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Abstract—The backward differentiation formulas are a family
of implicit integration rules which generalize the backward Euler
finite difference formula and may be used for electromagnetic
transient simulation. These multi-step formulas require a number
of history terms, improving the precision as the order increases.
This approach was used to implement a computation platform
based on the modified nodal analysis, where the integration rule
may be changed as desired. Integration rules of orders one to five
were tested. The additional computer memory requirements are
modest and are not an issue for modern computer equipment.
The obtained response is free from numerical oscillations due
to switching operations in all cases, without requiring additional
checks or special control of the computation. Since the history
terms enter the global equation only through the right hand
vector, the scheme may be implemented in existing transients
programs with only minor changes to the code base, providing
a reliable simulation resource with fixed or variable time step
sizes.
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I. INTRODUCTION

HE growing addition of inverter-based resources (IBR)
Tinto electrical power systems demands the analysis of
complex interaction issues such as frequency and voltage
stability, sub-synchronous resonances, harmonic interactions
and other phenomena. Due to the nonlinearity and frequency
dependence of such systems, a time-domain analysis is
required in many cases [1].

Time-domain simulations have thus become an important
tool in the planning and operation of electrical power
systems with high penetration of IBRs. The time scales of
the analyzed phenomena often reach the order of minutes;
on the other hand, the detailed representation of inverter
commutation and control actions call for small time-steps,
of the order of microseconds. As a result, the simulation
of a complete case takes a long time, generates huge data
files and is cumbersome to handle. Several alternatives are
being explored to circumvent the aforementioned drawbacks,
among them hybrid simulation [2], multi-scale approaches
[3], parallel simulations [4], [5], [6], [7], [8], [9], [10],
and other approaches. New integration rules and optimized
implementations are also of interest [2], [3], [11], [12].
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The so-called electromagnetic transients (EMT) programs
currently available generally use a single-step time
discretization formula, namely the trapezoidal formula,
because it fulfills the desirable characteristics of absolute
stability and good precision. However, it is known that the
trapezoidal formula is prone to numerical oscillations when
certain conditions are encountered in the simulation, such as
the opening of an inductive branch [13]. Therefore, some
corrective measures have to be taken in the implementation
of time-stepping schemes based on the trapezoidal formula,
with techniques such as critical damping adjustment (CDA),
and interpolation [13].

In this paper, the use of multi-step formulas is explored
with the purpose of adding flexibility to the time domain
simulations of electrical systems. We focus particularly on the
backward differentiation formulas (BDF), a class of multi-step
time discretization scheme which is a generalization of the
backward Euler formula (BEF). It is known that the BEF is
absolutely stable and immune to numerical oscillations; in fact,
in some implementations it replaces the trapezoidal rule for a
few time steps in order to eliminate the numerical oscillation.
The BEEF, despite this desirable feature, is not generally used
in EMT programs because of its low precision. However,
when applied in its generalized form with multiple steps, its
precision is improved. In this paper, the implementation and
performance of the multi-step BDFs in the context of EMT
programs is considered.

II. BACKWARD DIFFERENTIATION FORMULAS

For EMT analysis, the ordinary differential equation
C(x,t)x + K(x,t)x + f(x,t) =0 (1)

with initial condition x(¢9) = x¢ must be solved; this
kind of equation also arises in other areas, such as in
finite element methods [14]. A numerical approximation
instead of an analytical solution is generally sought, in
the form of a time-marching algorithm where the solution
is approximated one step at a time. Aspects such as the
stiffness of the equations, the stability of the numerical
integration formula and the possibility of using step adaptation
are important considerations when selecting the numerical
scheme. The backward differentiation formulas (BDF) offer
good performance regarding these requirements: they are well
suited to solve (1), they allow changing the order of the
approximation and the size of the time step, and can handle



stiff problems [15]. One important feature of the BDF family
is that it is a single-stage scheme [16]. The BDF method can
traced to Gear [17]. The formulation we use in this paper is
based on [18].
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where h is the time step size and only x,1 is unknown.

A. Obtaining the « coefficients

The o coefficients may be obtained solving the following
equation in the case of variable time steps [14]:
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The « coefficients for the first 5 orders with a constant time
step are shown in Table I. The available formulas will be
designated as BDF-1, BDF-2 and so on, depending on the
selected order.

TABLE I
THE cv; COEFFICIENTS FOR CONSTANT TIME STEP SIZE.

BDF order | «;

1 -1 1

2 -3/2 2 -12

3 -11/6 332 173

4 -25/12 4 3 4/3 -1/4

5 -137/60 5 -5 10/3  -5/4 1/5

Regarding the stability of the BDF schemes, it is found that
the schemes BDF-1 and BDF-2 are A-stable irrespective of
the time step size, whereas BDF-3 to BDF-6 are conditionally
stable and formulas for orders more than 6 are unconditionally
unstable [16]. On the other hand, the local error of the BDF
schemes is of order k£ [19]. This means that the BDF-2 scheme
achieves a precision comparable to the trapezoidal rule and
higher order formulas will yield smaller local errors.

B. Extension to nonlinear systems

Application of the BDF formula (2) to the system equation
(1) results in [20]:
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Since this is an algebraic equation it is known as the
time-discretized form of (1). Equation (5) is a nonlinear

equation which has the form
F(a)=K'a+f' =0, (6)

where a = x,,41. The solution of this equation using the
Newton-Raphson method requires the Jacobian, given by
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If the C matrix is constant, as it usually is in EMT simulations,
(7) results in
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The time discretization (5) and its application to nonlinear
systems has been successfully implemented for fairly large
circuit-field problems where the number of equations is in
ther order of tens of thousands [20].

III. EMT PROGRAM IMPLEMENTATION

A brief review of the EMT implementation as used in this
paper is required in order to explain how the multi-step BDFs
fit into the formulation. The general framework we have used
is the modified nodal analysis (MNA), where circuit elements
are represented by so-called stamps that serve as the basis for
the assembly of the network equations. It turns out that circuit
element stamps take the form (1) and therefore are amenable
to discretization by the multi-step BDFs. The stamps of the
basic circuit elements are as follows [20].

A. Resistance

The terms contributed by resistive elements to the global
circuit equations can be gathered by the stamp
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where the element conductance is G.
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B. Capacitance

Terms corresponding to a capacitor may be grouped in the
—C

stamp
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where the element capacitance is C.

(10)



C. Inductance

The contributions due to an inductance may be identified
as:
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where the element inductance is L. Since inductances are not
natural elements for nodal analysis, an equation for the branch
current is added.

D. Voltage source

A voltage source can be described by the relationships

0 0 1 e 0
0 0 -1 e | + 0 ;
1 -1 0 is —v,(t)

Similarly to the case of the inductance, since the voltage source
is not a natural element for nodal analysis, an extra equation
representing the branch current is added.

(12)

E. Assembled circuit equation

As can be seen in the previous sections, the stamps of circuit
elements take the form (1), albeit some of the arrays C, K,
may be zero. Nevertheless, once the stamp of a circuit element
has been calculated, application of the time discretization
formula (5) transforms the stamp into an algebraic, reduced
matrix expression. Assembling the corresponding terms into a
global equation produces, in the nonlinear case, an equation
of the form:

JAe +g° =0, (13)

where e is a vector containing nodal voltages and some branch
currents.

F. EMT implementation

The sequence followed in the implementation of an EMT
program based on the MNA can be summarized as follows:
1-for each circuit element the element stamp is set up, 2-the
stamp is transformed by the time integration rule, 3-the
time-discretized stamp is assembled into the global equation,
4-the global equation is solved to obtain the next time step.
5-the process is repeated. This sequence resembles procedures
commonly used in the realm of finite element analysis [21].
Observe that with this approach step 2 may be changed at will,
meaning that a different integration rule may be used with no
impact on the rest of the program. There is great flexibility
regarding the type and order of the integration rule.

The additional memory needed to store the history terms
(5 previous time steps at most) is modest and it does not
pose excessive demands on modern computer equipment.
Moreover, the history terms are processed and enter the global
equation by means of a modified excitation term (that is, the
history terms modify only the right-hand vector of the global
equation), while the system matrix remains unchanged if the
time step is not changed. This means that the computation
time to obtain the next step is practically the same as for the
one step formulas.

Because of the aforementioned factors, a multi-step
numerical scheme such as BDF can be implemented in existing
EMT software with little changes to the existing code base.

IV. PERFORMANCE

The performance of the implemented EMT program was
explored with a series of tests. The main issues of interest
are the precision of the BDF rules and their responses when
switching operations occur in the network.

A. Stability

Only rules BDF-1 and BDF-2 fulfill the criterion of
A-stability, and therefore impose no restriction on the size
of the time step. Rules of higher orders could theoretically
lead to inastabilities; however, for electromagnetic transients
problems the size of the time step is generally selected to
correctly capture the highest frequency of the event; as a result,
the time step size will most likely be smaller than the step
dictated by the stability limit, meaning that the higher order
formulas may be used as well. Stability issues have not been
observed for the implemented tests. In case instabilities arise,
they can be avoided by restricting the simulation to only using
the BDF-2 rule.

B. Precision

The precision characteristic to be expected from the
multi-step rules is that the precision improves with the number
of steps taken into account in the scheme; however, this
assumes that sufficient information is available to start the
time stepping process, which is not true in general.

To illustrate this point, consider the very simple case of the
series RL circuit with a dc voltage source shown in Fig. la,
with values V=1V, R = 1€), L=1mH and a time step h=0.1ms.
The analytical solution for the current and the simulated values
are compared. The absolute error, (the difference between
the analytical solution and the simulated response) has been
calculated and is shown in Fig. 2; observe that the conventional
trapezoidal rule (marked as Trapezoidal-A in the figure) incurs
in the highest initial error, hinting to the need to improve the
initial estimates in order to harness the inherent precision of
the numerical integration rule. When the trapezoidal rule is
started with a step of h/2 to achieve a better initial estimate,
followed by full steps of size h, the absolute error falls
considerably; this solution is labelled as Trapezoidal-B in Fig.
2. The one-step BDF rule (BDF-1) is the well known backward
Euler finite difference formula, which is known to have low
precision, as confirmed in the absolute error calculated for
this rule; however, notice that this rule has a better starting
performance than the conventional trapezoidal rule.

The BDF-2 rule utilizes information from two previous
time steps, the BDF-3 from three previous steps and so on.
When starting the simulation, these previous time points are
not available. This means that the first solution will have to
be calculated with the BDF-1 rule, which only requires the
initial condition. For the second solution, two history data
vectors are available, and therefore the BDF-2 rule could be
applied; however, the initial error may be relatively high and
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Fig. 1. Test circuits for assessing the performance of the BDF schemes. a)
Energization of RL circuit with a dc voltage source. b) Switching off of an
RL circuit with ac voltage source.
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Fig. 2. The absolute error for test case for several integration rules.

application of the two-step rule can not recover from the low
precision initialization. Fig. 3 shows the absolute error for the
initialized trapezoidal rule (Trapezoidal-B) and the second and
third order BDF rules. Both BDF rules must start from the
initial condition only, meaning that the first calculated time
step is the same for both of them and comes from the one-step
formula. The second calculated step comes from the two-step
formula, and is the same for both schemes again. Only the third
calculated step starts to differ because now the BDF-2 and
BDF-3 rules are fully initialized. The precision of the BDF-2
and BDF-3 does not recover from the faulty initialization, and
in fact BDF-2 eventually shows a better precision for this
particular case. The absolute error for the BDF-4 and BDF-5
formulas behaves similarly to the BDF-3 scheme.

This test shows that a proper initialization is desirable for
the precision characteristics of an integration formula to be
exploited.

C. Switching

It is known that switching operations may result in
numerical oscillations when certain conditions are met. This
has led to some corrective measures in the implementation
of the trapezoidal rule, for instance. In this section the
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Fig. 3. The absolute error for test case for several integration rules.

performance of the multi-step BDF formulas is investigated,
when switching operations occur in the network.

It is known that the backward Euler formula shows no
numerical oscillation, and this is also observed for the
higher order BDF formulas. Consider the switching off of
the inductive circuit shown in Fig. 1b. Fig. 4 shows the
branch voltage for the inductance in a series RL circuit with
parameters V=1V and 60Hz, R = 1€), L=1mH, time step
h=10us; the switch closes at ¢t=0 and is set to open at
t=25ms. The current interruption occurs some time later, at
around t=30ms when the first zero-crossing is encountered.
The results for the BDF formulas up to order five are shown;
observe that the voltages are practically the same (if the signals
are superposed there is no discernible difference), except for
the voltage at the instant of opening, which is progressively
higher. Closer examination of the voltage, as shown in Fig. 5,
shows that the actual values and behavior depend on the order
of the integration rule. The switch in this case is modeled
as ideal, and therefore the circuit topology changes when a
closing or opening operation occurs; as a result, the history
terms are not strictly consistent and it takes some time steps
to propagate the correct information. For the one-step formula
BDF-1, the transition from closed switch to open switch
requires one time step; for the two-step formula BDF-2, it
takes two time steps; for the BDF-3 rule it takes three steps
to reach the final value v;,=0 and so on. Nevertheless, notice
that no numerical oscillations arise and a switching operation
is handled automatically without the need for additional checks
and integration rule changes. This makes the BDF rules very
reliable regarding switching operations.

Since a switching operation takes some steps to propagate
to a consistent set of history terms, an implementation
decision could be made to revert to the one-step formula
following a switching operation, since the existing history
terms become inconsistent. Thus, a sensible process would
be to start with BDF-1 to initiate the simulation, changing to
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Fig. 4. The branch voltage for the inductance, obtained with the BDF formulas
of orders 1 to 5.
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Fig. 5. The branch voltage for the inductance (detail), obtained with the BDF
formulas of order 1 to 5.

BDF-2, BDF-3, etc. for the following time steps, up to the
predefined maximum order, and reverting to BDF-1 after a
switching operation, again followed by increasing orders for
the subsequent steps.

\|
1
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Fig. 6. A three-phase rectifier with inductive source. The nodal voltages e7,
e10 and the current i1, will be monitored

D. Power electronics

Power electronics components are a growing part of modern
power systems, and their simulation is therefore of great
importance [22]. The power electronic switches can be
modeled in varying degrees of detail, the simplest model
being an ideal switch representation with added forward and
blocking resistances. If such simplified model is used, the
commutation results in visible spikes in the voltages. For the
three-phase rectifier shown in Fig. 6, the nodal voltages e7; and
e1o and the branch current iy, are monitored and are shown
in Fig. 7. The spikes reveal the commutation instants, and are
the result of the commutation process, where the ideal switch
representation introduces a change in the topology which is
reflected in one or several steps where the history terms must
adapt to the new circuit configuration. The third signal is the
current in one of the source inductances, and it shows no
spikes.

The BDF-2 rule was used in this simulation. Although the
obtained voltage responses are reasonable for this case, the
real response does not contain spikes because the commutation
process is more smooth due to the nonlinear resistance
characteristic of the electronic switches. In order to obtain
a more realistic simulation, some simple changes may be
implemented; one of them is to simply omit the step
immediately following the commutation, so that the spike is
filtered out from the reported output. The output will omit
some steps in this case. Another measure could be to halve
the time step size immediately following a commutation, so
that the history terms adapt to the new circuit configuration
and the smoothed response is recovered; the intermediate
solution with a step of one half is discarded. This approach
has some resemblance to the CDA technique [13], but in this
case the aim is to eliminate the switching spike and not to
control a numerical oscillation. When implementing any of
these measures, the response is as shown in Fig. 8, where the
voltages no longer contain spikes; the commutation instants
are still discernible but these do not result in non-physical
jumps in the signals. The current is not changed by the new
computation method.
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Fig. 7. Some of the variables calculated for a three-phase rectifier. Spikes
are apparent at the commutation instants.
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Fig. 8. Some of the variables calculated for a three-phase rectifier. Spikes at
the commutation instants are eliminated by omitting one time step from the
output.

V. CONCLUSIONS

The family of multi-step integration rules known as
backward differentiation formulas has been tested for
electromagnetic transient simulations. It has been found that
these rules when implemented following the modified nodal
analysis framework may serve as replacement for other
conventional integration rules. The BDF scheme has the
attractive characteristic of avoiding numerical oscillations, for
instance when switching inductive currents, and this feature
is observed for all the family, including formulas of order 1
to 5. The a coefficients have been tabulated for the special
case of a constant time step, and a simple method for
determining the « coefficients has been presented, allowing
for variable time steps and eventually step adaptation. The first
two BDF formulas are A-stable, which means that they pose no
restrictions on the time step size. For higher order formulas the
time step sizes usually employed in electromagnetic transients

simulations should ensure that no instabilities arise. The
precision of BDF formulas of higher order is acceptable, but
proper initialization of the history terms must be done in order
to fully preserve these precision characteristics; this requires
reduced steps at the beginning of the simulation. The added
memory requirements for keeping the history terms for higher
order formulas are negligible, since only state vectors need to
be stored. Moreover, the history terms only enter the global
circuit equations through the right hand side vector, as for the
conventional one-step formulas; therefore, the BDF formulas
could fit in existing EMT programs with only slight changes
to the existing code base.

The BDF rules are free from numerical oscillations when
switchings occur in the network. However, the change in the
topology of the circuit originates inconsistent history terms,
and this is reflected as a number of jumps in the response.
This jumps may be eliminated by resorting to a smaller time
step size for a few calculations, in order to recover consistent
history vectors. Moreover, if the time step is small enough,
the unreliable calculations may be simply discarded without
affecting the shape of the signal. Given these features, the
BDF multi-step rules have the potential of becoming a valuable
addition to the existing tool set of EMT simulation.
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