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Abstract— This paper investigates the potential of using the
compact scheme (CS) integration method for Electromagnetic
Transient simulation of power systems due to its high accuracy.
It focuses on the challenges encountered with CS at discontinuity
instants. Initially, the accurate response of the components at
discontinuities and the impact of iterations at slope changes of
nonlinear devices are elaborated. Afterward, the performance of
CS at discontinuities is investigated. This work demonstrates that
CS produces abnormal results at discontinuity instants.
Consequently, a new method is proposed to overcome these
issues. The formulation of network equations discretized with CS
in the modified augmented nodal analysis (MANA) framework is
then elaborated and compared to sparse Tableau formulations.
Case studies are presented to validate the performance of the
proposed discontinuity treatment method.
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I. INTRODUCTION

OWER system operators mostly count on conventional

system simulation models, also known as phasor-domain
transient (PDT) models, for the reliable operation of their
system. PDT models have demonstrated acceptable speed and
performance for traditional stability studies. However, these
models have a low frequency bandwidth, and are incapable of
maintaining simulation accuracy as the number of inverter-
based resources (IBR) and power electronic converters
increases in modern power systems [1]. Conversely,
electromagnetic transient (EMT) simulation tools are gaining
more global attention as they address the problems associated
with PDT models and offer a comprehensive insight into the
details of all the parameters. However, EMT simulation tools
are normally slower than PDT simulation tools due to the
complexity and nonlinearity of the models involved.
Therefore, it is needed to explore new strategies for enhancing
the performance of EMT simulation tools [2], [3].

Numerical integration methods are the core of every EMT
simulation, utilized to discretize the differential equations
associated with the dynamics of the system models [4]. In [5],
a brief comparison of some numerical integration methods
used for the EMT simulation of power systems is presented.

M. Jafari Matehkolaei, J. Mahseredjian and 1. Kocar are with Polytechnique
Montreal, Canada (e-mail: mohammad.jafari-matehkolaei@polymtl.ca
jean.mahseredjian@polymtl.ca and ilhan.kocar@polymtl.ca). B. Bruned is
with RTE, Jonage, France (e-mail: boris.bruned@rte-france.com). A.
Masoom is with Hydro Quebec Research Institute, Canada (e-mail:
masoom.alireza@hydroquebec.com).

Paper submitted to the International Conference on Power Systems Transients
(IPST2025) in Guadalajara, Mexico, June 8-12, 2025.

The performance of numerical integration methods in terms of
accuracy, stability, and computational burden plays a crucial
role in determining the overall performance of the associated
EMT simulation [4], [6]. Adopting an integration method with
high accuracy can potentially enhance the simulation speed
due to the possibility of leveraging large simulation time-
steps. Therefore, this paper explores the potential of using
compact scheme (CS) [7], [8] as an integration method for
EMT simulations due to its stated higher accuracy compared
to the widely used trapezoidal rule (TR). Compact scheme
accounts for the first derivative values that can improve
simulation accuracy.

Discontinuities refer to switching events and slope changes
of nonlinear elements which bring challenges in EMT-type
simulation tools. Unlike L-stable methods like Backward
Euler (BE), A-stable methods (like TR) produce fictitious
oscillations at discontinuities, necessitating additional
measures to address this issue. A comprehensive analysis of
various discontinuity treatment methods is presented in [9].

In this paper, the real behavior of parameters at
discontinuities is investigated with their physical equations
and compared with the TR, BE and CS responses.
Additionally, the impact of iterations at slope changes of
piecewise linear elements, on the accuracy of the simulation
results will be analyzed. It is demonstrated that CS encounters
limitations at discontinuity instants and further actions must be
adopted. Consequently, a combined CS with BE (CS_BE)
method is proposed to solve the CS issues at discontinuities.
Furthermore, this paper elaborates on the procedure for
formulating network equations discretized with CS in
Modified-Augmented-Nodal-Analysis (MANA) [6].
Consequently, a comparison of simulation performance
between MANA and Sparse Tableau Approach (STA) usage
in [10] is provided. All the test cases are coded in Julia
programming language to ensure consistent testing
benchmarks. The KLU solver [11] is used for solving the
linear systems and the results are validated with EMTP® [6].

This paper is organized as follows. Section II presents an
analysis of circuit real behavior at discontinuity instants, along
with a comparison to the performance of TR, BE and the
combined TR and BE methods (TR BE) wused at
discontinuities. The CS and its formulation in MANA are
covered in Section III. Section IV presents new approaches for
handling CS discontinuity instants. Simulation results of
various test cases are presented in section V, and finally,
section VI concludes the paper.

II. ANALYSIS OF DISCONTINUITY INSTANTS

This section explores the actual behavior of parameters at
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discontinuities and explains the causes of impulsive outcomes
and spikes using the physical equations of the components.
Additionally, the real responses at discontinuity are compared
with responses attained from TR or BE integration methods.

A.  Switching events:

The response of an ideal inductor over a switching event is
investigated in this section. This analysis can be expanded for
the capacitors and other components described with ordinary
differential equations:

dx
— = f(x,t 1
7 (x.1) 1)
The differential equation describing an ideal inductor is:
di, . 1=
v, =L—%t=Llim+—= 2
L dt A0 Af 2)

From (2), it is evident that if the inductor current is forced to
change abruptly over a very short period, which could happen
due to ideal switching conditions, the inductor voltage will
exhibit an impulse or spike. The shorter the variation period,
the bigger the spike amplitude. In other words, a sudden
change in the state variable causes the dependent variable to
exhibit a spike for components described by differential
equations. For comparison with ideal cases, the right side of
(2) is considered. If the inductor current undergoes a sudden
change between time-points# andz — A¢ as At approaches zero,
the voltage will exhibit a scaled Dirac delta function (also
known as impulse function) in ideal cases. The Dirac delta

function, denoted as o (t), represents an ideal spike with an

infinite amplitude.
BE is a first-order method described with:
Xy =X, FAL S, (3)
where At is the simulation time-step, and x is the state variable.
Discretization of (2) with BE leads to:

. LY,
ben = +T"k+1 4)
If the current at the time-point k+11is forced to zero,
i,,, =0, with the switch opening, the voltage at the time-point

k +1experiences a spike with an amplitude of:

L .
Vier = _El/{ Q)

This spike normally has a high amplitude which is expected
since i, is divided by a small value of Ar. For all the

following time-points, the value of i, will be zero (i, =0)
resulting intov,,, =0. The BE method reproduces the true

behavior of an inductor during switching instants, producing a
voltage spike corresponding to the current variation level.
TR has second-order accuracy and is described with:

At
Xie1 = X +7(fk+1 + /i ) (6)
With TR, the discretized equation of inductor in (2) is:

. . At
Ly =4 +Z(V/c+1 +V/¢) (7

If the inductor current is suddenly forced to zero due to
switching (i, =0), the voltage of the inductor at the time-

point exactly after opening the switch is calculated as:
2L
Ve (®)

v, =——1I
k+1 At k
For the following time-points, i, is zero. Therefore, the

voltage of the inductor isv,,, =-v,. At any following time-

points, the voltage will be the opposite of the preceding time-
point voltage. This shows that TR produces numerical
oscillations after switching instants, necessitating adoption of
a proper discontinuity treatment strategy. Switching to two
halved time-step BE at discontinuity instants is a strategy
adopted in [6] that guarantees a correct simulation that is
compatible with the true response of ideal elements, except in
some particular cases where numerical oscillations may still
occur at much lower amplitudes [9]. This method is called
TR _BE in this paper and it is based on [12]-[14] (also called
CDA). Some methods propose using interpolation to handle
oscillations that occur after discontinuities as presented in
[15]. Detailed analysis of the performance of different
discontinuity treatment methods is presented in [9] and [16].

B. Slope changes in nonlinear devices

The Newton’s method entails applying iterations after
crossing segment thresholds in piecewise linearized nonlinear
devices, to update the operating segment. This approach
ensures the correct segments are employed at each simulation
time-point. For further analysis, the nonlinear characteristic
with two piecewise linear segments illustrated in Fig. 1 is
considered. Each segment is characterized with:

y=ax+y, )
where « is the slope and y,is the intersection of the line with

y-axis. If, after calculating the results at point B', a crossing of
the segment threshold is detected, the operating segment is
updated and the parameters are recalculated with another
iteration to reach the correct (sample case, the actual position
may vary and even jump several segments) position, point B.
The subsequent time-point, point C, is also simulated on the
correct segment and operating point. Therefore, iterations are
essential to ensure movement along the correct characteristic
in piecewise nonlinear devices. If iterations are not performed
and the segment is updated only for the next time-point, the
calculated value at point B' becomes invalid, as it does not lie
on the actual characteristic of the nonlinear element.
Moreover, transitioning from point B' to point C results in
non-homogeneous outcomes and introduces numerical issues.
These concepts are further explored in the simulation section.

y-axis
@
\
\

X-axis

Fig. 1. Characteristics of the typical nonlinear device with two slope segments



Slope changes of nonlinear devices can produce spikes
when using TR, BE or TR BE integration methods. The
number of linearized segments and the simulation time-step
are influential factors.

III. ANALYSIS OF THE CS INTEGRATION METHOD

A. Accuracy analysis

In [8], it is proposed to use CS for the EMT simulation of
power systems due to its high accuracy and stability. The CS
[7] is described with:

N _AC(df, Ay
Xy =X+ ) (f/m +fk) ( d d j (10)

For evaluating the accuracy of CS, its Local Truncation
Error (LTE) is calculated noticing that the primary terms of
CSin (10) are identical to those of the TR. Consequently, the
full Taylor’s series expansion of the TR is considered:

_ At[a’xk+l dxk] AP dx, At d'x, AP dx,
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By manipulating the Taylor's series expansion in (12)
and combining it with (11), the discretization equation of the
CSin (10) can be obtained.
ﬂdi+A—t2dz)§" +A—PL)§"+ (12)
1 de 2! dt 3! dt

Multiplying the second derivative of the entire equation in
(12) by A#* /12 and adding the resulting equation to (11)
yields the discretization equation of CS, as shown in (13).
This equation indicates that CS has a fifth-order LTE,
confirming the integration method's fourth-order accuracy.
+dxkj_Atz[d2xk+] _ dzka+At5d3x(£)

dt  dt) 12 df dar’ ) 720 df
(13)

=x, +

xk+1

B. Formulation Strategy
After applying discretization with an integration method,
the network is normally expressed by a set of algebraic
equations represented by:
Ax, =b, (14)
where 4, is the Jacobian matrix of the simulated grid, x, is the
vector of unknown variables and b, is the vector of known

variables. This equation is solved at each time-point ¢ during
an EMT simulation. From (10), it is observed that the first
derivative of the dependent variable f must be readily available
when using CS. In [8], the network equations are formulated
with STA, leveraging the calculation of the first derivatives of
all branch currents and voltages. The general format of
formulation required for CS is [8]:

[Acs,u Acs,12}|:x,} _ |:bt:|
Acs i Acsn || X b,

From (15), it is noticed that two sets of equations are
required when using CS: one for computing the grid values

(15)

and another for determining their first derivatives. A, is
identical to the matrix used in TR formulation. A ,, contains

the coefficients required for computing the first derivative
values, while Ay, and Ay, connect the two sets of

equations. The STA described in [8], [10] can be detailed by:

nxn nxb Onxn 0nxb Onxb (ul [0]
a0, 1,0, 0, 0,|i| |0
0,., B B, 0,.. li3 B, 1 _ i 16)
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where A4 is the node vs branch incidence matrix and I is the
identity matrix. u, i, and v represent the node voltage, branch
current, and branch voltage vectors, and consequently, u', i,
and v’ are their first derivatives, respectively. # is the number
of nodes and b is the number of branches. KCL equations in
the first row of (16) are the core of STA formulation for
computing grid values, stating that the sum of all the currents

entering a node should be zero:

Ai=0 17
Another set of KCL equations exists in the fourth row which is
the core for calculating the first derivatives of currents:

Ai'=0 (18)
The second row of (16) is a simple KVL relating branch
voltages to node voltages. The third and sixth rows of (16)

express the voltage-current relations of the elements.

Using CS for discretizing the inductor equation [8]:
2

. . At A ,
L = +Z(Vk+l +Vk)_ﬁ("k+1 _vk)’ (19)
and discretizing the capacitor equation with CS yields [8]:
. . 2C At , Yy
L =7 +E(Vk+1 _Vk)+?(lk+l _lk) (20)

The diagonal coefficients required for (16) are presented in
Table I with the ii subscript. It should be noted that the first
derivative of the inductor current is directly computed from its
voltage based on (2). A similar approach is used for the
capacitors, and the first derivative of the capacitor voltage is
directly calculated from its current in (16).

The computational burden of an EMT simulation is largely
related to the numerical methods used for the formulation and
solution of the network equations. The primary advantage of
STA is the direct access it provides to all parameters.
However, despite its sparsity, this matrix is much larger than
in the case of nodal analysis-based matrices. An extra set of
equations for the first derivative of the parameters, like STA,
can also be considered in MANA [6]. Additionally, inductors
and capacitors can be incorporated into the augmented section
of the MANA formulation for direct access to current values.
The general structure of the MANA with CS becomes:
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where Y is the classical nodal admittance matrix. A, , 4, and

A

A, refer to the augmented part of MANA in [6]. A,.is the

nodes vs inductor and capacitor branches incidence matrix.
The details of the coefficients are provided in Table II.

DIAGONAL COEFFICIENTS AND VEETA()iI;}E SIPARSE TABLEAU APPROACH (STA)
coefficients inductors capacitors resistors
» 1 1 1
» G, = At/2L G, =2C/At G,=1/R
B, 0 R, =At/6 0
B,, G,, = A[12L 0 0
B, 0 1 0
B, 1/L 0 0
B, -1 0 -1
By, 0 -C G, =1/R
s, G, +G v, +i, -Gov, — R0 —i, 0
5] 0 0 0
TABLEII
DIAGONAL COEFFICIENTS AND VECTORS, MANA FORMULATION
coefficients inductors capacitors
R R, =-2L/At R.=-At/2C
i R,, =-At/6 0
B,, 0 R, =A[12C
B,, 1 0
B, 0 1
B, 0 -C
B, -L 0
he, Ryi +R, v, —v, Rei, + Rojiy +v,

From (13), and noting that the first terms of CS are
identical to TR, it can be inferred that the improved accuracy
of CS stems from considering the second derivative of the
state variable. As shown in (15), these derivative values are
computed from an additional set of equations, and their
accuracy plays a pivotal role in improving the overall
precision of CS. However, there are limitations in calculating
the first derivative values for some component models in
EMT-type simulation. Examples include controlled current
and voltage sources, distributed parameter transmission lines,
synchronous machines, etc. Therefore, implementing the CS
as the main integration method in a commercial EMT-type
simulation tool brings significant challenges. Furthermore, it is

observed from (15) that CS introduces additional complexity
and computational burden compared to the commonly used
TR. Although CS offers better accuracy, it does not
necessarily result in faster simulation speeds when using
larger time-steps. In other words, TR with smaller time-steps
may yield comparable simulation speed and accuracy to CS
due to the latter's increased computational demands. Complete
analysis on this matter entails rigorous testing with practical
cases.

C. Performance at discontinuities

For investigating CS performance at discontinuities, an
ideal inductor is considered. If the inductor current is abruptly
forced to zero (i, =0) due to switch opening, the KCL

equations in (18) force the first derivative of the inductor
current to zero (i,,, =0). As explained, the first derivative of

inductor current in CS is directly calculated from inductor
voltage with (2). Consequently, forcing the first derivative of
the inductor current to zero will force the inductor voltage to
zero,v,,, = 0. The absence of spikes in the inductor voltage is

solely due to the specific formulation used in CS, which links
the inductor voltage to the first derivative of the inductor
current. This does not align with the true behavior of an ideal
inductor as discussed in section II. However, this formulation
causes a spike in the first derivative of the inductor voltage.
According to (19), the first derivative of inductor voltage after
opening the switch will be:
Vi = 12—Li +£v +v/
AR AT

and v; represent the inductor current, voltage,

(22)
where Iy Vs
and the first derivative of the voltage at the time-point just
before the switch opens. The inductor voltage and current will
remain zero for all the proceeding time-points. Consequently,
the first derivative of inductor voltage will preserve the large
value computed from (22). Therefore:
Vier = Vi (23)

The issue arises when the switch is reclosed. The inductor
current will abruptly jump after the switch reclosure. This can
be inferred by substituting the historical value of v, in (22)

into (19). This leads to an inductor current:

LY AP ,
o =1, T +Z(vk+1 +v, +Vp)_ﬁ(vk+l +vp) (24)

It can be inferred from (24) that the term i, impacts the

initial condition and introduces an error when the switch is
reclosed. Test cases are presented in the simulation section for
further analysis of CS performance at discontinuity moments.
It is observed from (23) that the history elements v, preserves

the imposed error at discontinuity moments, unless it is set to
zero after discontinuities. However, this can cause numerical
problems during simulation. Based on previous discussions, it
is necessary to adopt strategies to address this issue. The next
section proposes a new discontinuity treatment method for CS.



IV. COMBINED CS AND BE METHOD FOR DISCONTINUITY
TREATMENT OF CS (CS_BE)

In this section, combining CS and BE is proposed to
address the discontinuity moments when employing CS. The
performance of the proposed method is validated in the
simulation section.

This method is adopted from the discontinuity treatment
approach used in [12], [13]. It is noticeable that switching to
halved time-step BE will preserve the A, part of (15),

eliminating the need for additional reformulation. As stated in
section II, two consecutive halved time-step BE can
effectively handle the discontinuity moments. Normal
simulation with CS continues after the two-halved time-step
BE. For initializing CS after the two halved time-step BE, it is
required that the history elements of v, for the case of inductor

and i; for the case of capacitor be set to zero since these values

are not available and are not calculated with BE. This method
is referred to as CS_BE in this paper.

V. TEST CASES

This section presents test cases to examine the performance
of integration methods during discontinuities. Additionally,
the effectiveness of the proposed CS BE discontinuity
treatment method is verified.

A. Test Case 1: CS performance at discontinuities

Fig. 2 shows a series R-L circuit used to analyze CS
performance during switching moments and to validate the
proposed CS BE method for handling discontinuities. Fig.
3(a) illustrates that CS yields inaccurate results following
discontinuity events. The switch is opened at =20 ms and
reclosed at ¢t =50 ms. The reference waveform is found from
the TR_BE method with Az=50us . After the switch

reclosure, the inductor current exhibits a sharp jump. This
issue is resolved by the proposed CS_BE method, where the
inductor current rises gradually after the switch reclosure. Fig.
3(b) shows that the inductor voltage remains zero during the
entire simulation with CS. However, as shown in Fig. 3(c), the
first derivative of the inductor voltage shows a sudden
increase and preserves this value while the switch is open.
This leads to a jump in the inductor current when the switch is
reclosed, which should have increased gradually from zero.
According to the explanations provided in section II, the
inductor voltage experiences a spike at switch opening time
due to using BE in the CS_BE method which correctly aligns
with the component's accurate response.
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Fig. 2. Schematic of the simulated series RL circuit
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Fig. 3. CS performance at discontinuities (a) inductor current, (b) inductor
voltage, (c) the first derivative of the inductor voltage.

B. Test case 2: CS_BE performance at slope changes

This test case investigates the impact of slope changes of
piecewise linearized nonlinear components on the
performance of the CS_BE method. Fig. 4 shows a circuit
with a nonlinear inductor that can be a typical representation
of the magnetization circuit of a transformer. The
characteristics of the nonlinear inductor are presented in
Table III. Fig. 5(a) shows the nonlinear inductor flux which
determines the operating segment of the nonlinear inductor.

The reference waveform is found from the simulation with
TR and 1 us time-step. As shown in Fig. 5 and Fig. 6(a), the
nonlinear inductor flux is correctly simulated with 500 us
time-step using TR, BE, and CS due to iterations. Despite the
correct simulation with TR, BE and CS, switching to two
halved time-step BE in TR BE and CS_BE causes deviation
from the reference waveform at large time-steps, as shown in
Fig. 5 and Fig. 6. These deviations become noticeable at large
time-steps, while the performance of the CS BE and TR BE
methods remains acceptable for the time-steps below 100 wus.
It is observed from Fig. 5(a) and (b) that numerical problems
and spikes appear at slope change instants if the iterations are
not performed, and slope changes are applied at the next time-
point after detection of passing a segment threshold. This
method, when the TR integration method, is used is referred to
as TR NI in this paper.

TABLE III
Characteristics of the nonlinear inductor
Current (A) | 21.3 57.2 99.8 154.6 | 236.9 | 420.8 | 1601.7
Flux (Wb) 2.49 2.62 2.74 2.81 2.88 2.96 3.26
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Fig. 5. Test case with nonlinear inductor with TR, BE, and TR _BE
(a) nonlinear inductor current (b) impact of iteration (c) zoom of the current.
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EMTP® [6]. The modified WECC 240-bus grid contains 1479
nodes, 165 voltage sources, 1548 RLC components, 366
transformers, 6 switches, and 320 three-phase PI transmission
lines. For introducing nonlinearity to the modified WECC
240-bus system, nonlinear inductances with the characteristics
presented in Table IV and locations shown in Fig. 7 are added,
to model transformer magnetization. For further analysis, a
three-phase fault with a resistance of 0.5 Q is imposed on the
location shown in Fig. 7 and the voltage of the point (bus) O
near the fault location is observed. Simulation results with the
time-step of Ar =150 us are presented in Fig. 8. The reference
waveform is obtained with TR with Af=50 us. It can be
observed from Fig. 8(b) and (c) that TR causes a phase shift
for the case of high frequencies and large simulation time-
steps. However, CS closely aligns with the reference
waveform, as anticipated due to its high-order accuracy. It can
be concluded that CS yields more accurate simulation results
with large time-steps especially when high-frequency
oscillations exist.

Table V presents the simulation times for the modified
WECC 240-bus system over a 10 s duration. The comparison
between CS and TR reveals that CS is slower than TR, as
anticipated. This is due to the need to solve two sets of
equations in CS, which introduces additional computational
overhead. The extra computational burden of CS can also be
inferred by noticing the size and the number of nonzero
elements of the network matrix as shown in Table V, which
are higher compared to the case of TR. Simulation time
comparison between CS and CS_BE shows that the proposed
CS_BE method does not add considerable computational
burden to the simulation. Based on the simulation speeds in
Table V and simulation accuracy in Fig. 8, it can be inferred
that TR with 50 us time-step yields better simulation speed
with comparable accuracy compared to CS with 150 us time-
step for this test case due to the latter’s added computational
burden. Two formulation methods are applied in this test case:
MANA and STA. It is observed that, with both CS and TR,
the MANA formulation delivers better performance with
faster simulation times.

5 ___zoom_ e CS_BE (At =300 ps) |
z ; ; ——— CS_BE (At =500 ps)
= ! '
< 3 3 1 H
@ 3 3
314 § 3 i

0 005 01 015 02 025 03 035 04 045 05
time (s)
a)

Z00M  ——Ref(At=1 ps) e CS (At=500ps)  —--- CS_BE (At = 300 ps)
5 - CS_BE (At =200 s) - CS_BE (At = 500 pis) |
<4t |
2
=3t 1
c
ool 1
310} , ' 1

o N 7 i 2

240 250 260 270 280 290 300 310

timbe (ms)

Fig. 6. Test case with nonlinear inductor with CS and CS_BE (a) nonlinear
inductor current (b) zoom of the current.

C. Test Case 3: Speed and accuracy investigation

This test case investigates the computational burden and the
simulation accuracy of CS for the modified WECC 240-bus
system [17] in Fig. 7. For this test case, all the generation units
(PVs and synchronous machines) are substituted with ideal
voltage sources. The parameters of the associated voltage
sources are derived from the load-flow solution performed in

TABLE IV
Characteristics of the nonlinear inductor
current (pu) 0.002 0.01 0.025 0.05 0.1 2
flux (pu) 1 1.075 1.15 1.2 1.23 1.72
TABLE V
Simulation results for WECC 240-bus system
Integration compuipe fme © Matrix size lelloelrllf::t)
method At=50us | At=150 us numbers
TR 96.25 39.04 2082x2082 10323
<ZC TR BE 98.12 43.05 2082x2082 10323
§ CS 420.74 190.06 12198x12198 78261
CS_BE 437.31 198.4 12198x12198 78261
TR 165.96 84.8 11202x11202 33861
ﬁ TR_BE 168.01 92.6 11202x11202 33861
n CS 564.05 288.7 22404x22404 79242
CS BE 565.29 305.73 22404x22404 79242
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Fig. 8. The phase-a voltage of the observation point O during the fault.

VI. CONCLUSION

This paper investigates the potential of using CS numerical
integration method for EMT simulation of power systems.
This method enables adopting larger time-steps in some
applications for yielding improved simulation speed. The
higher accuracy of CS is achieved at the expense of increased
computational burden due to the calculation of the derivatives.
Despite leveraging from high accuracy, it is demonstrated that
CS can produce inaccurate results at discontinuities which

Orange line: 200-300 kV

Generator Type
B = biomass

E=geothermal |
H = hydro

N=nuclear |
R=genericrenewable |
ISC = synchronous condenser|
P = pump hydro storage |

= wind

Observation point O

240-bus WECC test system
One-line diagram

=

\ K Transformers with nonlinear magnetiza

| * Fault location

require additional measures. Consequently, combining CS
with BE (CS BE) is proposed for solving CS issues at
discontinuities. Furthermore, the procedure for formulating
grid equations discretized with CS in MANA instead of STA
is elaborated and a comparison between simulation
performances indicates the superiority of the MANA-based
CS approach.

It is also concluded that the reduced accuracy of the classic
trapezoidal integration method at large time-steps, can be
corrected by simply reducing its time-step to achieve the same
accuracy as the CS with large time-steps. Consequently, the
trapezoidal method remains a better solution since it delivers
much better computational performance even when its time-
step is reduced. As explained in the paper, another limiting
aspect for selecting the CS method is related to more
complicated models, such as distributed parameter
transmission lines.
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