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Abstract-- The time-step delay between the power and control 

system solutions in EMT simulation may cause inaccurate results 
or even numerical instability in certain scenarios. A simultaneous 
solution is preferred theoretically, but computationally expensive 
and not adopted. By utilizing the triangular block structure of 
the state-space matrices in converter simulations, this paper 
achieves reduced-order implementation of simultaneous solution 
based on exponential integrators. The core mathematical idea is 
to convert the difficult matrix exponential solution problem of 
the off-diagonal block into a linear matrix solution process by 
introducing a Sylvester equation and its linear transformation, 
when the power and control systems are solved simultaneously 
with a unified state-space matrix. To address the nonexistence of 
solution issue of the Sylvester equation due to structure-induced 
repetitive eigenvalues, the paper proposes a matrix sub-block 
eigenvalue-shifting technique, that enables a more robust and 
error-free solution through the excellent properties of matrix 
exponential. The proposed method effectively decouples the 
matrix exponential solution during the simultaneous solution. 
Additionally, synchronized interpolation on the state variables of 
the power and control systems is now possible with a unified 
time-stepping process, improving accuracy for converter 
simulations. Through illustrative example and analysis, the 
accuracy and efficacy of the proposed method are verified. 
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I.  INTRODUCTION 
ccurate and efficient solution of control system equations 
is important for EMT simulations, considering the in-

creasingly complex power system dynamics deeply affected 
by its various new components and their sophisticated control 
systems. Control systems usually comprise numerous types of 
nonlinear blocks and feedback loops, with their matrix repre-
sentation often exhibiting a sparse and asymmetric structure. 
This is significantly different from the symmetric matrix form 
of power system models. As a result, traditional solution 
methods for control systems introduce artificial delays, which 
are further categorized into internal and external delays [1]. 
The internal delays are introduced in decoupling nonlinear 
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feedback loops, e.g. algebraic loops. Eliminating the internal 
delays requires solving the control system equations simulta-
neously by iterative methods. This issue has been extensively 
studied in previous research. For example, the time-step de-
lays in solving the control system equations are eliminated by 
using the Jacobian matrix-based formulation in [2], and a 
comparison is made between the full iterative Newton method 
and its noniterative variant. On this basis, the reduced rank 
Jacobin matrix in a fully iterative Newton method is realized 
by combining the specific influence range of the feedback 
loops in the control system equations [3], [4]. 

The external delays exist mainly due to the fact that the 
power and control system equations are solved separately. The 
information is transferred between the two sets of equations 
through an interface. The power system may transmit voltage 
and current values to the control system, while the control 
system typically transmits control values of the controlled 
sources and switching signals to the power system. It is the 
scheme of this information interface that makes it necessary to 
wait for one of them until the required information has been 
successfully transmitted. At the same time, in order to simplify 
the calculation process and increase the efficiency of the simu-
lation, there is no iteration scheme in the interface process, 
which results in a one-time-step delay between the solution of 
the power and control system. Although this delay may not be 
a significant source of errors in most well-behaved cases with 
small time-steps, the presence of an external delay may cause 
inaccurate results or serious numerical stability problems in 
certain scenarios [5]. Reduced time steps must be used in such 
occasions. Compared to the treatment of internal delays, there 
are fewer studies addressing the challenges posed by external 
delays. 

To eliminate the external delays or mitigate the numerical 
stability problem, a common approach is to introduce iteration 
on the interface variables within the existing solution frame-
work. The time-step delays between the power and control 
system can be eliminated or minimized by iteratively re-
solving the control system equations until convergence is 
achieved within a predefined error tolerance or a maximum 
number of iterations [6]. Another approach to realize simulta-
neous solution is to construct a unified sparse asymmetric ma-
trix by combining two sets of equations. When this approach 
is implemented in the nodal analysis method of EMT simula-
tion, the inconsistency of matrix structures makes it necessary 
to use the relatively complex Newton’s method to solve the 
unified equation during the simultaneous solution [7], which is 
previously used to solve only the control system equations. 
This method will face a high-dimensional unified matrix equa-
tion containing only small portions of nonlinear elements, 
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making the computation process an inefficient one. Interfacing 
techniques were also proposed, e.g. the numerical oscillations 
caused by interface delays were shown to be suppressed by 
inserting a low-pass filter composed of a resistor and an induc-
tor [8]. The delay functions have also been analyzed using 
Taylor’s series and Laplace transformation for controlled 
source systems, and a numerical compensation method was 
proposed to solve the numerical stability issues [9]. However, 
the compensation parameters in this method are dependent on 
the specific component characteristics and simulation time-
step size. 

To obtain more accurate simulation results and eliminate 
potential numerical stability problems, a simultaneous yet ef-
ficient solution algorithm is desirable, which eliminates the 
artificial delay between the power and control systems without 
notable efficiency deterioration. In the state-space framework 
of EMT simulation, the use of exponential integrators achieves 
the same A-stability as the trapezoidal method while maintain-
ing explicit solution [10]. One of the key elements of this 
method is to obtain the state transition matrix of the differen-
tial equation by using the matrix exponential operator. It is 
noted that the state matrix structure and properties of the pow-
er and control systems are different, and an alternating solu-
tion was previously used to calculate the corresponding state 
transition matrices separately. This paper proposes that for 
converter simulations, the state transition matrix of the whole 
system can be effectively computed with a reduced-order 
method, and simultaneous solution is easily realized with a 
unified state matrix. Meanwhile, it is also convenient to carry 
out precise time stepping operations such as control system 
interpolation with the unified model representation. 

In converter simulations, the control system influence the 
power system through switching control signals instead of 
continuous variables, and triggers update of the time-varying 
state matrix of the power system. The power-control interac-
tion is one-directional when conduction states of power 
switches are not altered. Therefore the unified state matrix will 
have specific matrix structure and properties. In this paper, the 
Sylvester equation is introduced to realize the simultaneous 
solution for the switching-controlled systems (without con-
trolled sources), and the existence problem of Sylvester equa-
tion solution in EMT simulation is dealt with. On the basis of 
obtaining the matrix exponential of the power and control sys-
tem respectively, the simultaneous solution can be realized by 
solving only one Sylvester equation and its related transfor-
mation equation, thus eliminating the time-step delays in the 
traditional method and improving the overall solution accura-
cy and numerical stability of the system. In addition, since the 
power and control system constitute a unified state matrix un-
der the proposed method, the interpolation of the internal 
states of the control system becomes easier during the switch 
positioning process. In order to verify the feasibility of the 
proposed method, the simulation accuracy and stability tests 
are carried out for several different examples. 

II.  SIMULTANEOUS SOLUTION 
For the switching-controlled systems without controlled 

sources, the control system directly obtains the required input 
from the power system. And the switching control signal out-
put of the control system does not act directly on the state var-
iables of the power system, but indirectly changes the state 
matrix by switching the power switch conduction states. 
Therefore, for such a system, the state matrix is in the form of 
triangular block matrix when solved simultaneously. 

A.  The Basic Method 
It is assumed that power and control systems are expressed 

in the following unified state-space equation as follows: 
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where cx  is the state variable of the control system; ex  is 
the state variable of the power system, and 11 12 22,  ,  A A A  are 
the corresponding block state matrix respectively. When using 
exponential integrators for simulation, it is necessary to solve 
the matrix exponential of the state matrix. With the increase of 
matrix dimension, the calculation of matrix exponential be-
comes more complicated. Matrix exponential function calcula-
tion is a classical numerical analysis topic with many algo-
rithms developed. Among them, the scaling and squaring algo-
rithm is widely used [11] for dense matrices of small to medi-
um-size. As the dimension of the system matrix increases, the 
memory usage and computational time of this method increase 
significantly. Large-scale system state matrix exhibits sparse 
characteristics, and Krylov subspace algorithm can be used in 
reduced order approximations. This method projects the origi-
nal problem into a low-dimensional subspace and fully exploit 
the sparsity of the matrix, thereby reducing memory require-
ments and enhancing computational efficiency [12]. 

Order reduction is an effective strategy to handle large-
scale matrix exponential calculation. If the state matrix can be 
decoupled according to the presented block form, and the off-
diagonal coupling block can be expressed efficiently, the key 
step of solving the matrix exponential can be simplified. The 
off-diagonal block represents the interaction between the con-
trol and power systems. The control system state variables can 
be expressed using a formula that includes a convolution term. 

( ) ( ) ( ) ( )1111 22
c c 0 12 e 00

e e e dAA Ax x A xτ τ τ−= + ∫
t ttt t t  (2) 

In essence, this convolution term is exactly the upper trian-
gular block of the matrix exponential. In the one-step numeri-
cal integration algorithms of EMT simulation, direct computa-
tion of the convolution terms is complicated and involves ad-
ditional approximations. Therefore, it is preferable to explore 
simplification methods based on the computation of the matrix 
exponential of the unified state-space matrix. 

For this purpose, the Sylvester equation is introduced. For 
any complex matrix m m n n,  A B× ×∈ ∈  , and m nC ×∈ , the 
equation can be used to find a transformation matrix X  that 
satisfies AX XB C− = . For the upper triangular block matrix 
shown in (1), the following Sylvester equation is constructed: 

11 22 12A X XA A− =  (3) 
On this basis, a combined state variable ( )c ex Xx+  is in-



troduced, and the time derivative of this combined state varia-
ble satisfies the following relationship: 

( ) ( )c e 11 c 12 e 22 e 11 c e
d
d

x Xx A x A x XA x A x Xx+ = + + = +
t

 (4) 

The above equation indicates that the combined state varia-
ble is solely related to the matrix 11A . Since the lower-left 
block of the state matrix is 0 , the state variables of the power 
system can be directly solved through numerical integration. 
Based on this, the analytical solution of the control system can 
be derived as follows: 

( ) ( ) ( ) ( )11 11 22
c c 0 e 0e e eA A Ax x X X x= + −t t tt t t  (5) 

The above equation demonstrates that ( )11 22e eA AX X−t t  

corresponds to the upper off-diagonal block of the matrix ex-
ponential for the unified state matrix. Although the systems 
are solved simultaneously, this method effectively decouples 
the calculation of the critical state transition matrix. For the 
diagonal block parts, their matrix exponentials are required 
necessarily during the decoupling operation. The most com-
plex part of the upper triangle block is transformed into a sim-
ple matrix linear calculation process through a Sylvester equa-
tion. There are various algorithms for solving Sylvester equa-
tions, each with different computational complexities [13], 
[14]. Nonetheless, compared to original matrix exponential 
computation algorithms that are designed for dense matrices, 
the proposed method is more efficient for large-scale sparse 
matrices commonly encountered in power systems. This 
method significantly simplifies the computation of matrix ex-
ponentials, enhancing computational efficiency. 

In the above derivation, the upper triangular block of the 
matrix exponential for the unified state matrix is obtained 
through the solution of the Sylvester equation and matrix line-
ar calculation. Let 11 22= e eA AM X X−t t . Based on the proper-
ties of the matrix exponential, the following equation can be 
derived: 

11 22
11 22 12 12e eA AA M MA A A− = −t t  (6) 

The above equation is also a Sylvester equation, which in-
dicates that the upper triangular block of the matrix exponen-
tial can be directly obtained by solving a single Sylvester 
equation. The scaling and squaring algorithm is employed for 
the matrix exponential function calculation. The proposed 
method leverages the inherent decoupling characteristics of 
the converter system to achieve order reduction while obtain-
ing a simultaneous solution, thereby improve the computa-
tional performance. 

B.  The Improvement Method 
The solution of the Sylvester equation requires that the two 

matrices involved do not have common eigenvalues. In gen-
eral, the eigenvalues of the state matrices of power and control 
system do not coincide. However, some structure-induced 
eigenvalues, e.g. 0, could appear in both systems [15]. In such 
cases, it is not possible to solve the Sylvester equation directly. 

The computation of matrix exponentials does not impose 
special requirements on the matrices. The matrix exponential 
of any square matrix is guaranteed to exist and be unique. 

Leveraging the properties of matrix exponentials, it is possible 
to decompose the matrix exponential of the sum of two matri-
ces that commute under multiplication into the product of their 
individual matrix exponentials. Based on this property, the 
original state-space matrix can be directly processed. 

At this stage, an auxiliary state variable ex∗  is introduced 
to satisfy the following relationship: 

( )e 22 ex A I xλ∗ ∗= +  (7) 
There is: 

( ) ( ) ( )22
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For the power system, since ( ) ( )e 0 e 0x x∗ =t t , it follows that: 
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For the state equation of the control system: 
c 11 c 12 e 11 c 12 eex A x A x A x A xλ ∗= + = +

-t  (10) 
Let ( )22 22A A Iλ∗ = + and 12 12eA A λ∗ = -t . Introduce a state 

equation that has no specific physical significance: 
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The corresponding Sylvester equation can then be con-
structed as 11 22 12A X X A A∗ ∗ ∗ ∗− = . From this, the following 
equation can be derived: 

( ) ( ) ( ) ( )11 11 22
c c 0 e 0e e eA A Ax x X X x

∗∗ ∗ ∗= + −t t tt t t  (12) 

The analytical solution for the control system state variable 
has already been obtained from the above derivation. Alterna-
tively, by letting 11 22= e eA AM X X

∗∗ ∗ ∗−t t , the required term 
can also be directly derived by solving a Sylvester equation: 

11 22
11 22 12 12e eA AA M M A A A

∗∗ ∗ ∗ ∗ ∗− = −t t  (13) 
For the use of discrete numerical integration method in the 

EMT simulation, the numerical calculation formulas for each 
step can be derived as follows: 
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Where, h  is the simulation time-step size, and n  is the 
number of steps during simulation. The improved solution 
method derived here is applicable to a wider variety of sys-
tems. It is important to note that the parameter λ  should not 
be set excessively large, as this may lead to numerical over-
flow and computational errors. 

C.  Synchronized Interpolation 
Since the power and control system are solved simultane-

ously, all state values can be updated synchronously. When 
the switch state changes, linear interpolation is usually used to 
locate the detailed switching action moment. At the same time, 
the state values of the system are updated and the control sys-
tem is re-solved. The significant advantage of exponential 



integrators is that the interpolation method is easy to imple-
ment and does not require re-initialization step, and the L-
stability of the algorithm is not susceptible to numerical oscil-
lations [16]. Then, on the basis of simultaneous solution of 
exponential integrators, all the state variables in power and 
control system can be interpolated synchronously. And the 
output of the control system is usually an algebraic equation 
related to the state variables. 

For the nonlinear components such as limiter, comparator, 
etc. which are common in the control system, the internal state 
values are updated by interpolation, further discontinuities are 
detected and updated according to the characteristics of each 
component, in order to obtain the accurate output of the cur-
rent time step. On one hand, the interpolation operation is per-
formed directly on the internal state values of the control sys-
tem, which makes the processing and recovery of nonlinear 
components state easier. On the other hand, the nonlinear 
components can be processed directly according to the current 
state values after the synchronous interpolation, eliminating 
the process of reading data from the power system and analy-
sis of control interpolation propagation like in PSCAD. 

D.  Nonlinearity Handling 
Nonlinearity handling is an important aspect of the EMT 

simulation. Since nonlinear components are significantly less 
than linear ones, it is common practice to apply modified line-
ar solutions rather than resorting to less efficient full nonlinear 
methods for the whole network. Consequently, the piecewise 
linear method is the most widely used. In this method, the 
computational matrix is regenerated at each segment, and this 
method often needs to further combine interpolation or itera-
tive operations to avoid possible numerical problems. For the 
converter system studied in this paper, considering the state 
matrix switching induced by the piecewise linear treatment, (1) 
can be further expressed as: 

11( ) 12( )c c

22( )e e

A Ax x
Ax x

    
=     

    0




i i

i
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where the subscript i  denotes the state matrix corresponding 
to the specific operating condition. At the segmentation points 
of the piecewise linear components, the state matrix switches. 
Efficient algorithm is applied to update the computation ma-
trices, and interpolation algorithm is applied to capture the 
time instant and avoid numerical issues. 

It is noted that the nonlinear characteristics of the power 
and control systems are different. Due to rapid switching, the 
topology of the power system frequently changes, resulting in 
a state matrix that is highly time-varying, whereas the nonlin-
ear components in the control system are generally inactive 
during normal operation. This difference in switching fre-
quencies implies that if the matrices of both systems are simp-
ly merged, the unified system matrix will be dominated by the 
rapidly switching power component and exhibit high-
frequency time-varying characteristics. Consequently, this 
would necessitate repeatedly computing different matrix ex-
ponentials for the exponential integration. 

Fortunately, by introducing Sylvester equation, the method 
proposed in this paper divides the matrix exponential solution 

of unified matrix into two parts. In the Sylvester equation, one 
matrix remains largely constant while the other varies at high 
frequency. It is considerably more efficient than computing 
the matrix exponential for the full-dimensional rapidly time-
varying matrix. 

III.  CASE STUDIES 
In this section, the feasibility of the proposed method is 

verified through case studies. The proposed method is specifi-
cally designed for switching-controlled systems without con-
trolled sources. Therefore, the test cases are set up to exclude 
controlled sources, ensuring that the unified state matrix of the 
power and control system retains the triangular block matrix 
form. The accuracy of the proposed method is validated by 
comparing the simulation results with small time-step size. 

A.  Buck Converter 
A simple DC buck converter, as shown in Fig. 1, is used as 

an example. This converter steps down a 750V DC input to 
375V. Its control system adopts a straightforward dual-loop PI 
control, as depicted in Fig. 2. In this case study, the state vari-
ables of the power system include the output capacitor voltage, 
inductor current, and the augmented DC voltage source. The 
control system state variables consist of the outputs of two 
integrators, as well as an additional constant value. Even when 
the power and control system are modeled as a unified state 
matrix, the dimensionality of the matrix remains relatively low. 
This simple example is used to verify the feasibility of the 
proposed method. 
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Fig. 1.  Power system diagram of DC-DC converter case 
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Fig. 2.  Control system diagram of DC-DC converter case 

 
The simulation time-step size is set to 10us. The reference 

value is the simulation result in the case of 1us time-step and 
iterative processing for simultaneous problems. Since the state 
matrices of the power and the control system contain the same 
eigenvalues in this example, an improved method is needed. 



The eigenvalue translation parameter λ  of the power system 
state matrix is set to 0.1. The switches are modeled as the bi-
nary on/off resistance model. In addition, to validate the accu-
racy of the proposed method in decoupling the matrix expo-
nential solution process, the simulation results are also com-
pared with those obtained by directly solving the matrix expo-
nential of the unified state matrix. 

In this test case, since the two controlled switches operate 
synchronously, adopting an iterative resolution of the control 
system significantly affect the simulation results. In the fol-
lowing simulation results, SepNonIter means separate and 
non-iterative solution. SepIter represents separate but iterative 
solution, which is an available solver option in EMTP®. 
ExpNonSplit corresponds to direct calculation of the matrix 
exponential for simultaneous solution. ExpSplit represents the 
proposed method using the Sylvester equation-based reduced-
order simultaneous solution approach in this paper. 

As can be seen from the simulation results in Fig. 3 and Fig. 
4, the simultaneous solution based on exponential integrators 
can obtain accurate results. 

 
Fig. 3.  Capacitance voltage waveform 

 
Fig. 4.  Absolute error of capacitor voltage 

 
Furthermore, the proposed method does not compromise 

the precision of matrix exponential computation. Compared to 
separate solution, the simultaneous solution obviously gets 
higher accuracy under the same time-step size. The non-
iterative separate solution of this case, on the other hand, pro-
duces fictitious oscillations around the steady-state value. It is 

noted that for this case we deliberately choose a set of parame-
ters that are sensitive to the external delay to reveal the prob-
lem, and the non-iterative separate solution does not always 
lead to large errors of such extent. But the presented result 
shows the potential significant impact of the time-step delay 
between the power and control system. 

In addition, to evaluate the simulation accuracy of the con-
trol system under different simulation conditions, the output 
waveforms of the inner-loop integrator were compared, as 
shown in Fig. 5 and Fig. 6. In the switching-controlled sys-
tems studied in this paper, the upper triangular block of the 
state matrix directly affects the solution of the control system. 
It can be observed that exponential integrators demonstrate a 
significant accuracy advantage for the simple control system 
in the test case. Furthermore, the absolute error figure indi-
cates that the proposed Sylvester equation-based simultaneous 
solution method, which decouples the calculation of the matrix 
exponential, does not lead to notable changes in error. This 
stability can be attributed to two main reasons: the mature and 
diverse algorithms for solving Sylvester equation, and the ap-
propriately chosen eigenvalue shift parameter, which does not 
cause large errors during the calculation process. 

 
Fig. 5.  Output waveform of the inner loop integrator of the control system 

 
Fig. 6.  Absolute error of the inner loop integrator of the control system 

B.  DC Microgrid 
To demonstrate the simulation accuracy and efficiency of 

the proposed method, a DC microgrid test case is further de-
veloped with a larger system dimension, as shown in Fig. 7. 
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This system includes multiple converters, which is very suita-
ble and can fully embody the characteristics of the proposed 
method. The simulation settings are similar to those described 
in Section III.A. Specifically, the simulation time-step is set to 
10 us, and the results of iterative solution under 1us time-step 
are used as reference. The simulation starts from a zero initial 
state and ends at t=1s. 
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Fig. 7.  DC microgrid system 

 
The simulation accuracy is analyzed in Fig. 8 and Fig. 9, 

which illustrate the capacitor voltage waveform and absolute 
error of the rectifier DC side. Specifically, a short circuit fault 
occurs at t=0.6s, resulting in a rapid voltage drop. It is evident 
that the simultaneous solution approach yields superior accu-
racy compared to the non-simultaneous solution, and the re-
duced-order method proposed in this paper does not compro-
mise simulation precision. 

 
Fig. 8.  Capacitance voltage of the rectifier 

 
Furthermore, the computational time under different simu-

lation conditions is recorded. It should be noted that the expo-
nential integration schemes are implemented in MATLAB, 
which have efficiency disadvantages of the scripting language. 
All the conditions compared in this case are executed within 
the same programming environment. The detailed computa-
tional time is presented in Table I. 
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Fig. 9.  Absolute error of capacitor voltage of the rectifier 

 
TABLE I 

COMPUTATIONAL TIME OF DC MICROGRID SYSTEM 

Solving Method Computational Time (s) 
(Overall / Matrix Exponential Calculations) 

SepNonIter 33.8651 / 4.0338 

ExpNonSplit 38.7151 / 6.9116 

ExpSplit 35.5165 / 4.2959 

 
The overall computational time includes the matrix expo-

nential recalculating of the system models under various to-
pologies, as well as interpolations and other related processes. 
The results in Table I clearly indicate that by introducing the 
Sylvester equation for order reduction, the computational time 
for the matrix exponentials is significantly reduced for 
ExpSplit, down to a comparable level of the common separate 
solution approach (SepNonIter). This leads to an efficient sim-
ultaneous solution algorithm with improved accuracy and sta-
bility, yet consumes only slightly more computation time. Ad-
ditional observation is that the matrix exponential calculation 
constitutes roughly 12% of the overall computation time, and 
is not the bottom neck of the exponential integrator-based 
simulation program. It could be further reduced if caching of 
matrix exponential results is allowed, which increase memory 
requirements. Although solving the Sylvester equation is also 
relatively complex, on the basis of test cases, with the further 
expansion of the unified matrix dimensions and appropriate 
division according to the matrix structure, the advantages of 
reduced order solution will be more prominent. Therefore, 
different methods can be selected depending on the practical 
requirements for simulation accuracy and efficiency. 

IV.  CONCLUSIONS 
This paper presents a reduced-order and simultaneous solu-

tion method for the power and control system equations based 
on exponential integrators. By introducing Sylvester equation 
and its related linear transformation, the difficult matrix expo-
nential solving process is transformed into a simple matrix 
linear calculate process, which reduces the computational 
complexity of the state transition matrix in the simulation pro-
cess to a large extent. In this method, Sylvester equation estab-
lishes the transformation relationship between the coupling 
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parts of the power and control system, thus transforming the 
key part of the simultaneous solution into a decoupling opera-
tion. Numerical examples show that the conventional non-
iterative solution is potentially problematic, and the proposed 
method effectively achieves a power and control systems sim-
ultaneous solution and eliminates the numerical stability prob-
lem caused by the external delays. For the larger case example, 
the proposed method not only improves simulation accuracy, 
but also effectively reduces the computational cost associated 
with the state transition matrix of the unified system. With 
increased system dimensions, the efficiency advantages is 
expected to be even more pronounced. However, it should be 
noted that the solution of Sylvester equation can be further 
refined by leveraging the characteristics of the system state 
matrix to further optimize the simulation efficiency. 

The observations of this paper do not imply full replace-
ment of existing approach with a simultaneous one, instead, 
certain portions of the control systems, particularly the con-
verter control systems, are shown to be better solved alongside 
their power counterparts, leading to more robust, accurate and 
still efficient simulation. On the basis of the proposed method, 
a hybrid approach that is built on a fine-grained analysis of the 
overall control system and determines sub-system solution 
strategies intelligently can be constructed, and is the aim of 
future research. 
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