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Abstract—This paper proposes a novel method for power
system inertia estimation using only local phasor measurements
from a single machine, with consideration of load voltage
dependency. The method begins by estimating the Center of
Inertia (CoI) frequency based on local frequency measurements.
It then fits the voltage dependency of loads using a linear
approximation during the initial transient response following
a disturbance. The effectiveness of the proposed approach
is validated through simulations on the IEEE multi-machine
test system under various conditions. Comparative analysis
demonstrates the superiority of the proposed method over
existing techniques, highlighting its accuracy and reduced
complexity in estimating system inertia.
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I. INTRODUCTION

POWER system inertia plays a key role in maintaining
the stability of electrical grids, as it helps the system

resist frequency deviations after disturbances. Traditionally,
inertia is provided by the rotating masses of synchronous
generators, which naturally respond to imbalances between
supply and demand[1]. However, with the growing integration
of renewable energy sources such as wind and solar power,
which lack significant rotational inertia, the overall system
inertia is decreasing [2]. This decline in inertia increases
the system’s vulnerability to frequency fluctuations, posing a
greater risk of instability and outages [3].

As the energy landscape shifts, accurately estimating power
system inertia has become essential for grid operators to ensure
stable operation and develop effective control strategies.

Pioneering research in Japan during the late 20th century
underscored the importance of quantifying power system
inertia. Researchers developed a method to estimate inertia
based on polynomial approximation of transient frequency
changes caused by events such as generator outages or sudden
load fluctuations[4]. While limited by measurement device
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constraints at the time, this early work laid the groundwork
for subsequent advancements in inertia estimation.

Recently, the advent of high-precision synchrophasors
or phasor measurement units (PMUs) has significantly
transformed the landscape of power system inertia estimation.
These devices enable synchronized measurements of
phasors at various locations, providing high-fidelity data at
microsecond timescales. This wealth of detailed information
facilitates the development of more sophisticated transient
data-based methods for inertia estimation.

With the advent of PMUs, research into inertia estimation
has made significant strides. Adaptive polynomial fitting,
as proposed in [5], optimizes the curve fit to transient
frequency data.[6] focused on a narrower window for fitting
and employed linear regression to reduce computational
complexity [7] introduced a physical model-based approach,
deriving differential equations to model transient frequency
dynamics and enabling direct parameter estimation. [8]
building upon the work in [7], incorporated the influence
of the control system to enhance estimation accuracy. [9],
[10], [11], [12] investigated the correlations between frequency
and voltage variations during disturbances, modeling and
calculating their effects using different segments of the
disturbance process.[13], [14] proposed using sliding window
averaging to mitigate the impact of sharp transient changes
in the initial data. In addition,[15] contributed by fitting
the system to a two-machine model through modal analysis,
extracting inertia from the modal parameters.[16] accounted
for the effects of primary frequency regulation by using a
differential sampling window. [17], [18], [19] have employed
various system identification algorithms and models to
estimate inertia.

Despite the significant advancements in power system
inertia estimation techniques, most existing methods rely
on wide-area measurements or all available machine
data, which can be costly, complex, and challenging to
implement. These approaches often overlook the potential
of localized measurements, which can offer faster, more
accessible solutions in practical systems. Furthermore, the
influence of load voltage dependency on system dynamics,
particularly during transient conditions, remains underexplored
in single-machine-based methods.

This study addresses these gaps by introducing a
novel approach that enables inertia estimation using only
local phasor measurements from a single machine, while
incorporating load voltage dependency. The proposed method



can achieve estimation within a short time after the disturbance
event. By reducing the need for extensive measurement
infrastructure, this method significantly lowers implementation
complexity and enhances feasibility, making it particularly
valuable for systems where only limited data is available.
This innovation not only simplifies the estimation process but
also expands the applicability of inertia estimation to a wider
range of power systems, thereby providing a more efficient
and scalable solution for maintaining grid stability.

The remainder of this paper is organized as follows:
Section II introduces the theoretical foundations, including
an overview of the swing equation and inflection point
theory. Section III introduces the proposed methodology,
outlining the process of estimating the COI frequency from
single-machine frequency data using the inflection point
theory and incorporating the voltage dependency of the load
through single-machine voltage fitting. Section IV presents
the test system utilized in this study. Section V provides a
comprehensive evaluation of the proposed method using the
IEEE 39-bus test system, including comparative analyses with
existing methods. Section VI summarizes the key findings and
conclusions of the study.

II. THEORETICAL BACKGROUND

A. Swing Equation and system inertia

The stability and dynamic response of power systems are
governed by the swing equation, which describes the rotor
dynamics of synchronous machines in relation to the balance
between mechanical power and electrical power. The swing
equation formulation follows the classical derivation in [1],
which is widely adopted for power system stability analysis.
The swing equation, a second-order differential equation,
represents the angular motion of the rotor and is expressed
as:

2H
d∆f

dt
= ∆Pm −∆Pe −D∆f (1)

where H is the inertia constant of the generator, which
is proportional to the mass and speed of the rotating parts,
D is the damping coefficient, which is often neglected in
dynamic analysis, ∆f is the frequency deviation from which
is equal to rotor angular speed in per unit value, ∆f means the
deviation from the nominal frequency, ∆Pm is the mechanical
input power variation, and ∆Pe is the electrical output power
variation.

This equation highlights the system’s inertial response, as
the difference between mechanical input and electrical output
results in a change in the rotor angle, which subsequently
affects system frequency. The rate of change of frequency
(RoCoF) is directly related to the system inertia, with higher
inertia providing a more gradual frequency response.

In a multi-machine system, the Center of Inertia (CoI)
frequency represents the weighted average frequency of
all the synchronous machines in the grid. It serves as a
useful indicator for system-wide frequency behavior during
disturbances. The CoI frequency, fCoI, is defined as:

fCoI =

∑n
i=1 HiSifi∑n
i=1 HiSi

(2)

where Hi is the inertia constant of machine i, fi is the
frequency of machine i, Si is the capacity of machine i,and
n is the total number of machines in the system.

The system inertia, Hsys, is the aggregate of the individual
inertia constants of all connected machines and is calculated
as:

Hsys =

∑n
i=1 HiSi

Sbase
(3)

where Si is the apparent power rating of machine i, and Sbase
is the system base power, which is typically

∑n
i=1 Si.

This aggregated inertia reflects the system’s ability to resist
frequency changes during sudden disturbances. A higher Hsys
indicates greater resistance to frequency deviations.

B. The Inflection Point Principle

As initially introduced in [20], the inflection point principle
establishes a correlation between the local frequency curve
and the COI frequency curve. This principle can be succinctly
summarized by the following observation: during power
imbalance disturbances, the response curves of the local
frequency and COI frequency intersect at the inflection point
of the local frequency curve, which corresponds to the point
where the second derivative is zero.

It can be proved in the two-machine system as Fig.1.

G1 G2

Fig. 1. Two-machine power system

Assuming that a power imbalance disturbance occurs in the
system shown in Fig.1, the swing equations representing the
two machines can be written as (4).

2H1
df1(t)

dt
= ∆P1 +

V1V2

XL
sin(δ1(t)− δ2(t))

2H2
df2(t)

dt
= ∆P2 −

V1V2

XL
sin(δ1(t)− δ2(t))

(4)

Since f = dδ/dt , derivation of the equations for t separately
and collapsing it yields:

H1
d2f1(t)

dt2
= −H2

d2f2(t)

dt2

= (f1(t)− f2(t))
V1V2

2XL
cos(δ1(t)− δ2(t))

(5)

As demonstrated in the analysis, when the local frequencies
of the two machines, f1(t) = f2(t), the second-order
derivative of the frequency, d2f(t)/dt2, becomes zero. This
signifies the inflection point, where the frequency corresponds
to the COI frequency. It is important to note that this principle
has been refined in our previous research [21], as detailed in
Section III.



III. METHODOLOGY

The proposed method is divided into two steps, the first
step is to estimate the CoI frequency from local frequency
measurements of a single machine using the inflection point
principle, the second step is to approximate the equivalent
CoI bus voltage from single machine terminal voltage
measurements at the initial period, and hence the load voltage
dependent variation, then the system inertia is estimated from
them using the least squares method. The detailed process is
described below.

A. CoI Frequency Estimation

Although [20] provides the inflection point principle which
is helpful for extracting the COI component from local
frequency, it does not give specific analysis, and its simple
linear connection method is not suitable for quantitative
calculations such as inertia estimation. Based on this, the
authors have refined the principle in [21]. Please refer to the
cited paper for details of the analysis, and a brief outline is
presented here. Firstly, by decomposing the local frequency
into the difference mode and common mode signals from
the COI frequency, it is pointed out that the essence of the
inflection point principle is to find the zero point of the
difference mode signal. Since the difference mode signal is
a decaying sinusoidal curve, its inflection point coincides
with its zero point, so taking the inflection point can achieve
the goal. However, the impact of load variations, particularly
during the initial transient period, can distort the inflection
point. To mitigate this, the initial inflection points, typically
occurring before the first frequency extremum or within the
first 0.5 seconds (for disturbances with a later extremum), are
excluded. Subsequently, polynomial fitting is used to achieve
the continuousness of the available discrete inflection points,
as shown in (6) and (7).

∆F (t) =

∑n−1
i=0 an−1,it

i +
∑n

i=0 an,it
i +

∑n+1
i=0 an+1,it

i

3
(6)

n =

⌈
N

2

⌉
(7)

where F (t) refers to the fitted frequency curve, a is the
fitted polynomial coefficient, n is the median order of fitting
polynomial, and N is the number of available inflection points.
The equation represents the polynomial approximation of the
fitted frequency ∆F (t). To account for potential randomness
in the data, a median polynomial is obtained by averaging
the results of three adjacent polynomial orders. Considering
the trade-off between fast estimation and accuracy, 15 to 20
inflection points collected within 5 to 8 seconds are considered
desirable[22].

B. Load Voltage Dependent Variation Approximation
From Local Voltage

Previous studies often simplify the analysis by modeling the
load as a constant power load, neglecting the impact of voltage
variations. In contrast, this study explicitly incorporates the
voltage dependency of the load, as described below.

Considering the system under the CoI model, which can be
approximated as a single-unit, single-load system. When the
system experiences a sudden load imbalance ∆P , a two-phase
response mechanism emerges:

The initial phase is characterized by a rapid voltage change
at the bus. This typically occurs within the first second
following the disturbance, reflecting the system’s natural
response to the power imbalance. The rate and magnitude
of this initial voltage change are primarily determined by
the network parameters and the pre-disturbance operating
conditions.

Following this initial phase, the system enters a recovery
phase driven by the Automatic Voltage Regulator (AVR).
The AVR system detects the voltage deviation and initiates
corrective actions through the excitation system. This recovery
process is notably slower than the initial change, typically
spanning several seconds. This control action continues until
the voltage approaches its nominal value.

Fig.2 illustrates the characteristic voltage response pattern
when ∆P > 0 as described above.

Fig. 2. Voltage Response to Power Imbalance Disturbance

In multi-machine power systems, the response mechanism
becomes more complex but follows similar principles. When
a load disturbance occurs, its impact is distributed among the
participating generators based on their electrical proximity to
the disturbance point and their relative strength in the network,
quantified by their synchronizing coefficients. Each generator
in the system experiences voltage variations that follow similar
temporal patterns but with different magnitudes. Generators
electrically closer to the disturbance point typically experience
more pronounced voltage variations, while more distant
units show attenuated responses. Despite these differences
in magnitude, the temporal progression of voltage changes
- from initial decline to AVR-driven recovery - remains
consistent across all generators. Together, the responses of
these generators form the response of the CoI bus equivalent
voltage, as described below.

Based on the superposition principle and fundamental
circuit theory, the voltage at any bus in the power system can
be expressed as a linear combination of source voltages. This
relationship still holds true for the virtual CoI bus.

The COI bus voltage can be mathematically expressed as:



VCoI =

n∑
i=1

KiVi (8)

In this expression, VCoI is the voltage at the Center of
Inertia bus, Vi represents the terminal voltage of the i-th
generator, Ki denotes the participation factor of the i-th
generator, and n is the total number of generators in the
system. The participation factors Ki depend on the virtual
electrical distance between the generator bus and the CoI bus.

To represent the CoI voltage using a single generator’s
voltage, we need to establish the relationships among different
generator voltages. According to the previously discussed
transient mechanism and voltage response curve, these
relationships are inherently nonlinear and complex.

However, focusing on the initial response phase (typically
within the first second after disturbance), we can exploit the
rapid nature of the voltage changes to develop a simplified
linear approximation. During this brief period, the voltage
changes of the generator are considered to be linear with
respect to time, and thus they are approximately constant in
proportion to any another:

∆Vi(t)

∆Vj(t)
≈ αij (9)

where αij is approximately constant during the initial
stage, and ∆Vi(t), ∆Vj(t) are voltage changes relative to the
pre-disturbance value.

This proportional relationship enables us to express any
generator’s voltage variation in terms of a reference generator
(denoted as generator k):

∆Vi(t) = αik∆Vk(t) (10)

Substituting these relationships into the COI voltage
equation:

∆VCOI(t) =

n∑
i=1

Ki∆Vi(t) =

n∑
i=1

Kiαik∆Vk(t) (11)

This can be simplified to:

∆VCOI(t) = β∆Vk(t) (12)

where β = (
∑n

i=1 Kiαik) is a constant determined by
system conditions and reference generator location. Note that
the above voltages are per unit values relative to the voltage
during normal operation.

The approximation’s validity is supported by the rapid
nature of the initial response, during which slower dynamic
processes have not yet significantly influenced the system’s
behavior.

The relationship between load power and voltage can be
linearized around the equilibrium point using small-signal
analysis. Consider a voltage-dependent load with power
consumption PL(V ).

Since the voltage variation is very small compared to the
normal operation value, neglecting higher-order terms for

small deviations and defining ∆V = V − V0, ∆PL =
PL(V )− PL(V0), we obtain:

∆PL = KV P0∆VCoI (13)

where: KV = 1
P0

∂PL

∂V

∣∣
V0

is the voltage sensitivity coefficient
of the load, and P0 = PL(V0) is the initial operating point
power.

Combining this with our previous analysis of initial voltage
response, and expressing ∆V in terms of a single reference
generator voltage Vk:

∆PL = KV P0β∆Vk = P0βV,k∆Vk (14)

This linear relationship demonstrates that during the initial
transient period, the load power variation can be represented
as a function of a single generator’s voltage deviation, scaled
by the product of the load sensitivity coefficient, initial power,
and the voltage distribution factor.

C. Single Machine Based System Inertia Estimation

According to (1), the swing equation under the CoI is:

2H
d∆fCoI

dt
= ∆Pm −∆Pe −D∆fCoI (15)

Given that the initial phase following a disturbance is of
primary interest, and the frequency variation during this
period is relatively small, the term associated with frequency
variation can be neglected. Additionally, during this initial
period, the mechanical power control system has not yet
fully initiated its response. Furthermore, considering the power
balance equation ∆Pe = ∆PL + Pd, where Pd represents
the load imbalance power which is usually known by the
TSO. In practical implementations, Pd can be obtained
through SCADA telemetry or predefined historical disturbance
profiles. For instance, sudden load/generation changes are
often associated with event-specific Pd values, which are
cataloged by system operators. Then the swing equation can
be expressed as:

2H
d∆fCoI

dt
= −∆PL − Pd (16)

By substituting the estimated CoI frequency and voltage
variations model into the equation, (17) is obtained:

2H
d∆Fk(t)

dt
= −P0βV,k∆Vk(t)− Pd (17)

where the subscript k represents the k−th generator. As
observed, the equation contains two unknown variables: H and
βV,k. Using the measurement data collected during the initial
post-disturbance period, we can establish an overdetermined
system of equations to estimate H and βV,k. Consider a series
of measurements taken at time instances t1, t2, ..., tm. At each
time point, we have:

2H
d∆Fk(ti)

dt
+ P0βV,k∆Vk(ti) = −Pd (18)

The solution is given by:

Ax = b (19)



where x = [2H,βV,k]
T is the parameter vector to be

estimated. And:

A =


d∆Fk(t1)

dt P0∆Vk(t1)
d∆Fk(t2)

dt P0∆Vk(t2)
...

...
d∆Fk(tm)

dt P0∆Vk(tm)

b =


−Pd

−Pd

...
−Pd

 (20)

The least squares solution for the unknown parameters can
then be obtained by:[

2Ĥ

β̂V,k

]
= (ATA)−1ATb (21)

IV. TEST SYSTEM

To evaluate the effectiveness of the proposed inertia
estimation method, simulations were conducted using the
IEEE New England 10-machine, 39-bus test system, modeled
in MATLAB/Simulink. This test system is widely used for
power system stability analysis due to its complexity and
realistic representation of an interconnected network. The
system consists of 10 synchronous generators and 39 buses,
along with various loads and transmission lines, allowing for
comprehensive testing of dynamic behavior under different
disturbance scenarios.

Fig. 3. IEEE New England 10-machine 39-bus test system

To accurately represent the behavior of an actual power
system, the simulation model incorporates detailed
representations of system components. Synchronous
generators are modeled using a comprehensive seventh-order
model. The control systems include IEEE Type 1 governors
and multi-band power system stabilizers for each generator,
as outlined in [23]. Generators 3, 6, and 9 are specifically
modeled as hydro turbine-governor systems, while G8 is
represented as a Virtual Synchronous Generator (VSG),
following the approaches described in [24], [25], [26]. The
VSGs emulate the external characteristics of traditional
synchronous generators, which reflects the current and

near-future power systems where synchronous generators
remain dominant. On the other hand, non-responsive
renewable energy sources are modeled as constant generation
sources or integrated into constant power loads. The
remaining generators utilize steam turbine-governor systems.
Load models are implemented using the ZIP model. The
PMU sampling rate is set to 100 Hz. The inertia distribution
data for the system is provided in the Table I.

TABLE I
SYSTEM INERTIA DISTRIBUTION

Gen No. 1 2 3 4 5 6 7 8 9 10 Sys

Base MVA 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10000

H 7.04 3.03 3.58 2.86 2.60 3.48 2.64 2.83 3.45 4.2 3.531

V. CASE STUDY

To validate the effectiveness of the proposed method, a
case study is conducted on the previously introduced IEEE
test system. Given the lack of existing methods for estimating
system inertia using purely local measurements, we select two
comparative methods for this evaluation. The first comparative
method (Compared Method 1) is a simplified version of the
proposed method that ignores load voltage dependency, to
highlight the impact of incorporating voltage dependency in
inertia estimation. The second comparison (Compared Method
2) employs the method outlined in [27], which estimates
the power imbalance by utilizing the linear component of
local frequency measurements. This method can also estimate
inertia when the power imbalance is known, making it suitable
for comparison with the proposed method due to its similar
application conditions.

As the first test case, a 600 MW (0.06 p.u.) load increase
is introduced at bus 15. The system load composition is
assumed to follow a ratio of Z : I : P = 3 : 3 : 4,
representing the proportions of constant impedance, constant
current, and constant power loads, respectively. Additionally,
the damping coefficient D is set to 1. For the estimation of the
CoI frequency, 15 inflection points are used. The time window
for inertia estimation is set to within the first 0.5 seconds after
the disturbance. The test results using measurements from each
single machine are presented in Table II, where the estimates
and relative errors are listed.

TABLE II
ESTIMATION RESULTS USING TESTED METHODS FOR CASE 1

Proposed Method Compared Method 1 Compared Method 2
Gen No. Ĥ ϵH βV Ĥ ϵH Ĥ ϵH

G1 3.8660 9.49% 1.50 5.4389 54.03% 5.3625 51.87%
G2 3.7274 5.56% 0.97 6.0325 70.85% 6.0680 71.85%
G3 3.9531 11.96% 0.85 5.8920 66.86% 5.9166 67.56%
G4 3.7774 6.98% 0.81 6.2256 76.31% 5.7641 63.24%
G5 3.5403 0.26% 0.79 5.8882 66.76% 6.5042 84.20%
G6 3.6007 1.97% 0.94 5.9934 69.74% 5.4489 54.32%
G7 3.8663 9.50% 0.99 6.3008 78.44% 5.7597 63.12%
G8 3.9322 11.36% 0.90 6.6104 87.21% 7.4309 110.45%
G9 3.4184 -3.19% 1.02 5.5592 57.44% 7.4416 110.75%
G10 3.4415 -2.53% 1.35 5.4270 53.69% 5.3694 52.06%

The proposed method demonstrates higher accuracy in
estimating inertia compared to the two benchmark methods,



producing values that are closer to the actual system
inertia. This improvement is reflected in the significantly
smaller relative errors under various conditions, highlighting
the advantage of considering the voltage dependency. The
variation in estimation errors across reference generators stems
from unavoidable CoI frequency estimation inaccuracies and
inflection point distribution uncertainties. By incorporating
voltage sensitivity through the coefficient βV , the proposed
method can dynamically adjust its estimates based on the
observed voltage response, thereby providing a more detailed
and accurate understanding of the system inertia behavior.

In contrast, the Compared Method 1, which does not
consider voltage variations, exhibits larger estimation errors.
This difference highlights the importance of incorporating
voltage dynamics into inertia estimation, especially in systems
where load composition is related to voltage. Compared
Method 2 relies on the linear component of the local frequency
to estimate power imbalance, and its derivation is also obtained
by ignoring the load voltage-dependent variation. Therefore,
this method also shows limitations in this case, leading to
relatively high errors.

As an illustration, Fig.4 presents the estimated CoI
frequency results based on G2, where the fpoly means the
estimated CoI frequency.
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Fig. 4. Estimated CoI frequency and RoCoF based on G2 measurements

To investigate the performance of considering load voltage
variations in the proposed method, the load variations
calculated using the coefficient βV and single machine voltage
are plotted on the same figure as the load variations calculated
using the total generator output, as shown in Fig.5.

The ∆Po indicates the load variation calculated using the
system’s generation output. It can be seen that the compliance
variations calculated using the load-voltage coefficients of
the proposed methodology are very close to the actual load
variations, which also shows the validity of the proposed
methodology.

To further assess the generality and scalability of the
proposed method, additional simulations are conducted under
three modified system conditions, with all other parameters
remaining constant unless explicitly stated.
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Fig. 5. Load power variation calculated using single machine data and outputs

• Case 2: G8 is replaced by renewable source generation
without inertia support, resulting in a reduced system
inertia of 3.248 s, load ratio Z : I : P = 2 : 3 : 5;
700 MW(0.07 p.u.) load increase at bus 27.

• Case 3: All generators’ inertia is reduced by 30%, leading
to a system inertia of 2.472 s, load ratio Z : I : P = 2 :
2 : 6; 600 MW(0.06 p.u.) load increase at bus 16.

• Case 4:All generators’ inertia is increased by 30%,
leading to a system inertia of 4.590 s, load ratio Z :
I : P = 1 : 1 : 8; 500 MW(0.05 p.u.) load decrease at
bus 3.

TABLE III
ESTIMATION RESULTS USING TESTED METHODS FOR CASE 2

Proposed Method Compared Method 1 Compared Method 2
Gen No. Ĥ ϵH βV Ĥ ϵH Ĥ ϵH

G1 3.5582 8.22% 1.23 4.9591 50.82% 4.6859 42.51%
G2 3.1512 -4.16% 0.87 5.0185 52.63% 6.0500 84.00%
G3 3.1296 -4.82% 0.87 4.9934 51.87% 6.0174 83.01%
G4 3.5366 7.56% 0.69 5.5510 68.83% 5.8015 76.45%
G5 2.9852 -9.21% 0.74 4.7520 44.52% 7.2720 121.17%
G6 3.1051 -5.56% 0.87 5.1078 55.35% 5.6398 71.53%
G7 3.2921 0.13% 0.95 5.3865 63.82% 5.8073 76.62%
G9 3.1881 -3.04% 0.62 5.4164 64.73% 5.1665 57.13%

G10 3.4276 4.24% 1.04 5.4893 66.95% 4.8163 46.48%

TABLE IV
ESTIMATION RESULTS USING TESTED METHODS FOR CASE 3

Proposed Method Compared Method 1 Compared Method 2
Gen No. Ĥ ϵH βV Ĥ ϵH Ĥ ϵH

G1 2.4240 -1.93% 1.03 3.2690 32.26% 3.3654 36.16%
G2 2.4167 -2.23% 0.69 3.6160 46.29% 4.0295 63.03%
G3 2.3244 -5.96% 0.72 3.5470 43.50% 4.1481 67.83%
G4 2.4624 -0.37% 0.59 3.8947 57.57% 3.7796 52.92%
G5 2.8279 14.41% 0.40 4.2557 72.18% 4.1785 69.06%
G6 2.4851 0.54 % 0.65 3.8664 56.43% 3.6309 46.90%
G7 2.5223 2.05% 0.70 4.0686 64.61% 3.9606 60.24%
G8 2.6371 6.69% 0.66 4.0635 64.40% 4.7967 94.06%
G9 2.7393 10.83% 0.58 4.0158 62.47% 4.6535 88.27%
G10 2.5458 3.00 % 0.93 3.8129 54.26% 3.4641 40.15%

The simulation results across various test cases demonstrate
the effectiveness of the proposed inertia estimation method,
particularly when compared to the methods that disregard
load voltage dependency. In each case, the proposed method
consistently produced inertia estimates with lower relative



TABLE V
ESTIMATION RESULTS USING TESTED METHODS FOR CASE 4

Proposed Method Compared Method 1 Compared Method 2
Gen No. Ĥ ϵH βV Ĥ ϵH Ĥ ϵH

G1 4.9381 7.58% 0.18 5.2080 13.46% 4.4452 -3.16%
G2 4.3857 -4.46% 0.46 5.3625 16.82% 5.8940 28.40%
G3 4.4714 -2.59% 0.44 5.3996 17.63% 5.6380 22.82%
G4 4.7575 3.64% 0.37 5.5635 21.20% 6.1487 33.95%
G5 4.1779 -8.98% 0.51 5.3212 15.92% 7.1953 56.75%
G6 4.9635 8.13% 0.37 5.6973 24.12% 5.8302 27.01%
G7 5.2282 13.90% 0.34 5.8828 28.16% 6.1236 33.40%
G8 5.0931 10.95% 0.40 6.0893 32.66% 6.0646 32.12%
G9 4.9002 6.75% 0.32 5.6565 23.23% 6.2850 36.92%

G10 4.4632 -2.77% 0.52 5.4070 17.79% 4.5254 -1.41%

error. This advantage is primarily due to the integration of
load voltage dependency, which provides a more accurate
representation of system dynamics following disturbances.

The comparative analysis highlights that neglecting load
voltage dynamics, as in Compared Method 1, leads to
substantial errors, especially in cases where load composition
is closely related to voltage, such as in modern grids
with complex, responsive loads. Similarly, the limitations of
Compared Method 2, which relies solely on local frequency
data without accounting for voltage dependency, reinforce the
necessity of our approach in accurately capturing the transient
response. From the tabulated results, it is also evident that
the compared methods, tend to yield higher accuracy in cases
where load voltage dependency variations are minimal. On the
other hand, this further highlights their limitations.

In scenarios with modified system conditions, the proposed
method demonstrated robustness. These cases underscore the
scalability of the method, confirming its adaptability across
different power systems and conditions. In particular, Case 2
and Case 3 revealed that even with significant reductions in
system inertia, our approach maintained accuracy, suggesting
its potential applicability for future low-inertia grids.

Furthermore, in comparison with the reported precision
of mainstream wide-area measurement-based methods,
the proposed method shows no inferiority, achieving
comparable accuracy without requiring extensive measurement
infrastructure. This capability makes it a practical alternative
for systems with limited PMU distribution.

VI. CONCLUSIONS

This study presents a novel method for estimating power
system inertia using local phasor measurements from a
single machine, incorporating load voltage dependency. The
proposed method addresses the challenge in conventional
inertia estimation approaches that rely on system-wide,
wide-area measurements. Through case studies on the IEEE
39-bus test system, this method demonstrates improved
accuracy, particularly in scenarios with significant load voltage
dependency, by dynamically adapting inertia estimates based
on voltage response. This innovation provides a practical and
efficient solution for inertia estimation, supporting stability
in low-inertia power systems. What’s more, the proposed
method offers a viable solution for systems with limited PMU
distribution.

Future work could involve testing the method with
real-world data, improving CoI frequency estimation
accuracy, extending the approach to interconnected multi-area
systems, integrating inertia estimation with other frequency
response parameters for comprehensive stability analysis,
and the additional considerations for stability evaluation
of IBR(Inverter Based Resource)-dominated grids with the
higher flexibility and faster dynamics. Future work will also
explore the integration of artificial intelligence techniques
to estimate inertia under conditions where the disturbance
magnitude Pd is unknown.
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