
(t)

µ(t)
(7)

Note that for a given s(t), (7) may also be viewed as a
differential equation to be solved for µ(t) with the initial
condition stated in (4). The solution of this differential
equation is expressed in (8), which is commonly known as
the integrating factor in the theory of differential equations.

µ(t) = e
∫ t
0
s(τ)dτ (8)

It is important to note that due to their linear nature
the Kirchhoff’s Voltage and Current Laws (KVL and KCL)
remain invariant under the transformation in (5), indicating
that the transformed voltages and currents continue to satisfy
the original KVL and KCL equations. The transformed
circuit retains the original topology but features elements
whose characteristics are modified as a result of the
transformation. Hereinafter, such a transformed circuit is
called a continuous-time companion circuit. The behavior
of elementary circuit elements in the companion circuit is
discussed in the following subsections.

A. Independent Voltage and Current Sources
For a voltage source, e(t), or a current source, j(t), the

respective transformed signals E(t) and J(t) are as follows.

E(t) =
e(t)

µ(t)
= e(t)e−

∫ t
0
s(τ)dτ

J(t) =
j(t)

µ(t)
= j(t)e−

∫ t
0
s(τ)dτ (9)

B. Resistors
A resistor’s v− i characteristics can be simply transformed

as given in (10). It is important to note that the resistor may
be time-varying; however, its instantaneous resistance remains
unaffected by the transformation.

v(t) = Ri(t) ←→ V(t) = RI(t) (10)

C. Inductors and Capacitors

Inductors and capacitors in the original and companion
circuits are affected by the derivative property of the
transformation. Equations (11) and (12) describe the behavior
of inductors and capacitors in both the original and companion
circuits, respectively.

v(t) = L
di(t)

dt
←→ V(t) = L

dI(t)
dt

+ Ls(t)I(t) (11)

i(t) = C
dv(t)

dt
←→ I(t) = C

dV(t)

dt
+Cs(t)V(t) (12)

These indicate that (i) an inductor is transformed into an
inductor of the same inductance in series with a resistor with
a resistance of Ls(t); (ii) a capacitor is transformed into a
capacitor of the same capacitance in parallel with a resistor
with a conductance of Cs(t). Table I provides a summary of
the original and companion models.

TABLE I
BASIC ELEMENTS IN ORIGINAL AND COMPANION CIRCUIT DOMAINS

Original Circuit Continuous-time Companion Circuit

−+

e(t)

−+

e(t)e−
∫ t
0 s(τ)dτ

j(t) j(t)e−
∫ t
0 s(τ)dτ

R R

L L Ls(t)

C

1/(Cs(t))

C

D. Lossless Transmission Lines

Fig. 1 shows the model of a lossless line where ZC and τd
are the characteristic impedance and traveling time [22].

+

ikm(t)

jk(t)

−

ZC

+

imk(t)

jm(t)

−

ZCvk(t) vm(t)

Fig. 1. The transmission line model.

The two current sources are determined using past values
of voltages and currents, as follows.

jk(t) = −
1

ZC
vm(t− τd)− imk(t− τd) (13)

jm(t) = −
1

ZC
vk(t− τd)− ikm(t− τd) (14)



The DP model of the line is obtained by converting the
circuit in Fig. 1 into its companion equivalent, as in Fig. 2.

+

Ikm(t)

Jk(t)

−

ZC

+

Imk(t)

Jm(t)

−

ZCVk(t) Vm(t)

Fig. 2. The companion model of the transmission line.

The history current Jk(t) is calculated as follows.

Jk(t) = jk(t)e−
∫ t
0
s(τ)dτ

=

(
− 1

ZC
vm(t− τd)− imk(t− τd)

)
e−

∫ t
0
s(τ)dτ

=

(
− 1

ZC
vm(t− τd)− imk(t− τd)

)
e−

(∫ t−τd
0 +

∫ t
t−τd

)
s(τ)dτ

=

(
− 1

ZC
Vm(t− τd)− Imk(t− τd)

)
e−

∫ t
t−τd

s(τ)dτ (15)

Similarly, the history current Jm(t) is calculated as follows.

Jm(t) =

(
− 1

ZC
Vk(t− τd)− Ikm(t− τd)

)
e−

∫ t
t−τd

s(τ)dτ

(16)
The companion circuit is generally time-varying, which

increases the computational complexity of its solution. The
only scenario where the circuit remains time-invariant occurs
when s(t) is a complex constant as follows:

s(t) = σ0 + jω0 (17)

where σ0 and ω0 are constant values. Given the conditions
in (3), σ0 must be zero to prevent µ(t) from becoming zero
or reaching infinite magnitude at any point in time. Thus, the
integrating factor simplifies to the following:

µ(t) = ejω0t (18)

which is the widely accepted and commonly used form in the
literature on dynamic phasors, although it is only a particular
case of the general theory presented above. In the analysis of
power systems, the parameter ω0 is usually selected as the
nominal excitation frequency of the circuit, which transforms
sinusoidal source(s) to dc-type quantities. Note that for certain
circuits, s(t) may take a time-varying form. However, such
special cases are not discussed due to space limitations.

An example of ac-excited circuit is shown in Fig. 3. Note
that the source is shown as a complex sinusoid rather than
in a real-valued format. By converting the elements to DP
equivalents, the continuous-time companion circuit model in
Fig. 4 is obtained. Note that the companion circuit is excited
with a dc-type source and as such simplifies to the one
commonly used in conventional phasor analysis of ac circuits
when, in steady state, the inductor is short-circuited and the
capacitor is open-circuited. It must be noted that circuit in
Fig. 4 is able to represent the transients before steady state, a
feature that is not available using conventional phasors.

Ae(jω0t+ϕ)

L

C R

Fig. 3. An exemplar AC circuit with RLC elements.

−+Aejϕ

L jω0L

C 1
jω0C

R

Fig. 4. Continuous-time companion circuit model of Fig. 3.

Computer-based simulation of networks using dynamic
phasors requires the development of discretized models for
basic circuit elements in a similar fashion to conventional
EMT models. These models are typically implemented as
Norton equivalents to facilitate nodal analysis. By applying
the trapezoidal integration method with a time-step of ∆t, the
discretized companion model of a generic element is obtained
as shown in Fig. 5, with the corresponding values for RLC
elements listed in Table II. The parameter g in Fig. 5 represents
the conductance of the companion model. The transmission
line DP model shown in Fig. 2 is still valid. However, the
equations (16) and (16) are modified as follows.

Jk(t) =

(
− 1

ZC
Vm(t− τd)− Imk(t− τd)

)
e−jω0τd (19)

Jm(t) =

(
− 1

ZC
Vk(t− τd)− Ikm(t− τd)

)
e−jω0τd (20)

I(t) g

+ −
V(t)

kII(t−∆t) + kVV(t−∆t)

Fig. 5. Discretized companion model of a basic element.

III. SELECTION OF THE TIME-STEP AND THE ROLE OF
CIRCUIT’S EIGENVALUE

Selection of the time-step size for time-domain simulation
of circuit is heavily influenced by the frequency of source(s)
and more importantly by the natural frequencies of the circuit
itself. It is widely believed that since dynamic phasors shift the
frequency of the sources and track the envelope of the natural
waveform, they inherently allow much large time-step sizes



TABLE II
PARAMETERS OF DISCRETIZED COMPANION MODELS

Element g kI kV

R
1

R
0 0

L

∆t

2L

1 +
jω0∆t

2

1− jω0∆t

2

1 +
jω0∆t

2

∆t

2L

1 +
jω0∆t

2

C
2C

∆t

(
1 +

jω0∆t

2

)
-1 −2C

∆t

(
1 +

jω0∆t

2

)

than EMT solvers. This is not generally valid as it ignores the
impact of frequency shifting on the natural frequencies of the
circuit. This section presents the impact of transformation to
the dynamic phasor domain on the eigenvalues of the circuit.

The state-space equations of a (linear) circuit without its
sources are as follows.

dx(t)
dt

= Ax(t) (21)

where x(t) is the state-space vector and A is the state matrix,
whose eigenvalues are the natural frequencies of the original
circuit. Transforming (21) into the continuous-time dynamic
phasor domain results in the state-space equations of the
companion circuit as follows.

dX(t)

dt
+ jω0X(t) = AX(t) (22)

where X(t) is the transformed state vector. By separating
the real and imaginary components of (22) into two sets of
equations, the state equations of the companion circuit my be
written as follows:

d
dt

[
XR(t)
XI(t)

]
=

[
A ω0I
−ω0I A

] [
XR(t)
XI(t)

]
(23)

where XR(t) and XI(t) are the real and imaginary components
of X(t), and I is the identity matrix of the same size as A.
The eigenvalues of the companion circuit are computed by
solving the following equation for λ.

det

[
A− λI ω0I
−ω0I A− λI

]
= 0 (24)

Using block matrix algebra, (24) simplifies to

det
[
(A− λI)2 + ω2

0I
]
= 0 (25)

which further simplifies to

det [A− (λ+ jω0)I]× det [A− (λ− jω0)I] = 0 (26)

which shows that the eigenvalues of the companion circuit
are identical to those of the main circuit, but are shifted by
±jω0. Thus, if Λmain is the set of eigenvalues for the main (i.e.,
original) circuit, the eigenvalue set for the companion circuit
in the dynamic phasor domain is

Λcomp = {λ± jω0 : λ ∈ Λmain} (27)

The simulation time-step for a system modeled in the time
domain using natural quantities must be significantly smaller
than the reciprocal of the maximum eigenvalue. This is a
well-known fact as a large eigenvalue denotes a short transient
or high-frequency oscillations or both; hence

∆tEMT ≪
1

max ({|λ| : λ ∈ Λmain})
(28)

For a DP solution to produce equally accurate results, the
simulation time step must satisfy the following condition,
which takes into account the shift in the eigenvalues of the
original circuit after transformation to the DP domain.

∆tDP ≪
1

max ({|λ± jω0| : λ ∈ Λmain})
(29)

This clearly proves that for an equally accurate solution,
the dynamic phasor model requires an even smaller time-step
size than the EMT solver, which is contrary to the widely-held
notion that dynamic phasors inherently allow usage of a larger
time step. It is, therefore, evident that simulating a dynamic
phasor model with a time step calculated as per (28), or a
larger time step as it is often practiced, is bound to produce
inaccurate results. How ’noticeable’ these inaccuracies are also
depends on the eigenvalues of the circuit. This fundamental
concept may be readily illustrated using an example.

Figs. 6, 7, and 8 show the traces of the voltage across the
resistor in circuit in Fig. 3 for different parameters as in Table
III, which also lists the eignevalues of the circuit for the given
parameter values. Note that the input voltage is sinusoidal,
with a unity amplitude and a frequency of 60 Hz. Each figure
presents the analytical response of the circuit, which can be
easily obtained and is used as the benchmark, alongside the
EMT and DP simulation results. The DP model is created
with a shift frequency of ω0 = 2π × 60 = 377 rad/s. For
all simulations, a time-step of ∆t = 1

20|λ|max
is used for both

EMT and DP models. Time steps calculated in this manner
satisfy (28), and produce EMT simulation results that closely
match the benchmark analytical results. Due to the shift in
eigenvalues after the circuit is transformed to the dynamic
phasor domain (see Table III) the time-step sizes selected
based upon the original eigenvalues are not small enough to
produce equally accurate results for the dynamic phasor model.
The discrepancies between the dynamic phasor and benchmark
results are particularly pronounced in Fig. 6, and are also
visible in Fig. 7. The mismatch decreases when the circuit’s
damping, i.e., σ, is increased tenfold as shown in Fig. 7, and
becomes negligible when the damping is 100 times larger, as
shown in Fig. 8. It is clear that the damping of the eigenvalues
has a profound impact on whether the selected time step results
in any noticeable inaccuracies for the dynamic phasor solution
of the circuit. With a large damping, the transients associated
with a particular natural frequency die out faster and as such
the inaccuracy caused by a larger time step will be negligible.
This observation reconfirms that claim made in this paper that
the ability to use large time steps for dynamic phasor models
is not a universal possibility and is only available when the
eigenvalues of the circuit have adequately large damping.

For switching circuits, all possible combinations of
switch states can be considered, yielding corresponding sets



of eigenvalues. For saturation-type nonlinearities, e.g., in
transformers and machines, a piecewise linear representation
may be used, where each piece produces a set of eigenvalues.
The maximum of |λ| or |λ±jω0| (for EMT or DP simulations)
across all combinations is used for selecting the time-step.

Transmission lines with distributed parameters consist of
infinitely many cascaded LC circuits, yielding an infinite
number of poles. As such, the previous analysis is not
applicable, as it would yield a time step of zero (∆t = 0).
However, note that both the original and companion models
(Figs. 1 and 2), are formulated in the continuous-time domain.
Consequently, the time step in their discretized simulation is
constrained only by the delay time, τd. Therefore, transmission
lines do not introduce any additional constraints other than
that the simulation time step must be smaller than the line
latency. It must be noted that a line’s latency imposes an
upper time-step size limit that must not be violated. In practice,
however, much smaller simulation time-steps are often needed
due to the presence of other elements in the network and/or
high-frequency sources, such as power-electronic converters.
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Fig. 6. Voltage of resistor with λ = 0.05± j188 and ∆t = 266 µs.

IV. ACCURACY OF THE STEADY-STATE SOLUTION

While sufficiently small time steps are needed in both EMT
and dynamic phasor solutions in order to accurately represent
the transient behavior of a circuit, it is also important to
note the impact of the simulation time step on the accuracy
of the solutions in steady state. Solutions in steady state
of the continuous-time state equations of the original circuit
and of the circuit transformed to the dynamic phasor domain
are shown next. It is followed by their solutions when the
equations are discretized using the trapezoidal integration rule.

A. Solution of Continuous-Time State Equations

Consider the state equations of a linear circuit with
sinusoidal inputs as follows:

dxc(t)

dt
= Axc(t) +Bu(t); u(t) = αejω0t (30)
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Fig. 7. Voltage of resistor with λ = 0.5± j188 and ∆t = 266 µs.
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Fig. 8. Voltage of resistor with λ = 5± j188 and ∆t = 266 µs.

where xc(t) is the state vector, A is the state matrix, B is the
input matrix, and α is a constant matrix of the magnitudes of
the sinusoidal sources. The superscript c is used to denote the
fact that these equations represent the continuous-time model.
The solution of (30) in steady state will be of the sinusoidal
form and may be readily obtained as follows:

xc
ss(t) = (jω0I−A)

−1
Bαejω0t (31)

The subscript ss denotes the solution in steady state. Note
that state-space analysis and nodal analysis in EMT can
be used interchangeably due to the equivalence between
state-space models and EMT companion circuit models [23].
Transforming (30) into the continuous-time dynamic phasor
domain results in the continuous-time companion circuit’s
state-space equations as follows:

dXc(t)

dt
= (A− jω0I)X

c(t) +BU(t); U(t) = α (32)



TABLE III
PARAMETER AND EIGENVALUES FOR THE CIRCUIT IN FIG. 3

R [Ω] L [mH] C[F] Eigenvalues Recommended
∆tEMT [µs]

Shifted
Eigenvalues

Recommended
∆tDP [µs]

Results
in

1.0 0.00282 10.0 0.05± j188 266 0.05± j565
0.05± j189 88 Fig. 6

1.0 0.02829 1.0 0.5± j188 266 0.5± j565
0.5± j189 88 Fig. 7

1.0 0.2827 0.1 5.0± j188 266 5.0± j565
5.0± j189 88 Fig. 8

where Xc(t) is the transformed state vector. Note that all
sources in the companion circuit are dc. The steady-state
response obtained from (32) is expressed as follows:

Xc
ss = (jω0I−A)

−1
Bα (33)

As expected, (31) and (33) yield results that show conformity,
thanks to the representation and solution of both in the
continuous time domain.

B. Solution of Discretized State Equations

The state equations of both of original and transformed
circuits may be discretized using an integration rule for
computerized simulation. Discretization of (30) using the
trapezoidal method yields the following equations. Note that
the superscript d denotes discretized values.

xd(t) = xd(t−∆t) +
∆t

2

(
Axd(t) +Axd(t−∆t)+ (34)

Bu(t) +Bu(t−∆t)
)

The solution of the above state equations to sinusoidal inputs
in steady state may be readily obtained as follows:

xd
ss(t) =

(
jω0

tanβ

β
I−A

)−1

Bαejω0t (35)

where
β =

ω0∆t

2
(36)

Similarly, the discretized version of (32) using the trapezoidal
rule is obtained as follows:

Xd(t) = Xd(t−∆t) +
∆t

2

(
(A− jω0I)X

d(t)+ (37)

(A− jω0I)X
d(t−∆t)+

BU(t) +BU(t−∆t)
)

The solution of these equations in steady state to sinusoidal
inputs are as follows:

Xd
ss = (jω0I−A)

−1
Bα (38)

Comparing the solutions of the continuous-time and
discrete-time dynamic phasor models in (33) and (38) shows
that discretization does not affect the accuracy of the steady
state solution. Therefore, regardless of the time-step size, it
is expected that the dynamic phasor model produces correct
samples of the steady state response. Examining the solutions
of the original model, i.e., (31) and (35), clearly shows that the
time-step size has a direct impact on the ability of the EMT

solution to correctly estimate the steady state response. It is
clearly seen that the EMT solver is reasonably accurate (but
not exact) only when the time step, ∆t, is sufficiently small
so that tanβ/β ≈ 1.

Fig. 9 presents the steady-state response of the RLC circuit
of Fig. 3 with parameters corresponding to the last row of
Table III for a large time step of 2.652 ms, which greatly
exceeds the minimum required time step for accuracy during
transients. As seen, the dynamic phasor solution samples
perfectly match the analytical result, while the EMT solution
fails to generate an accurate result with the same time-step.
The time-step is chosen to be large enough to magnify the
discrepancies.
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Fig. 9. Steady state response of resistor voltage with λ = 5 ± j188 and
∆t = 2.652ms.

V. CASE STUDY

The IEEE 9-bus system [24] (Fig. 10), is considered
for EMT and DP simulations. The transmission lines and
transformers are modeled using π−sections and coupled
circuits, respectively. All data for this example is adopted from
[24]. The simulations consider the normal operation of the
systems as well as its response to a symmetrical fault at bus
8. The eigenvalues under normal and fault operating modes
are presented in Table IV. The maximum absolute eigenvalue
is identified in each case and used to calculate the time-steps,
defined as one-twentieth of the reciprocal of the magnitude of
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Fig. 10. Schematic diagram of the IEEE 9-bus system.

the critical eigenvalue (see Table V). EMT simulations with a
time-step of 8 µs are taken as the benchmark.

TABLE IV
EIGENVALUES OF THE IEEE 9-BUS SYSTEM

Normal Operation

−405.9± 5591.5j −651.1± 5694.4j −69.2
−450.7± 3587.5j −559.9± 2818.6j −43.7
−553.8± 2330.2j −531.5± 772.8j −39.7
−6.5 −1.68 −1.38
−0.0581 −0.0405 −0.0414

Faulted Operation

−371.5± 5619.7j −194.6± 4193.1j −69.2

−439.7± 3202.1j −465.3± 2853.7j −46.5
−613.7± 1437.3j −40.3 −39.0
−4.2 −1.4 −0.0595
−0.04256 −0.04053 −0.0002492

TABLE V
TIME-STEP CALCULATION FOR IEEE 9-BUS SYSTEM

Condition |λ|max ∆tEMT [µs] |λ|max ∆tDP [µs]

Normal 5731.48 8.7 6106.18 8.2
Faulted 5631.99 8.8 6008.21 8.3

The phase-a voltage of bus 7 under normal operation
is plotted in Fig. 11. As the system reaches steady-state,
the waveform from the DP simulation produce samples that
perfectly lie on the benchmark waveform, despite the fact that
the time step of the DP simulation (4000 µs) is significantly
larger than that of the EMT simulation. This confirms the
observation made earlier that DP simulations produce accurate
results in steady state regardless of the time-step size.

On the contrary, and as shown in Fig. 12, the transient
response of the same voltage using DP simulations deviates
from the benchmark EMT results with a 8 µs for a solid fault
at t = 0.037 s at bus 8, with the use of a sub-millisecond
time-step (200 µs) in the DP simulation. This is because the
DP solver indeed requires a simulation time-step less than
8.2 µs (see Table V) and shows the invalidity of commonly
held notion that DP simulations can be conducted with large
time steps reaching into the millisecond range.

Close examination of the oscillations during fault in Fig.
12 reveal a frequency of 2π

1.48 ms = 4245 rad s−1, which

corresponds to the pair of eigenvalues −194.6 ± 4193.1j,
highlighted in gray in Table IV. This oscillation dissipates
within five times its associated time constant, which is 5 ×

1
194.6 s−1 ≈ 25 ms, which is significantly longer than the time
step of 200µs. This clearly shows that the low damping of this
critical eigenvalue is the reason why the selected time step of
200 µs does not generate conforming results.

These observations clearly show that DP simulations cannot
accurately reproduce electromagnetic transient responses when
using larger time-steps. This invalidates the common notion
that larger time-steps can be inherently employed in dynamic
phasor simulations to improve computational efficiency. The
ability to use larger time steps and still produce reasonably
accurate results directly depends on the damping of natural
frequencies of the circuit.
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Fig. 11. Voltage of bus 7 voltage during normal operation.
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VI. CONSIDERATIONS FOR CONVERTERS

Power electronic converters generate harmonics that excite
the network at different frequencies. Converters are often
treated as sources, and depending on the way they are modeled
may or may not be included in the network’s admittance
matrix. In general, the harmonics generated by converters can
be treated in two ways in the DP domain. Let ω0 be the
fundamental frequency and nω0 be a harmonic frequency of
interest. The shift frequency, ωsh, can be selected to be either
ω0 or ±nω0.

For ωsh = ω0 the eigenvalues of the companion circuit will
be λ± jω0. This also shifts the harmonics of the source (i.e.,
the converter) by ω0, resulting in (±n± 1)ω0. Therefore, the
time step must not only satisfy (29) but also must satisfy the
following inequality:

∆tDP ≪
1

(n+ 1)ω0
(39)

which indicates that the time step must be small enough to
capture the highest frequencies in the source. For example,
consider the two lowest-order harmonics in a 12-pulse
line-commutated converter (LCC), i.e., 11 and 13. For a 60
Hz system, n = 13 yields

∆tDP ≪ 189 µs (40)

A simulation time-step in the range of 10 − 20 µs, which is
normally used in the simulation of LCCs would easily satisfy
this condition. Clearly, shifting the source harmonics by ω0

and leaving high-frequency components in the source will not
improve the time-step requirements and one has to select small
time-steps to capture the source harmonics.

For ωsh = nω0 the eigenvalues of the companion circuit
will be λ± jnω0. Note that, |λ± jnω0| ≥ nω0; thus,

∆tDP ≪
1

|λ± jnω0|
≤ 1

nω0
(41)

For the same harmonic, i.e., n = 13 and ω0 = 2 × π × 60
rad/s, the time-step must satisfy following inequality for an
accurate simulation.

∆tDP ≪ 204 µs (42)

The recommended time-step is again in the 10− 20 µs range.
The situation becomes even more challenging when

two-level voltage source converters (VSCs) are employed in
the network. Consider operation of a two-level VSC under
sinusoidal pulse-width modulation (PWM) with a frequency
modulation index of mf. Considering the same line of
reasoning as outlined above for an LCC, the time-step of
simulations must be selected such that

∆tDP ≪


1

(mf + 1)ω0
; ωsh = ω0

1

mfω0
; ωsh = mfω0

(43)

For a frequency modulation index of mf = 21 in a 60 Hz
system, ∆tDP ≪ 126 µs, and therefore, the recommended
time-step, irrespective of the effects of circuit eigenvalues, is
approximately 10− 20 µs.

In modular multi-level voltage source converters (MMCs),
with N sub-modules per arm and a system frequency of
f , time intervals in the order of 1

Nf must be resolved
to accurately simulate the staircase sinusoidal waveform
produced at the AC terminal of the converter. This requirement
applies regardless of the simulation method, whether EMT
or DP. It is also worth noting that, in DP simulation, the
staircase sinusoidal waveform appears as a DC-type signal
superimposed with small ripples at a frequency of Nf . For
example, if N = 200 and f = 60, the time-step must be
significantly less than 83 µs, irrespective of the simulation
method and without accounting for the network eigenvalues.

Clearly converters further constrain the time-step size in DP
simulations. Depending on the shift frequency, this restriction
may arise from the remaining source harmonics or the shift in
the eigenvalues of the companion circuit.

VII. CONCLUSION

A comprehensive analysis of modeling using of DPs was
presented, yielding important insights into their accuracy
and applicability. The core contribution of the paper was to
demonstrate that modeling a dynamical system in the DP
domain introduces a shift in the eigenvalues of the system,
which necessitates usage of smaller-than-EMT time-steps.
This underlying limitation, which was analytically proven in
this paper, stems from the eigenvalues of the circuit and the
shift frequency that is sued to form dynamic phasors. The
findings of the paper invalidate the widely-held notion that
DPs inherently support higher time-steps for all scenarios.
Exemplar circuits, including the IEEE 9-bus system, for which
the eigenvalues can be readily calculated were used to illustrate
the theory presented in the paper. It was shown that use of
DPs with large time steps can produce reasonably accurate
results only when the damping of critical natural frequencies
is sufficient so that the transient associated with the natural
frequency dies out rapidly enough. Only in systems where
eigenvalues do have enough damping, does the simulation of
the companion model in the DP domain using large time-steps
produce results that do not deviate significantly from EMT
results. The paper also demonstrated that DPs produce exact
results for the simulation of steady-state operation at arbitrarily
large time steps, while EMT simulations fail to do so.
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