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Abstract-- The problem of electromagnetic wave propagation, 

despite its importance, does not have a simple analytical solution. 
Therefore, approximations—such as assuming a semi-infinite 
homogeneous ground plane—are of practical interest. Using 
quasi-static approximations, Carson and Pollaczek derived 
integral equations to calculate the electromagnetic field produced 
by a horizontal current over a lossy ground plane. Carson 
proposed the first solution to these expressions using power series 
expansions, but this approach lacks uniform convergence. Since 
then, various efforts have been made to obtain more accurate 
solutions. In this sense, main approaches have been developed to 
solve these integral equations. The first involves modifying the 
integrand to obtain an analytic solution, while the second relies on 
using numerical integration techniques, which are essential for 
solving integrals without closed-form solutions. The accuracy of 
numerical methods is influenced by the choice of integration 
scheme, order, and number of samples. However, theoretical 
expectations of improved accuracy with higher-order methods and 
increased sample points are often limited by numerical 
representation constraints. One of this constrain is the finite bit 
representation in binary calculations. Despite these limitations, 
numerical methods remain the only viable approach for certain 
integrals. This work presents the implementation of Newton and 
Gauss integration methods, analyzing their performance 
concerning method type, order, and sample count. Since Carson 
and Pollaczek’s equations include a decreasing exponential term, 
the infinite upper limit is replaced by a finite bound without 
exceeding a predefined error threshold. By applying this limit 
substitution and numerical techniques, we obtain a new solution 
that ensures uniform convergence across all cases. 
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I.  INTRODUCTION 
N the area of electrical power systems there are two transient 
phenomena that involve integrals that lack analytical 

solutions. The first of these is known as the Carson integral [1], 
which models the behavior of the electromagnetic field on the 
ground due to the flow of current in an overhead line. The 
second is the Pollaczek integral [2], which models the 
distribution of the electromagnetic field in the underground due 
to the flow of current in an underground cable. The first 
approximation to the Carson integral was made by Carson using 
power series [1]. Since then, several solutions for this integral 
have been proposed: a) by replacing the integrand with 
functions that behave in a similar way, but that exhibit similar 
behavior but have known analytical solutions [3-15], b) using 
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different types of series that provide solutions to the integral [1, 
16, 17], and c) applying numerical methods [18-21]. Similarly, 
for the Pollaczek integral, approximations have been made by 
changing functions to more manageable forms for analysis [21-
26], and numerical methods have also been applied [28-35]. 
These integrals present two main challenges: a) an infinite 
upper limit, and b) variable parameters that depend on factors 
such as geometry, frequency, medium composition, and 
conductor height. This results in virtually infinite possible 
configurations, meaning that each specific case presents a 
unique integral to solve. Additionally, when the problem 
depends on frequency, the number of integrals to solve 
increases proportionally to the number of frequencies involved 
in the study. 

It is important to address that the use of numerical methods 
has not been fully adapted or studied for solving these integrals 
due to the challenges in calculating the coefficients of high-
order numerical integration formulas [36]. The difficulty in 
calculating the coefficients for both Gaussian and Newtonian 
formulations has led to the predominance of low-order formulas 
until recent years. However, with the advancement of 
computing technology, higher-order formulas can now be 
explored. Despite this capability, a thorough investigation has 
yet to be conducted to determine whether increasing the number 
of data points and the order of the formulas improves the results 
or causes degradation. This is the primary objective of the 
present work. 

Therefore, this article presents a study of high-order Newton 
formulas (both Open and Closed Newton Formulas) and Gauss-
Legendre Quadrature. For Newton's Open formulas, an order of 
33 was achieved, as higher orders led to computational errors 
due to limitations in 64-bit computing. The same issue was 
encountered with Newton's Closed formulas at order 33. For 
Gauss-Legendre Quadrature, coefficients can be calculated up 
to very high orders (e.g., 200 or more). However, beyond a 
certain point, the solutions began to degrade instead of 
improving, so only the first 33 orders were implemented in this 
study. 

II.  NUMERICAL METHODS 
Integration methods can be evaluated based on several 

algebraic characteristics that indicate their proper development: 
1) the coefficients should exhibit symmetry from the ends 
toward the center, 2) the coefficients should be rational 
numbers, and 3) the sum of coefficients is an integer  equal to 
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the number of intervals used in their derivation. 
 
In the case of Gauss-Quadrature, the sum of coefficients is 

always 2 because the method is derived from integrating over 
the interval from -1 to +1, which has a length of 2. However, as 
high-order methods are developed, there is a risk of violating 
these algebraic principles, which can lead to inaccuracies in the 
numerical solutions.  

In this section we outline the algebraic procedure for 
generating all the aforementioned methods. As an example, the 
14th-order method derived from this procedure is presented to 
demonstrate how these methods exhibit the previously 
described algebraic properties. Furthermore, a function with 
behavior similar to Carson’s and Pollaczek’s integrals is 
numerically integrated using all the generated methods. A 
numerical study is performed on this integral to verify whether 
increasing the number of samples improves accuracy and 
whether higher-order methods achieve greater precision. 

A.  Closed Newton-Cotes formulas 
Assuming we aim to approximate the definite integral of a 

function in the interval [ , ]a b , one method to calculate this 
approximation consists of using the Newton interpolating 
polynomial with forward differences. For this type of formula, 
we have that ( )h b a n= −  and ,  with 0, ,kx a kh k n= + = … . 

By notation, for closed formulas it is considered that 0a x=  
and nb x= . For Newton’s forward differences interpolating 
polynomial with  equally spaced data points between the know 
points ( )( ) ( )( )0 0, , , ,n nx f x x f x… , the formula is:  

( ) 00
Δ ,

n sk
kk

f x f  
  =  

≈∑  (1) 

( 1)...( 1)
 0 !

with  and .s s s s k
kk

x x sh   − − +
  = 
 

= + By integrating both 

sides of (1) from 0a x=  to nb x= , and considering the 
change of variable used, we obtain: 
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kkx

f x dx h f ds 
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≈ ∑∫ ∫  (2) 
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0

n s
nk k

b ds 
  
 

= ∫  and substituting into (2), we obtain 

the formulation of the closed Newton-Cotes as: 

 ( )
0

00
Δ

nx n k
nkkx

f x dx h f b
=

≈ ∑∫  (3) 

The development of high-order integration formulas is a 
repetitive process that encounters a numerical constraint due to 
the division by the term k!, where k increases up to n, the order 
of the formulation. As the order increases, computational 
limitations become evident, reaching a point where exact 
calculations of the coefficients involved in the formula are no 
longer feasible, and accuracy of the resulting integral is 
compromised. The resulting formula derived from this process 
when applied to the closed Newton formula of order 14 is 
presented in (4). 

(

)

1017 1108 2579 3899 5153
0 1 2 3 44028 557 1196 398 27814

3145 4654 4427 4654 3145
5 6 7 8 989 99 81 99 89

5153 3899 2579 1108 1017
10 11 12 13 14278 398 1196 557 4028

= + +

+
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− −

+ − + − +
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B.  Open Newton-Cotes formulas 
To approximate a definite integral of a function in the 

interval [ , ]a b . For this type of formulas, ( ) ( )2h b a n= − +

and ,kx a kh= +  with 0, , 1k n= … +  are taken. For open 
formulas, by notation, 1x a− =  and 1nx b+ =  are considered. 
Considering the Newton interpolating polynomial with 
advanced differences for equally spaced points that passes 
through the points ( )( ) ( )( )1 1 1 1, , , ,n nx f x x f x− − + +…  we 

have ( ) 00
Δ

n sk
kk

f x f  
  =  

≈∑  with 0x x sh= + . Integrating 

both sides from 1a x−=  to 1nb x +=  and taking into account 
the change of variable used, we obtain 

 ( )1

1

1
001

Δ
nx n n sk

kkx
f x dx h f ds

+

−

+  
  =  −

≈ ∑∫ ∫  (5) 

Defining 
1

1

n s
nk k

c ds
+  

  
 −

= ∫  and substituting in (5), we obtain 

the formulation of the open Newton-Cotes formulas as: 

 ( )1

1
00

Δ
nx n k

nkkx
f x dx h f c

+

− =
≈ ∑∫  (6) 

The process is similar to that of closed formulas, the one of 
order 14 for example is: 

(

)

14

1490 3381 20315 25921 42351
0 1 2 3 4247 104 134 54 37

77127 44581 100157 44581 77127
5 6 7 8 937 15 30 15 37

42351 25921 20315 3381 1490
10 11 12 13 1437 54 134 104 247

= + +

+ +

+ +
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C.  Gauss-Legendre Quadrature 
The formula for the approximation of an integral is defined: 

( ) ( )
1

1
0

n

i i
i

f x dx a f x E
+

−
=

= ⋅ +∑∫ , (8) 

where ix  are the roots of the Legendre polynomial used to 
approximate the integral. To approximate the integral by a 
Gaussian-Legendre Quadrature method, the orthogonal basis 
( ) 2 31,   ,   ,   , , nf x x x x x=   and the region of orthogonally of 

the Legendre polynomials is used. 
By analyzing the process of obtaining the Gauss-Legendre 

Quadrature formulations, a general procedure can be obtained 
for any order. For an approximation of α  terms, we start from 
the roots of the Legendre polynomial ( ) P xα  and a system of 
equations of α α× . For example, if we have that 2α = , we 
arrive at the following system of equations: 

0 0 0
0 0 1 1 2 22 = + +a x a x a x⋅ ⋅ ⋅  (9a) 

1 1 1
0 0 1 1 2 20 = + +a x a x a x⋅ ⋅ ⋅

 

(9b) 



2 2 22
0 0 1 1 2 23 = + +a x a x a x⋅ ⋅ ⋅

 
(9c) 

In matrix form we have: 
0 0 0
0 1 2 0
1 1 1
0 1 2 1
2 2 2 2
0 1 2 2 3

2
0

x x x a
x x x a
x x x a

    
     =    
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 (10) 

The general form of this system of equations is with nα = , 
from which we obtain: 

0 0 0 0
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


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    



, (11) 

where nx  are the roots of the nth Legendre polynomial. 
In this way it can be easily noted that the only restriction on 

the order of the approximation is the calculation of the inverse 
of the matrix. To make the change at a general interval, we must 
have, 

( ) ( )( ) ( )
1

1
0

/ ,
2 k

b

a

N

k
k

b af z dz f z dz dx dx w f z
+

−
=

−
= =∫ ∑∫  (12) 

where 
( )

,   and .
2 2

k
k k k

b a x b adz b a z w a
dx

− + +−
= = =  

The system of equations is formed to calculate the 
coefficients of the formulation, thus obtaining the formula for 
the Gauss-Legendre Quadrature of order 14, 

(

)

296 421 235 91 279
0 1 2 3 42 9625 5983 2193 652 167814

643 253 110 253 643
5 6 7 8 93454 1275 543 1275 3454

279 91 235 421 296
10 11 12 13 141678 652 2193 5983 9625

= + + +

+ + + + +

+ + + + +
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f f f f f
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D.  Numerical Example 
This section shows the results of all the formulas for the 

following function: 
 ( ) ( ) 02

0

2 .01 .cos tf t t t e dt
π −= ∫   

In green, the five formulas are selected (the one with the 
highest order is also selected to analyze its behavior) for the 
presented cases; the selection is made based on the maximum 
error knowing that it starts with 800 samples in steps of 100 up 
to 10000 samples. It is selected with the maximum error 
because an adequate number of samples cannot be selected a 
priori, so regardless of the number of samples (greater than 800 
samples), there will be an error that is between the maximum 
and the minimum. The results from 4 examples, which are in 
the public repository with the link: 
https://docs.google.com/document/d/1iprolV2vdReGK7lYvF
KIOQo2OwDzQoHw/edit. 

 

TABLE I 
MAXIMUM PERCENT DIFFERENCE OF NEWTON CLOSE FORMULAS, NEWTON 

OPEN FORMULAS AND GAUSS QUADRATURE FORMULAS 
CLOSE  NEWTON  FORMULA 

Orden Error min Samples Error max Samples 
1 3.7604e-07 10000 5.8757e-05 800 
2 4.6185e-14 9600 7.2476e-10 800 

3 8.7041e-14 9800 1.6226e-09 800 
4 7.1054e-15 800 2.6645e-14 6600 
5 3.5527e-15 1000 4.0856e-14 800 
6 0 5200 1.7764e-14 9900 
7 1.7764e-15 3200 1.4211e-14 2300 
8 0 1700 1.0658e-14 2900 
9 2.3803e-13 800 2.558e-13 3600 

10 1.2257e-13 2100 1.4566e-13 8200 
11 2.7356e-13 5400 2.9488e-13 900 
12 2.3981e-13 800 3.1442e-13 9600 
13 1.1084e-11 800 1.1743e-11 9000 
14 3.9801e-11 800 4.2233e-11 9400 
15 2.1151e-11 9600 2.3142e-11 800 
16 4.8342e-11 800 5.5151e-11 8200 
17 3.2592e-10 800 3.3398e-10 9900 
18 6.1739e-10 800 7.063e-10 9900 
19 4.9429e-09 800 5.3217e-09 10000 
20 2.5668e-09 800 3.7003e-09 10000 
21 6.245e-08 800 6.9947e-08 10000 
22 4.408e-08 800 4.619e-08 10000 
23 1.5858e-07 800 1.8307e-07 10000 
24 1.673e-07 800 1.8367e-07 10000 
25 7.3644e-07 800 9.3529e-07 10000 
26 1.0107e-05 800 1.156e-05 10000 
27 4.2095e-06 800 6.0028e-06 10000 
28 5.2403e-05 800 5.7101e-05 9900 
29 1.632e-05 10000 2.5719e-05 800 
30 0.00022325 800 0.00024463 10000 
31 0.0005681 800 0.00058537 9700 
32 0.00060684 800 0.0007625 9800 
33 0.0046319 800 0.0054739 9800 

 

OPEN  NEWTON  FORMULA 
Orden Error min Samples Error max Samples 

0 7.5209e-07 10000 0.00011752 800 
1 1.1284e-06 10000 0.00017584 800 
2 4.0856e-13 10000 1.0147e-08 800 
3 6.8923e-13 10000 1.7214e-08 800 
4 1.7764e-15 5200 6.7502e-13 800 
5 2.1316e-14 4600 1.2115e-12 800 
6 0 6200 6.0396e-14 9600 
7 2.8422e-14 7200 6.5725e-14 5200 
8 0 1600 1.0125e-13 8500 
9 2.7001e-13 9600 3.3573e-13 9900 

10 4.885e-13 10000 1.3216e-12 9600 
11 4.6505e-12 800 4.9027e-12 6300 
12 1.5646e-11 7300 1.7502e-11 9300 
13 1.1664e-11 800 1.3086e-11 7000 
14 6.5317e-11 800 7.5561e-11 8200 
15 1.0414e-10 800 1.1358e-10 6600 
16 8.2971e-10 800 9.0085e-10 8600 
17 2.1208e-10 800 2.4691e-10 8800 
18 8.619e-10 8200 1.015e-09 800 
19 5.9644e-09 10000 6.4218e-09 800 
20 3.2217e-08 800 3.4039e-08 8400 
21 2.5791e-08 800 3.4992e-08 9900 
22 2.7376e-07 800 2.9664e-07 10000 
23 1.0561e-06 800 1.2047e-06 10000 
24 1.633e-07 800 2.359e-07 9800 
25 3.3775e-06 9600 3.4093e-06 800 
26 2.1861e-05 800 2.3536e-05 9900 
27 4.623e-05 800 4.9048e-05 10000 
28 3.3968e-05 800 3.6347e-05 9900 
29 9.6978e-05 800 0.00010696 10000 

https://docs.google.com/document/d/1iprolV2vdReGK7lYvFKIOQo2OwDzQoHw/edit
https://docs.google.com/document/d/1iprolV2vdReGK7lYvFKIOQo2OwDzQoHw/edit


30 0.00089168 800 0.00096582 10000 
31 0.0050718 800 0.0056201 10000 
32 0.0061996 800 0.007866 9900 
33 0.027494 800 0.033993 9900 

 

GAUSS  LEGENDRE  QUADRATURE 
Orden Error min Samples Error max Samples 

1 0 5300 3.0237e-11 800 
2 0 800 9.77e-14 9200 
3 0 4000 8.5265e-14 8000 
4 0 1600 7.4607e-14 9000 
5 0 3200 6.7502e-14 4400 
6 0 3800 5.6843e-14 3400 
7 0 2800 5.6843e-14 9200 
8 0 3800 6.0396e-14 9000 
9 0 3600 6.2172e-14 8900 

10 0 5700 7.1054e-14 8700 
11 0 4400 5.862e-14 7100 
12 0 4800 5.5067e-14 3600 
13 0 2600 5.3291e-14 3900 
14 0 4700 6.3949e-14 9700 
15 0 1700 5.6843e-14 4500 
16 0 1800 5.6843e-14 4800 
17 0 6900 5.5067e-14 5100 
18 0 7200 6.0396e-14 5400 
19 0 3000 6.2172e-14 7300 
20 0 1000 5.5067e-14 6000 
21 1.7764e-15 2000 5.3291e-14 6800 
22 0 6700 5.5067e-14 6600 
23 0 6600 5.862e-14 8600 
24 0 3900 6.0396e-14 7200 
25 0 4100 6.3949e-14 9600 
26 0 3800 5.6843e-14 7800 
27 0 1700 5.5067e-14 8100 
28 0 8000 5.5067e-14 8400 
29 1.7764e-15 4200 5.862e-14 8700 
30 0 5800 5.862e-14 9000 
31 0 4500 5.5067e-14 9300 
32 0 800 5.6843e-14 9600 
33 0 5200 5.5067e-14 9900 

III.  CARSON INTEGRALS 
Considering a uniform line (the line material and the 

surrounding dielectric are homogeneous) and neglecting the 
current displacement, the self and mutual earth impedance 
described the Carson integrals are [1]: 

( )2 2
,

02
h

E ii
jZ j e dαωµ α α α
π

+∞
′−= + −∫  (14a) 

( ) ( ) ( )1 22
,

0

cos
2

h h
E ik

jZ j e x  dαωµ α α α α
π

+∞
′ ′− + ′= + −∫  (14b) 

where µ is the air permeability; i ih h ωµσ′ =  with hi like the 

i-esime conductor height; x x ωµσ′ =  with x  like the 

distance between conductors; 2 fω π=  with f  like the 
frequency and σ  is the earth conductivity. Defining, 

( ) ( ) ( )2

0

, cospJ p q j e q  dαα α α α
+∞

−= + −∫  (15) 

for the self-impedance p 2hφ=  and q 0= . For the mutual-

impedance ( )i k i kp h h h hφ φ φ= + = +  and q xφ= , being 

φ ωµσ= . So, equation (14a) and equation (14b) could be, 

( ), 2 ,0
2E ii
jZ J hωµ φ
π

=  (16a) 

( )( ), ,
2E ik i k
jZ J h h xωµ φ φ
π

= +  (16b) 

A.  Carson Series 

Let it be 2 2r p q= +  and ( )1tan q pθ −= ; Carson’s 
integrals given by equation (15) could be separated in real and 
imaginary parts as [1], J P jQ= + ,  

( ) ( )'
2 4 2 2 3 1

1 2 1ln 1
2 4 2

P s s s
r

π θ σ σ σ
γ

  
= + − + + + −  

  
 (17

) 

( ) ( )'
4 2 4 4 1 3

1 1 2 1ln 1
2 2 4 2

Q s s s
r

π θ σ σ σ
γ

  
= + − − − − + +  

  
 (18

) 
γ in equation (17) and equation (18), is the Euler’s constant and 
the ks , and kσ  are the Carson’s series terms [1]. 

B.  Approximate formulas 
The process to obtain approximate formulas lies in the 

substitution of the term ( )2 jα α+ −  inside the Carson’s 

integral by a function with similar behavior with analytical 
solution. The proposed function by Gary is the following [4], 

( ) ( )22 1
2

j jjj e αα α
α

+ − ≈ −  (19) 

By substituting the proposed function into equation (14a) 
and equation (14b), it is obtained 

( )
2

2
,

0

1
2 2

h
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j eZ j e d
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αωµ α

π α

+∞ −
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,
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2 2

i kh h
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E ik

e xjZ j e d
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α αωµ α
π α

− ++∞

= −∫  (20b) 

These equations have a well-known analytical solution [4], 

, ln 1
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Gary
E ii
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j zZ
h

ωµ
π

 
= + 
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 (21a) 

2

, 2

4 41 ln 1
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Gary ik
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zh zjZ
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ωµ
π

  +
= +  

   
 (21b) 

where ( )1z jφ=  and ( )2 2
ik i kD h h x= + + . 

So, the self and mutual impedance like a function of p  and 
q  are respectively, 

,
2ln 1

2
Gary
E ii

jZ
p j

ωµ
π

 
= +  

 
 (22a) 

( )2 2
,

1 4ln 1 4
2 2

Gary
E ik

j pZ j p q
j

ωµ
π

     = + − +          
(22b) 

C.  Qualitative Analysis 
To realize the analysis of the Carson’s integrals behavior, 

these are solved by the numerical integration methods. These 
solutions will be the point of reference, it is important to note 



that the numerical implementation is a rigid solution in which 
one used millions of points if it is necessary to have the 
prescribed error, for this reason sometimes the process is slow 
but in every case one obtains a very trustful solution. 

From the formulas, one could deduce that every single 
parameter makes that Z  value change in different way, so to 
take into account the combined effect of these parameters, it is 
use the p  and q  variables of the Carson’s integrals and all 
the combinations are referred to these variables. One specific 
combination of ikh , ikx , f  and  gives like a result some 
values of p  and q ; to take into account all possible 
variations inside the establish intervals according with equation 
(15), it is obtained the minimum and maximum values of p  
and q  in the following way, 

7
min ,min min min2 1ikp h f eπ µσ −= ≅  (23a) 

4
max ,max max max2 1ikp h f eπ µσ= ≅  (23b) 
The previous indicates that it could be possible to evaluate 

the effect of the variations of ikh , ikx , f  and  in all the 
establish interval by using the variation of p  from their 
minimums to their maximums. To realize the analysis in base 
on p  and q  it could be notice that these values are 
connected each other because they share one term, which could 
be denote as, 

2O O Og fπ µσ=  (24) 
Thus, if one has one p  value, it could be calculated the 

limits as ,max 1x ikp h g=  and ,min 2x ikp h g= . So, one has 

1 ,maxx ikg p h=  and 2 ,minx ikg p h= . Because this value needs 
to be incorporated into q , their inferior and superior limits are, 

( ),min 1 ,min ,maxini ik ik ik xq x g x h p= =  (25) 

( ),max 2 ,max ,minfin ik ik ik xq x g x h p= =  (26) 
in this way the interval of q  variation for one specific p  is 

,min ,max ,max ,minik ik ik ik xq x h x h p =    (27) 
Figure 1 shows the relationship between the parameter p  

and the parameter q ; that is, they cannot vary independently 
since they depend directly on the combination of the four 
parameters ikh , ikx , f  and ; in other words, all the 
variation of parameters is covered by changing p  from a 
minimum value to a maximum value and for each case the 
minimum and maximum value of q  is calculated with 
equation (27), in this way all possible scenarios are generated. 
 

 
Fig. 1. Graph of where q begins and ends as a function of a specific p. 

 

D.  Superior limit for the Carson Integral 
The Carson integral has zero as its lower limit, but infinite 

as its upper limit eq (15). To solve numerically, the upper limit 
is changed for each case making 20pα = ( 0pe α− ≅ ), so the 
upper limit is 20 pα = . If the minimum amplitude is 
0.032224+j0.028634 units, then the maximum contribution 
occurs when p=5.0265, that is, α=3.9789. With this data as the 
lower limit and taking the upper limit as 20 (with a higher limit 
it gives the same numerical result up to the 10th decimal place), 
we obtain that the maximum additional contribution will be 
proportional to −8.6936754x10−10 −j9.96872766x10−11. This 
result is obtained by taking the cosine as a step and analytically 
solving the integral, 

( ) ( )
20

2 5.0265

3.9789

,J p q j e  dαα α α−= + −∫  (28) 

Thus, in practical terms it can be said that the error due to 
the change of limit is negligible. 

E.  Numerical Solution  
For the analysis of the numerical implementation, we use the 

market formula in Table I; additionally, the results of Newton's 
first three closed formulas are included, colloquially called 
trapezoidal rule, Simpson's 1/3 rule and Simpson's 3/8 rule may 
be the most commonly used. Table II shows the maximum and 
minimum percentage difference of Newton Close Formulas, 
Table III shows the maximum and minimum percentage 
difference of Newton Open Formulas, Table IV shows the 
maximum and minimum percentage difference of Gauss 
Quadrature Formulas, and finally, Table V shows the maximum 
and minimum percentage difference of Gary Formulae, taking 
as reference the Gauss-Legendre Quadrature of order 15. 

The results in Tables II to V were obtained as follows: 
- A total of 101 formulations were applied: the 100 proposed 

formulations and Gary's formula. 
- A parametric study was conducted on 10,000 cases, derived 

from variations in the values of p and q. 
- Each case was solved using the 101 formulations, yielding a 

total of 1,010,000 integrals. 
- The deviations for each case were determined using the 

Gauss-Legendre Quadrature of order 15 as a reference, 
computing the differences between the 100 solutions and this 
reference. 
The procedure for constructing Tables II to V is as follows: 

- The 10,000 cases were solved using the Gauss-Legendre 
Quadrature of order 15, and the results were stored in the 
matrix GQ15. 

qmin

qmax

pmin pmax

q

p

F(p,q)

px

qini

qfin



- The same cases were then solved using the closed Newton-
Cotes formula of order 1 (trapezoidal rule), and the results 
were stored in the matrix CNC01. 

- The percentage error between CNC01 and GQ15 was 
calculated for all cases, and the maximum and minimum error 
values were retained to define the error range on all the cases. 

- This process was repeated for the remaining 99 formulations. 
 

TABLE II 
MAXIMUM PERCENT DIFFERENCE OF NEWTON CLOSE FORMULAS 

NEWTON CLOSE FORMULAS 
Order Self-real Self imag Mutual real Mutual imag 

1 0.0033478 0.00014031 0.0033478 0.00014047 
2 5.8025e-08 2.1865e-09 5.7314e-08 2.2198e-09 
3 1.306e-07 4.9215e-09 1.2904e-07 4.9931e-09 
4 4.6293e-11 1.6924e-11 4.301e-11 3.9635e-11 
6 4.5954e-11 1.7041e-11 4.819e-11 3.9479e-11 
7 4.4835e-11 1.7197e-11 4.0123e-11 3.9349e-11 
8 6.3022e-11 1.7093e-11 5.211e-11 3.9518e-11 
10 1.2195e-10 1.8262e-11 8.9119e-11 3.8282e-11 
33 0.97937 0.053251 0.75581 0.051771 

 

MINIMUM PERCENT DIFFERENCE OF NEWTON CLOSE FORMULAS 

NEWTON CLOSE FORMULAS 
Order Self-real Self imag Mutual real Mutual imag 

1 1.0499e-06 9.4e-08 1.0499e-06 9.4107e-08 
2 0 0 0 4.8763e-15 
3 0 0 0 8.1272e-16 
4 0 0 0 0 
6 0 0 0 0 
7 0 0 0 0 
8 0 0 0 0 
10 0 0 0 0 
33 3.7718e-05 0.0018973 3.7654e-05 0.00040964 

 

TABLE III 
MAXIMUM PERCENT DIFFERENCE OF NEWTON OPEN FORMULAS 

NEWTON OPEN FORMULAS 
Order Self-real Self imag Mutual real Mutual imag 

4 1.8575e-10 1.6859e-11 1.8045e-10 3.9648e-11 
6 3.0714e-10 1.7392e-11 2.5596e-10 3.9609e-11 
7 1.6324e-10 1.7574e-11 1.4982e-10 3.9401e-11 
8 1.278e-09 1.9704e-11 1.0913e-09 3.9596e-11 
9 3.9346e-10 1.9769e-11 3.2978e-10 3.7125e-11 
33 6.0736 0.32469 5.1289 0.32079 

 

MINIMUM PERCENT DIFFERENCE OF NEWTON OPEN FORMULAS 

NEWTON OPEN FORMULAS 
Order Self-real Self imag Mutual real Mutual imag 

4 0 0 0 0 
6 0 0 0 0 
7 0 0 0 0 
8 0 0 0 0 
9 0 0 0 0 
33 0.00075609 0.011954 0.0019754 0.002575 

 

TABLE IV 
MAXIMUM PERCENT DIFFERENCE OF GAUSS QUADRATURE FORMULAS 

GAUSS LEGENDRE QUADRATURE 
Order Self-real Self imag Mutual real Mutual imag 

6 5.3723e-11 2.5731e-11 8.9798e-11 9.819e-11 
10 5.0624e-11 1.0677e-11 6.4536e-11 6.9855e-11 
15 Reference Reference Reference Reference 
24 3.098e-11 8.7155e-12 5.1728e-11 3.6371e-11 
27 3.3726e-11 9.1051e-12 5.0072e-11 3.7177e-11 
33 4.1793e-11 1.082e-11 5.5931e-11 3.8087e-11 

 

MINIMUM PERCENT DIFFERENCE OF GAUSS QUADRATURE FORMULAS 

GAUSS LEGENDRE QUADRATURE 
Order Self-real Self imag Mutual real Mutual imag 

6 0 0 0 0 
10 0 0 0 0 
15 Reference Reference Reference Reference 
24 0 0 0 0 
27 0 0 0 0 
33 0 0 0 0 

 

TABLE V 
MAXIMUM PERCENT DIFFERENCE OF GARY FORMULAE 

GARY FORMULAE 
 Self-real Self imag Mutual real Mutual imag 

Gary 2.3987 1.1258 3.8347 1.1271 
 

MINIMUM PERCENT DIFFERENCE OF GARY FORMULAE 

GARY FORMULAE 
 Self-real Self imag Mutual real Mutual imag 

Gary 0.029435 0.00039762 7.3566e-05 1.0174e-05 
 

Figure 2 shows the behavior of the real and imaginary part 
of the ground impedance for both self-impedance and mutual 
impedance. It can be seen how the behavior is similar in all 
cases and is very smooth, with a well-defined curvature. Figure 
3 shows the differences between Gary's formulas and Gauss 
Quadrature of order 15; It can be clearly noted how the 
difference of the imaginary parts follows the same behavior of 
the ground impedance; On the other hand, the real part has a 
kind of peak where the differences are maximum; here, the 
combined parameters can be given for non-feasible physical 
situations or, on the contrary, for feasible physical situations. 
So, this situation must be taken into account when using any 
formulation. 
 

  

  
 

Fig. 2. Graph of self and mutual impedance calculated with Gary's formulas. 
 



  

  
 

Fig. 3. Differences in self and mutual impedance calculated with Gary's 
formulas and Gauss quadrature order 15. 

IV.  POLLACZEK INTEGRALS 
The self and mutual impedance for a cable is denoted in 

terms of the Pollaczek integral as: 

( ) ( ), 0 02E ii g g s
jZ K d K D Jωµ γ γ
π

 = − +   (29a) 

( ) ( ), 0 02E ik g g m
jZ K d K D Jωµ γ γ
π

 = − +  , (29b) 

where 

( ) ( )2 22 2 2h j r
sJ e e  dα γ αα α γ α

+∞
− +

−∞

 = + +  ∫  

( ) ( )2 2
2 2i kh h j x

mJ e e dα γ αα α γ α
+∞

− + +

−∞

  = + +    
∫  

Accordingly, with [22] the lower limit of the integral could 
be replaced by 0 making a rigid analysis to obtain the same 
result; that means, this change does not affect the Pollaczek 
integral. So, the integrals could be denoted as follows: 

( ) ( ) ( )2 22 2 2

0

h j r j r
sJ e e e  dα γ α αα α γ α

+∞
− + − = + + + ⋅  ∫  

( ) ( ) ( )
2 2

2 2

0

i kh h j x j x
mJ e e e dα γ α αα α γ α

+∞
− + + −  = + + +    

∫  

In the same way, in [26] it is proposed to change the 
exponentials by the cosine function, so one obtains: 

( ) ( ) ( )2 22 2 2

0

2 cosh
sJ e r  dα γ α α γ α α

+∞
− + = + +  ∫  

( ) ( ) ( )
2 2

2 2

0

2 cosi kh h
mJ e x dα γ

α α γ α α
+∞

− + +  = + +    
∫  

The solution proposed by Saad, Gaba & Giroux [22] is, 

( ) 2
0 2 2

2
2 4

ii h
E g

g

jZ K R e
R

γωµ γ
π γ

−
 

= + 
+  

 (30a) 

( ) ( )
0 2 2

2
2 4

i kh hik
E g

g

jZ K d e
x

γωµ γ
π γ

− + 
= + 

+  
 (30b) 

 

 
Fig. 4. Cable geometry (adapted from [27]). 

 

  

  
 

Fig. 5. Graph of the behavior of the impedance of a cable varying the 
parameters one by one. 

 

The geometry of a pair of cables is shown in figure 4. This 
figure shows all the parameters on which the impedance of the 
cable depends. If the parameters are varied individually, the 
results are shown in Figure 5. This figure shows how the 
impedance calculated with (22) changes by varying each of the 
parameters. 

A.  Superior Limit of the Pollaczek Integrals 
By varying each parameter, a sensitivity study is carried out 

to detect the worst scenario or the most critical condition. In this 
way, it is found that the Pollaczek function for self and mutual 
impedance has its worst behavior as shown in Figure 6. 
 

 
Fig. 6. Graph of the behavior of the Pollaczek integrals. 
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With this result we obtain that the upper limit of the integral 
can be 3 without affecting the results. Numerical tests are still 
done with higher limits but there is no numerical effect and for 
that reason in the end 3 is adopted as a good upper limit. It 
should be noted that although the upper limit does not affect the 
results, the number of samples does have an effect; for this 
reason, many tests were done, obtaining that with 6 thousand 
samples per unit was where the best results were obtained, in 
case we have more than 3 cycles, we will use the rule of 6 
thousand samples per cycle. 

B.  Choose the parameter to be varied 
Analyzing the behavior of the Pollaczek integral shown in 

figure 5; the two parameters, that have the most effect on the 
function, are chosen and these are the resistivity of the ground 
and the frequency. We varying these parameters 
logarithmically, taking 100 values distributed between the 
minimum and the maximum. For resistivity, the minimum is 
taken as 101 and the maximum as 102. In the case of frequency, 
101 is taken as the minimum and 104 as the maximum. With 
these values the calculations are made, obtaining 10000 results. 

C.  Numerical Solution 
The impedance of a cable is done numerically using the same 

formulas as Newton's closed, Newton's open, and Gauss-
Legendre Quadrature. As for the approximate formula, the one 
proposed by Saad, Gaba and Giroux is used. Table VI shows 
the results obtained with Newton's closed formulas, here it is 
shown how the formula of order 33 gives results with maximum 
significant differences. Table VII shows that Newton's open 
formulas of order 33 have maximum significant differences. 
Table VIII shows how the Gauss-Legendre Quadrature tends to 
improve when the order increases, considering that the order 15 
of the Gauss-Legendre Quadrature is taken as a reference. In 
the case of the Saad, Gaba & Giroux formulas (Table IX), it is 
shown that the maximum percentage difference is significant. 
 

TABLE VI 
MAXIMUM PERCENT DIFFERENCE OF NEWTON CLOSE FORMULAS 

NEWTON CLOSE FORMULAS 
Order Self-real Self imag Mutual real Mutual imag 

1 0.00672742 0.00022632 0.007368506 0.000437290 
2 0.00280493 0.000223858 0.003072221 0.000432518 
3 0.00359482 0.00024867 0.003937390 0.000480465 
4 0.00241593 0.000226013 0.002646160 0.000436680 
6 0.00211917 0.000217444 0.002321117 0.000420124 
7 0.00229973 0.000226675 0.002518885 0.000437960 
8 0.00190761 0.000208939 0.002089400 0.000403693 
10 0.00175005 0.000200004 0.001916827 0.000386429 
33 7.51905924 0.840371270 8.235580706 1.623675522 

 

MINIMUM PERCENT DIFFERENCE OF NEWTON CLOSE FORMULAS 

NEWTON CLOSE FORMULAS 
Order Self-real Self imag Mutual real Mutual imag 

1 0 0 2.68087e-21 1.94791e-22 
2 0 0 0 0 
3 0 0 0 0 
4 0 0 0 0 
6 0 0 0 0 
7 0 0 0 0 
8 0 0 0 0 

10 0 0 0 0 
33 9.4282e-14 2.4357e-14 2.7712e-15 1.15133e-15 

 

TABLE VII 
MAXIMUM PERCENT DIFFERENCE OF NEWTON OPEN FORMULAS 

NEWTON OPEN FORMULAS 
Order Self-real Self imag Mutua real Mutua imag 

4 0.00854035 0.000963404 0.009354190 0.001861396 
6 0.00763402 0.000986660 0.008361495 0.001906330 
7 0.00795502 0.000998508 0.008713081 0.001929222 
8 0.00872198 0.000985963 0.009553129 0.001904984 
9 0.00853355 0.000997117 0.009346749 0.001926534 
33 5.70105996 0.684765404 6.244330266 1.323185144 

 

MINIMUM PERCENT DIFFERENCE OF NEWTON OPEN FORMULAS 

NEWTON OPEN FORMULAS 
Order Self-real Self imag Mutua real Mutua imag 

4 0 0 0 0 
6 0 0 0 0 
7 0 0 0 0 
8 0 0 0 0 
9 0 0 0 0 
33 6.0105e-13 1.5561e-13 1.67456e-14 7.84317e-15 

 

TABLE VIII 
MAXIMUM PERCENT DIFFERENCE OF GAUSS QUADRATURE FORMULAS 

GAUSS LEGENDRE QUADRATURE 
Order Self-real Self imag Mutual real Mutual imag 

6 0.00026062 3.0392e-05 0.000285460 5.87204e-05 
10 9.6076e-05 1.13796e-05 0.000105231 2.19866e-05 
15 Reference Reference Reference Reference 
24 5.9103e-05 7.02756e-06 6.47353e-05 1.35779e-05 
27 6.4537e-05 7.79802e-06 7.06869e-05 1.50665e-05 
33 7.0912e-05 8.43301e-06 7.76700e-05 1.62934e-05 

 

MINIMUM PERCENT DIFFERENCE OF GAUSS QUADRATURE FORMULAS 

GAUSS LEGENDRE QUADRATURE 
Order Self-real Self imag Mutual real Mutual imag 

6 0 0 0 0 
10 0 0 0 0 
15 Reference Reference Reference Reference 
24 0 0 0 0 
27 0 0 0 0 
33 0 0 0 0 

 

TABLE IX 
MAXIMUM PERCENT DIFFERENCE OF SGG FORMULAE 

SAAD, GABA & GIROUX FORMULAE 
 Self-real Self imag Mutual real Mutual imag 

SGG 2.84799547 0.523055309 4.393381345 1.025565876 
 

MINIMUM PERCENT DIFFERENCE OF SGG FORMULAE 

SAAD, GABA & GIROUX FORMULAE 
 Self-real Self imag Mutual real Mutual imag 

SGG 5.2149e-11 5.0974e-11 1.0394e-11 2.44846e-12 
 

Figure 7 shows the behavior of the real and imaginary part 
of both the self-impedance and the mutual-impedance. It can be 
seen with the naked eye that there is a sector that behaves 
atypically; this occurs when the earth's resistivity values are 
low, and the behavior occurs throughout the entire frequency 
range. Likewise, figure 8 shows the differences between the 
Saad, Gaba & Giroux formulas and the Gauss Quadrature; there 
it is clearly noted that the differences occur precisely in the 



same sector where the behavior of the results is atypical or with 
abrupt variation. The rest of the results, that is, the majority 
have an almost linear behavior and there the differences are 
almost imperceptible and tend towards zero. 

 

  

  
 

Fig. 7. Graph of self and mutual impedance Saad, Gaba & Giroux formulas. 
 

  

  
 

Fig. 8. Differences in self and mutual impedance calculated with Saad, Gaba & 
Giroux formulas and Gauss quadrature order 15. 

V.  CONCLUSIONS 
In numerical analysis, no method can be universally 

extrapolated. However, experimental evidence suggests that 
numerical methods should yield comparable results when 
applied to similar functions. Therefore, numerical rules of a 
given order can be applied to functions lacking simple 
analytical solutions. Nonetheless, there is no exact reference to 
verify whether behaviors observed in one set of functions apply 
similarly to Carson and Pollaczek integrals. Consequently, it 
cannot be concluded that the rule taken as a reference is the 
most precise, but neither can this possibility be dismissed. Even 
though the conclusions are not absolute, it is worth noting that 
if a group of formulas were used, the results would likely 
remain consistent, as the maximum percentage differences 
among many numerical methods are negligible. Despite the 
principle that one numerical method should not serve as a 
substitute for another, if multiple integration rules—derived 
from distinct methodologies and implementations—produce 
similar or equal results, then these numerical methods can be 
considered reliable. 

Based on our findings, we conclude the following: 
- A homogeneous distribution of information is not necessarily 

optimal. For the analyzed integrals, Newton-Cotes methods 
perform worse than Gauss-Legendre methods. 

- More information does not always lead to better accuracy. 
There is a limit on the number of points beyond which a given 
rule ceases to improve. 

- High-order Newton-Cotes rules are not the best choice, but 
neither are low-order rules. 

- Newton-Cotes coefficients for high-order rules are nearly 
impossible to obtain exactly with 64-bit computing precision. 

- The complexity of the Carson integral arises from defining its 
upper limit, which varies across cases. A specialized program 
was developed to adapt to each case. 

- Each Carson integral was evaluated with 6000 samples per 
cycle, with a variable number of samples depending on the 
case. 

- The integral’s upper limit was constrained, and the maximum 
numerical error was assessed, confirming that the calculated 
upper limit was appropriate. 

- The maximum differences between Gary’s formulas and 
numerical methods occur under unpredictable parameter 
combinations. While these differences can appear in practical 
scenarios, they are not significant enough to justify replacing 
Gary’s formulas with a numerical method for all cases. 

- For the Pollaczek integral, around 18,000 samples per cycle 
yielded the highest correlation. Testing with both more and 
fewer samples degraded the results. This conclusion was 
reached using the Saad, Gaba & Giroux formulas as a 
reference. 

- Due to numerical conditioning, the real part of both self-
impedance and mutual impedance exhibits lower numerical 
precision in all cases. 

- The formulas proposed by Saad, Gaba & Giroux generally 
align with numerical methods, with negligible differences. 
Therefore, they are a suitable approach for calculating cable 
impedance. However, in cases where maximum differences 
occur, using a numerical method is advisable. 
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